• Keine Ergebnisse gefunden

underway spectrophotometry in the Fram Strait

N/A
N/A
Protected

Academic year: 2022

Aktie "underway spectrophotometry in the Fram Strait "

Copied!
19
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Yangyang.Liu@awi.de

Retrieval of phytoplankton pigments from

underway spectrophotometry in the Fram Strait

Yangyang Liu, E. Boss, A. Chase, Y. Pan, H. Xi, X. Zhang, R. Roe6gers, Astrid Bracher

1.  What are phytoplankton pigments and why important?

2.  Why and how to retrieve?

3.  What is underway spectrophotometry?

4.  What is the current phytoplankton research state in the

Fram strait?

(2)

SeparaKon, idenKficaKon and quanKficaKon of phytoplankton pigments: High Performance Liquid Chromatography (HPLC) SeparaKon, idenKficaKon and quanKficaKon of phytoplankton

pigments: High Performance Liquid Chromatography (HPLC)

ü  Help Snacking on SUNLIGHT — photosynthesis ü  Protect against SUN BURNT — photoprotection

P h y t o p l a n k t o n p i g m e n t s

Source: Ocean OpKcs Web Book

Source: Bricaud et al., 2004

Light absorp;on spectra of various pigments

(3)

P h y t o p l a n k t o n p i g m e n t s i n r e m o t e s e n s i n g a p p l i c a t i o n s

SeparaKon, idenKficaKon and quanKficaKon of phytoplankton pigments: High Performance Liquid Chromatography (HPLC) SeparaKon, idenKficaKon and quanKficaKon of phytoplankton

pigments: High Performance Liquid Chromatography (HPLC)

diatom coccolithophore cyanobacteria

Source: Losa et al., 2017 Source: ESA Ocean Color CCI

Chl-a

ü  Phytoplannkton biomass ü  FuncKonal types:

develop, validate or refine bio-opKcal algorithms

(4)

Q u a n t i f y p h y t o p l a n k t o n p i g m e n t s

SeparaKon, idenKficaKon and quanKficaKon of phytoplankton pigments: High Performance Liquid Chromatography (HPLC) SeparaKon, idenKficaKon and quanKficaKon of phytoplankton

pigments: High Performance Liquid Chromatography (HPLC)

1. Measure them using High Performance Liquid Chromatography (HPLC)

Discrete water sampling ---> Filtration ---> HPLC

2. Retrieve them from optical measurements (e.g. absorption, reflectance) ü  Spectral decomposi;on:

phytoplankton absorpKon = absorpKon of (pigment 1 + pigment 2 + …) ü  Spectral reconstruc;on:

absorpKon of (pigment 1 + pigment 2 + …) = phytoplankton absorpKon ü  …

Esp. from in situ OpKcal sensors!

Yangyang.Liu@awi.de

(5)

F r a m S t r a i t

ü  Mass (75%), heat (90%) exchanges ü  Sea ice mass export (10%)

o  Climate change

o  Light & nutrient conditions change o  phytoplankton community change

diatom coccolithophore phaeocystis Satellite data: poor spaKal-temporal resoluKon;

lack of assessment of the applicability of global bio-opKcal algorithms

In situ data:insufficient HPLC data, even less opKcal measurements

(6)

D a t a s e t

Expedition: icebreaker R/V Polarstern Ø  PS93.2 (Jul - Aug 2015)

Ø  PS99.2 (Jun - Jul 2016) Ø  PS107 (Jul - Aug 2017)

ü  HPLC pigments (18 types) from 299 discrete samples

ü  Collocated particle absorption a

p

from underway spectrophotometry

Yangyang.Liu@awi.de

(7)

O b j e c t i v e s

Adapt the 2 pigment retrieval algorithms to the Fram Strait: Gaussian decompostion (Chase et al., 2013) and matrix inversion technique (Moisan et al., 2011).

01

02 Retrieve pigments from continuous in situ particulate absorption data measured by underway spectrophotometry.

Yangyang.Liu@awi.de

(8)

Diagram of the underway AC-S flow-through system

Ø  Hyperspectral: 400-735 nm,

> 80 wavelengths outputs Ø  spectral resolution: 10 nm Ø  Sampling frequency: 4 Hz

(AC-S)

Final output:

particle absorption a

p

U n d e r w a y s p e c t r o p h o t o m e t r y

Yangyang.Liu@awi.de

AC-S spectrophotometer

(9)

01 03 05

04 02

AC-S data quality control

Spikes removal

air bubbles

1-min interval bin

4 measurements per sec.

Temperature and salinity dependency of pure water abs.

T & S correction

ap calculation

Linear interpolation

Scattering &

Residual T correction

06

Validated with filter-pad data

Yangyang.Liu@awi.de

(10)

C o l l o c a t e d a

p

( λ ) - p i g m e n t d a t a s e t

Yangyang.Liu@awi.de

(11)

G a u s s i a n d e c o m p o s i t i o n

S p e c t r a l d e c o m p o s i t i o n

ü  First proposed by:

Hoepffner and Sathyendranath (1993) ü  Adapted by:

Chase et al. (2013)

ü  12 Gaussian funcKons represenKng pigments’ absorpKon

ü  1 non-algal parKcle (NAP) absorpKon

Yangyang.Liu@awi.de

(12)

G u a s s i a n d e c o m p o s i t i o n

S p e c t r a l d e c o m p o s i t i o n) Our improvement to this method: pigment package effect normalizaKon

R2=0.87 MPE=21%

R2=0.96

MPE=12% R2=0.50

MPE=32% R2=0.77

MPE=22%

R2=0.82 MPE=25%

R2=0.62 MPE=27%

R2=0.57 MPE=30%

R2=0.91 MPE=27%

R2=0.81 MPE=34%

R2=0.92 MPE=20%

R2=0.76 MPE=34%

R2=1 MPE=4%

Yangyang.Liu@awi.de

(13)

M a t r i x I n v e r s i o n T e c h n i q u eS p e c t r a l r e c o n s t r u c t i o n

ü  ReconstrucKon model: a1*(λ) c1+a2* (λ) c2+…+a3* (λ)c3=aph(λ) ü  a* (λ) – pigment-specific absorpKon spectra (shape)

ü  c –pigment concentraKon (magnitude)

Normalization ---> Increase the differences between a* (λ) ---> Reduce model sensitivity

Moisan et al. (2011)

Yangyang.Liu@awi.de

(14)

S e l e c t 9 p i g m e n t s

Yangyang.Liu@awi.de

Our improvement to this method: reduce model sensiKvity by ü  Develop a scheme for selecKng pigments involved

ü  Data perturbaKons based cross validaKon

Measured

EsKmated

(15)

C o m p a r e 2 m e t h o d s : e s t i m a t i o n e r r o r s

Yangyang.Liu@awi.de

pigments Gaussian decomposi;on Matrix inversion technique Not normalized Normalized Not normalized Normalized

TChl-a 21% 4% 16-22% 1-4%

TChl-b 30% 27% 53-60% 53-61%

Chl-c1/2 34% 27% 41-45% 45-53%

Fuco - - 35-45% 40-53%

Hex - - 37-44% 36-42%

Diadino - - 62-65% 60-66%

But - - - 67-70%

Peri - - - 68-75%

PSC 34% 20% - -

PPC 32% 22% - -

Leave-one-out cross validation

(16)

P h y t o p l a n k t o n p i g m e n t s t i m e s e r i e s

ü  EsKmated using matrix inversion.

ü  Fuco (fucoxanthin): diatoms.

ü  Hex (19’-hexanoyloxyfucoxanthin): prymnesiophytes.

Yangyang.Liu@awi.de

(17)

C o n c l u s i o n s

Adapt the 2 pigment retrieval algorithms to the Fram Strait: Gaussian decompostion (Chase et al., 2013) and matrix inversion technique (Moisan et al., 2011).

01

Gaussian decomposi;on: TChl-a, TChl- b, Chl-c1/2, PSC and PPC. (20-34%) ü  NormalizaKon: esKmaKon errors reduced. (12-27%)

matrix inversion technique: TChl-a, TChl-b, Chl-c1/2, Fuco, Hex, Diadino. (37-65%) ü  NormalizaKon: +But, Peri (67-76%)

ü  SensiKvity reducKon rouKne

Yangyang.Liu@awi.de

(18)

C o n c l u s i o n s

02 Retrieve pigments from continuous in situ particulate absorption data measured by underway spectrophotometry.

ü  High resolution phytoplankton marker pigment data in the Fram Strait were obtained.

Yangyang.Liu@awi.de

(19)

O u t l o o k

延时符 Retrieve key phytoplankton

groups in the Fram Strait.

coupling of phytoplankton

composition and distribution to physical and biogeochemical properties.

A B

Yangyang.Liu@awi.de

Referenzen

ÄHNLICHE DOKUMENTE

1 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.. 2 Institute of Biology and Chemistry, University of Bremen,

Figure : Locations of the Labrador and Irminger Sea, Nordic Seas (the Greenland, Iceland and Norwegian Sea), Arctic Ocean, Denmark Strait, Fram Strait, the Greenland-Scotland-

However, while the densities obtained from helicopter-based surveys were similar in both regions (0.0066 and 0.0063 items km -1 in the Barents Sea and Fram Strait, respectively),

With respect to present knowledge, we hypothesize that (a) highest TEP and CSP values occur at the ice-water interface, (b) TEP values mainly correlate with sea ice algal

Water masses in Fram Strait: Nordic Seas Deep Water (NDW), Atlantic Wa- ter/Recirculating Atlantic Water (AW/RAW), Eurasian Basin Deep Water (EBDW)/Greenland Sea Deep Water

Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. Sightings of floating anthropogenic litter in the Barents Sea and Fram Strait, Arctic. Litter in submarine canyons

[r]

3.2: The moored array in Fram Strait redeployed in 2012 during ARK-XXVII/1 for the deployment period 2012-2014 (dashed box indicated moorings operated by AWI) Mooring array