• Keine Ergebnisse gefunden

Current  pattern  change  in  the  Fram  Strait  at  the  Pliocene/Pleistocene   boundary

N/A
N/A
Protected

Academic year: 2022

Aktie "Current  pattern  change  in  the  Fram  Strait  at  the  Pliocene/Pleistocene   boundary"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

       

Current  pattern  change  in  the  Fram  Strait  at  the  Pliocene/Pleistocene   boundary  

   

A.C.  Gebhardt*,  W.H.  Geissler,  J.  Matthiessen,  W.  Jokat  

   

Thick  packages  of  drift-­‐type  sediments  were  identified  in  the  northwestern  and  central   part  of  the  Fram  Strait,  mainly  along  the  western  Yermak  Plateau  flank,  but  also  in  the   central,  flat  part  of  the  Fram  Strait.  A  large-­‐scale  field  of  sediment  waves  was  found   north  of  80.5°,  along  the  Yermak  Plateau  rise.  This  field  separates  two  drift  bodies,  a   deeper  one  towards  west  and  a  shallower  one  towards  east.  The  drift  bodies  were   deposited  by  bottom  currents,  most  likely  by  the  northbound  Yermak  Branch  of  the   West  Spitsbergen  Current,  but  an  influence  of  a  southbound  current  on  the  westren  drift   body  cannot  be  ruled  out.  Within  the  drift  bodies  and  even  more  pronounced  withing   the  sediment  waves,  a  stratigraphic  boundary  is  clearly  visible.  It  separates  a  lower   package  of  waves  migrating  upslope  at  a  low  angle  of  ~5°  from  an  upper  package  with   significantly  increased  wave  crest  migration  at  ~16.5°.    Using  the  seismic  network,  this   stratigraphic  boundary  could  be  tracked  to  ODP  Leg  151,  Site  911,  where  it  corresponds   to  the  lithostratigraphic  boundary  between  units  IA  and  IB  dated  to  2.7  Ma.  The  increase   in  wave-­‐crest  migration  angle  points  at  a  shift  towards  higher  sedimentation  rates  at  2.7   Ma.  This  corresponds  to  the  intensification  of  the  Northern  Hemisphere  glaciation  with  a   major  expansion  of  the  Scandinavian,  northern  Barents  Sea,  North  American  and  

Greenland  ice  sheets.  The  Barents  Shelf  that  was  subaerially  exposed  and  the  expansion   of  the  northern  Barents  Sea  ice  sheet  (as  well  as  Svalbard)  are  the  likely  sources  for   enhanced  erosion  and  fluvial  input  along  the  pathway  of  the  West  Spitsbergen  Current,   resulting  in  higher  sedimentation  rates  in  the  Fram  Strait.  

 

Referenzen

ÄHNLICHE DOKUMENTE

Figure : Locations of the Labrador and Irminger Sea, Nordic Seas (the Greenland, Iceland and Norwegian Sea), Arctic Ocean, Denmark Strait, Fram Strait, the Greenland-Scotland-

With respect to present knowledge, we hypothesize that (a) highest TEP and CSP values occur at the ice-water interface, (b) TEP values mainly correlate with sea ice algal

Water masses in Fram Strait: Nordic Seas Deep Water (NDW), Atlantic Wa- ter/Recirculating Atlantic Water (AW/RAW), Eurasian Basin Deep Water (EBDW)/Greenland Sea Deep Water

3.2: The moored array in Fram Strait redeployed in 2012 during ARK-XXVII/1 for the deployment period 2012-2014 (dashed box indicated moorings operated by AWI) Mooring array

On an E–W transect between the Svalbard and Greenland margins, the upper water column and sediment surface were sampled for planktic foraminifera species Neogloboquadrina

The data indicate that mixing of water masses from the Arctic Ocean and the Norwegian-Greenland Seas has controlled the Nd isotope signatures of deep waters on the Yermak Plateau

1Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany, 2Institute of Environmental Physics, University of Bremen, Bremen, Germany, 3Max Planck Institute

Comparing the two size fractions (0.2- 3.0 µm and 3.0- 10µm) picoplankton reveals a higher diversity. Further the relatively high percentage of Phaeocystis within the pico-