• Keine Ergebnisse gefunden

Advanced NMR Techniques for the Investigation of Small Molecules in Solution

N/A
N/A
Protected

Academic year: 2022

Aktie "Advanced NMR Techniques for the Investigation of Small Molecules in Solution"

Copied!
150
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Table of Contents

ABBREVIATIONS ... x

1 INTRODUCTION ... 1

2 OUTLINE ... 22

3 APPLICATIONS OF SLICE-SELECTIVE NMRSPECTROSCOPY ... 23

4 ANISOTROPIC NMRSPECTROSCOPY IN POLYMERIC GELS ... 45

5 EXPERIMENTAL PART ... 81

6 APPENDIX ... 94

7 REFERENCES ... 125

DANKSAGUNG ... 135

CURRICULUM VITAE ... 136

(10)

A BBREVIATIONS

(11)
(12)
(13)

1 I NTRODUCTION

1.1 Lithium Organic Compounds

1.1.1 Applications

(14)

1.1.2 Structure Determination

Structure Determination in Solid State

(15)

Structure Determination in Solution

(16)
(17)

1.2 Slice-Selective Excitation

1.2.1 Principles

⃗⃗⃗

⃗⃗⃗

⃗⃗⃗

(18)

𝜈z =𝛾 ∙ 𝐺z∙ 𝑧′

∆𝑧 =2𝜋 ∙ ∆𝜈BW 𝛾𝐺z

1.2.2 Applications

(19)
(20)
(21)

1.3 Anisotropic NMR Spectroscopy

1.3.1 Residual Dipolar Couplings

Theoretical Basics of (Residual) Dipolar Couplings

𝐷 = − 3

2𝑅3𝛾T𝛾S𝜇0ℏ (cos2 𝜃 −1 3)

⃗⃗⃗

(22)

⃗⃗⃗

(23)

𝐀 = (

𝐴xx 𝐴xy 𝐴xz 𝐴yx 𝐴yy 𝐴yz 𝐴zx 𝐴zy 𝐴zz

) (1-4)

𝐀 = 𝐏 −1

3𝟏 (1-5)

𝑃 𝑃ỹ 𝑃

⃗⃗⃗

𝐏PAS= (

𝑃 0 0 0 𝑃ỹ 0 0 0 𝑃

) (1-6)

(24)

𝐷̅ = − 3

8𝜋2𝑅3𝛾T𝛾S𝜇0ℏ (𝑟 𝑇𝐀𝑟 ) (1-7)

⃗⃗ ⃗⃗

Experimental Determination of RDCs

(25)

𝑇CH

1 = 𝐽1CH+ 𝐷1 CH (1-8)

Applications of Residual Dipolar Couplings

(26)
(27)

1.3.2 Residual Quadrupolar Couplings

Theoretical Basics of (Residual) Quadrupolar Couplings

𝐕 = (

𝑉xx 𝑉xy 𝑉xz 𝑉yx 𝑉yy 𝑉yz 𝑉zx 𝑉zy 𝑉zz

) (1-9)

̃ ̃ ̃

𝜂 =𝑉− 𝑉ỹ

𝑉 (1-10)

(28)

𝜈q = 3𝜒

4𝐼(2𝐼−1)(3cos2𝛽 − 1 + 𝜂sin2𝛽cos 2𝛼) (1-11)

𝜒 =𝑒2𝑞𝑄

ℎ (1-12)

̃

(29)

𝜈rq = 3𝑒𝑄

2𝐼(2𝐼 − 1)ℎ ∑ 𝑉ij𝐴ij

i,j=x,y,z

(1-13)

(30)

Applications of (Residual) Quadrupolar Couplings

(31)

1.3.3 Alignment Techniques

(32)
(33)
(34)

2 O UTLINE

Slice-Selective Excitation

Anisotropic NMR Spectroscopy

(35)

3 A PPLICATIONS OF S LICE -S ELECTIVE NMR S PECTROSCOPY

3.1 Preparation of the SSE Experiments

Determination of the magnetic field gradient strength

𝜈z=𝛾 ∙ 𝐺z∙ 𝑧

2𝜋 (1-1)

𝐺z = 𝑔IG∙ 𝐼a (3-1)

(36)

𝐺z =2𝜋 ∙ ∆𝜈z

𝛾 ∙ 𝛥𝑧z (3-2)

(37)

Setting of the pulse duration and power

(38)

Determination of the spatial detection sensitivity

(39)

3.2 Observation of Reactions

Reaction between nBuLi and PMDTA

(40)
(41)
(42)
(43)
(44)
(45)

3.3 Single-Shot Titration

Titration of Li+ with 12-crown-4

(46)
(47)
(48)
(49)

3.4 Qualitative Chromatography

(50)

Separation of amino acids L-aspartic acid, L-histidine, L-tyrosine and L-valine in agarose

(51)
(52)

𝑐

𝑐𝑜= erfc ( 𝑧

2√𝐷SSE𝑡) (3-3)

̅

̅ ̅ ̅

1

𝑇2 = 1

𝑇2,bulk+ 𝛿𝑆

𝑉 (3-4)

(53)

𝐼cpmg

𝐼cpmg,0= exp (− 𝑡

𝑇2) (3-5)

(54)

̅

̅

̅

̅

̅

̅ ̅

(55)

3.5 Summary and Outlook Slice-Selective Excitation

(56)
(57)

4 A NISOTROPIC NMR S PECTROSCOPY IN P OLYMERIC G ELS

4.1 Alignment of Small Symmetric Molecules

(58)

(59)

〈𝐷〉 = 𝐷||3 cos2𝜙 − 1

2 (4-1)

〈 〉

𝐀PAS= (

𝐴𝑥̃ 0 0 0 𝐴𝑦̃ 0 0 0 𝐴𝑧̃

) (4-2)

𝐷 = 𝑘(𝐴sin2𝜗cos2𝜑 + 𝐴ỹsin2𝜗sin2𝜑 + 𝐴cos2𝜗) (4-3)

𝐴 𝐴ỹ 𝐴𝑧̃

(60)

𝐴 𝐴ỹ 𝐴

̃ ̃ ̃

𝑨𝐱̃

𝑨𝐲̃

𝑨𝐳̃

𝐴 𝐴ỹ 𝐴

(61)

𝐴𝑧̃

(62)

̃ ̃ ̃

𝑨𝐱̃

𝑨𝐲̃

𝑨𝐳̃

(63)

4.1.1 Molecular Dynamics Simulations

(64)
(65)
(66)
(67)
(68)

4.2 Structure Elucidation of Synthetic Indanes

(69)
(70)
(71)
(72)

𝑄 = √∑(𝐷calc,i− 𝐷exp,i)2

∑ 𝐷exp,i (4-4)

(73)
(74)
(75)
(76)
(77)

4.2.1 Structural Error Analysis

(78)
(79)
(80)
(81)

4.3 Quantitative Analysis of Residual Quadrupolar Couplings

𝜈rq = 3𝑒𝑄

2𝐼(2𝐼 − 1)ℎ ∑ 𝑉ij𝐴ij

i,j=x,y,z

(1-13)

(82)
(83)

〈 〉

𝐴 𝐴ỹ 𝐴

̃

̃

̃

(84)

̃

| ̃|

(85)

̃

̃

̃

̃

̃

(86)

̃

̃

̃ ̃

𝜈rq =3𝑒𝑄

4ℎ 𝐴𝑉 (4-5)

̃ ̃

̃ ̃

̃

(87)

̃ ̃

(88)
(89)
(90)

4.4 Summary and Outlook Anisotropic NMR Spectroscopy

(91)
(92)
(93)

5 E XPERIMENTAL P ART

5.1 Sample Preparation

(94)
(95)
(96)
(97)
(98)

5.2 NMR Experiments

(99)
(100)
(101)

5.3 Processing of NMR Data

(102)
(103)
(104)

5.4 Computational Techniques

(105)
(106)

6 A PPENDIX

A Applications of Slice-Selective NMR Spectroscopy ... 95

B Anisotropic NMR Spectroscopy in Polymeric Gels ... 99

(107)

A Applications of Slice-Selective NMR Spectroscopy

Preparation of SSE Experiment Data

Imaging Pulse Sequence

SSE Pulse Sequence

(108)

Observation of Reactions Data

(109)

Single-Shot Titration Data

(110)

Qualitative Chromatography Data

Relaxation Data

(111)

B Anisotropic NMR Spectroscopy in Polymeric Gels

Alignment of Small Molecules Data

Least-Square Solution Script

MD Energy Optimization Run File

Exemplary MD Simulation Run File

(112)

Exemplary OPLS Topologies

(113)
(114)
(115)
(116)
(117)

Structural Elucidation of Synthetic Indanes Data

Exemplary ORCA input files geometry optimization and numerical frequencies

(118)

Structure Data β-aa-H*

(119)
(120)

Structure Data β-aa-Me*

(121)
(122)
(123)
(124)
(125)

RDC Data β-aa-H*

(126)
(127)

RDC Data β-aa-Me*

(128)
(129)

Exemplary MSpin Input and Output

Structural Noise Script

(130)
(131)

Extended NMR Spectroscopy of Synthetic Indanes

(132)
(133)
(134)
(135)

Quantitative Analysis of Residual Quadrupolar Couplings Data

Exemplary ORCA input files EFG tensor calculation

(136)

Structure Data of [CpLi(OMe

2

)], [CpLi(OMe

2

)

2

], [CpLi(OMe

2

)

3

] and [Cp

2

Li]

(137)

7 R EFERENCES

(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)

(147)

D ANKSAGUNG

(148)

C URRICULUM V ITAE

EDUCATION

SCHOLARSHIPS AND AWARDS

(149)

TEACHING ACTIVITY

VARIOUS WORKING EXPERIENCES

VOLUNTARY SERVICES

PERSONAL SKILLS

(150)

CONFERENCES AND WORKSHOPS

- -

- - - - - - -

SCIENTIFIC PUBLICATIONS

Referenzen

ÄHNLICHE DOKUMENTE

Theoretical Error Analysis of Model Compounds for Various Solvents...

PH- and PPH-gel are very versatile and have been applied to various molecule/solvent systems. In a further application we inves- tigated a decasaccharide with a molecular weight of

21.1 Dealing with Local Optima 21.2 Outlook: Simulated Annealing 21.3 Outlook: Genetic Algorithms 21.4 SummaryM. Helmert (University of Basel) Foundations of Artificial

Dietmar Stalke, Institut für Anorganische Chemie Prof.. Philipp Vana, Institut für Physikalische Chemie

Table 21-1 Comparison between primary and secondary temperature sensors Table 21-2 Salinity comparison between primary and secondary sensors Table 21-3 CTD salinity from

The first test will focus on showing the differences on the different types of acquisition by comparing the results of a forensic analysis of the same device using Cellebrite

In the design of solution procedures for stochastic optimization problems of type (1.10), one must come to grips with two major difficulties that are usually brushed aside in the

Despite the wide variety of concrete formulations of stochastic optimization problems, generated by problems of the type (1.2) all of them may finally be reduced to the following