• Keine Ergebnisse gefunden

Niklaus Berger

N/A
N/A
Protected

Academic year: 2022

Aktie "Niklaus Berger"

Copied!
97
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The Mu3e Experiment

Niklaus Berger

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz Seminar SFB 1044

Mainz, June 2015

(2)

Niklaus Berger – Mainz, June 2015 – Slide 2

• The Motivation:

New physics in lepton flavour violating μ-decays?

• The Challenge:

Finding one in 10

16

muon decays

• The Mu3e Detector:

Minimum Material, Maximum Precision

Overview

(3)

The hunt for

charged lepton flavour violation

(4)

Niklaus Berger – Mainz, June 2015 – Slide 4

The Standard Model of Elementary Particles

(5)

Niklaus Berger – Mainz, June 2015 – Slide 5

The Standard Model of Elementary Particles

All there, works beautifully, but...

• Why three generations?

• Why the mixing patterns between generations?

• Is there more to it?

(the dark universe...)

(6)

Niklaus Berger – Mainz, June 2015 – Slide 6

The Standard Model of Elementary Particles

All there, works beautifully, but...

• Why three generations?

• Why the mixing patterns between generations?

• Is there more to it?

(the dark universe...)

Leptons

(7)

Niklaus Berger – Mainz, June 2015 – Slide 7

Lepton Flavour Violation!

(8)

Niklaus Berger – Mainz, June 2015 – Slide 8

Charged Lepton Flavour Violation?

(9)

Niklaus Berger – Mainz, June 2015 – Slide 9

This

(charged lepton flavour violation) has never been seen

and not because we have not looked

(10)

Niklaus Berger – Mainz, June 2015 – Slide 10

History of LFV experiments

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II Comet/Mu2e

(Updated from W.J. Marciano, T. Mori and J.M. Roney,

Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(11)

Niklaus Berger – Mainz, June 2015 – Slide 11

Heavily suppressed in the SM by (Δm

ν2

/m

W2

)

2

Branching fraction < 10

-54

(12)

Niklaus Berger – Mainz, June 2015 – Slide 12

New physics in μ

+

→ e

+

e

-

e

+

Tree diagrams

• Higgs triplet model

• Extra heavy vector bosons (Z’)

• Extra dimensions (Kaluza-Klein tower) Loop diagrams

• Supersymmetry

• Little Higgs models

• Seesaw models

• GUT models (leptoquarks)

• and much more...

(13)

Niklaus Berger – Mainz, June 2015 – Slide 13

New physics in μ

+

→ e

+

e

-

e

+

Muon decays sensitive to new physics at O (1000 TeV)

scale for O (1) couplings!

(14)

Niklaus Berger – Mainz, June 2015 – Slide 14

The hunt for

charged lepton flavour violation in μ-decays

(15)

Niklaus Berger – Mainz, June 2015 – Slide 15

LFV Muon Decays: Experimental Situation

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

MEG (PSI) SINDRUM II (PSI) SINDRUM (PSI)

B(μ

+

→ e

+

γ) < 5.7 ∙ 10

-13

(2013) B(μ

-

Au → e

-

Au) < 7 ∙ 10

-13

(2006) B(μ

+

→ e

+

e

-

e

+

) < 1.0 ∙ 10

-12

(1988)

(16)

Niklaus Berger – Mainz, June 2015 – Slide 16

LFV Muon Decays: Experimental Situation

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

MEG (PSI) SINDRUM II (PSI) SINDRUM (PSI)

B(μ

+

→ e

+

γ) < 5.7 ∙ 10

-13

(2013) B(μ

-

Au → e

-

Au) < 7 ∙ 10

-13

(2006) B(μ

+

→ e

+

e

-

e

+

) < 1.0 ∙ 10

-12

(1988)

upgrading Mu2e/Comet Mu3e

(17)

Niklaus Berger – Mainz, June 2015 – Slide 17

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0

(18)

Niklaus Berger – Mainz, June 2015 – Slide 18

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back Background

• Accidental background

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected Background

• Decay in orbit

• Antiprotons, pions, cosmics

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0 Background

• Radiative decay

• Accidental background

(19)

Niklaus Berger – Mainz, June 2015 – Slide 19

LFV Muon Decays: Experimental signatures

μ

+

→ e

+

γ μ

-

N → e

-

N μ

+

→ e

+

e

-

e

+

Kinematics

• 2-body decay

• Monoenergetic e+, γ

• Back-to-back Background

• Accidental background

Kinematics

• Quasi 2-body decay

• Monoenergetic e-

• Single particle detected Background

• Decay in orbit

• Antiprotons, pions

Kinematics

• 3-body decay

• Invariant mass constraint

• Σ pi = 0 Background

• Radiative decay

• Accidental background

Con tinuous Be am

Con tinuous Be am Pul sed Be

am

(20)

Niklaus Berger – Mainz, June 2015 – Slide 20

Searching for

μ

+

→ e

+

e

-

e

+

at the 10

-16

level

(21)

Niklaus Berger – Mainz, June 2015 – Slide 21

• We want to find or exclude μ → eee at the 10-16 level

• 10-15 in phase I (existing beamline)

• 10-16 in phase II (new beamline)

• 4 orders of magnitude over previous experiment (SINDRUM 1988)

The Goal: 10

-16

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II Comet/Mu2e

(Updated from W.J. Marciano, T. Mori and J.M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(22)

Niklaus Berger – Mainz, June 2015 – Slide 22

• DPNC, Geneva University

• Physics Institute, Heidelberg University

• KIP, Heidelberg University

• IPE, Karlsruhe Institute of Technology

• Paul Scherrer Institute

• Physics Institute, Zürich University

• Institute for Particle Physics, ETH Zürich

• Institute for Nuclear Physics, JGU Mainz

The Mu3e Collaboration

(23)

Niklaus Berger – Mainz, June 2015 – Slide 23

• Observe more than 1016 muon decays:

2 Billion muons per second

• Suppress backgrounds by more than 16 orders of magnitude

• Be sensitive for the signal

The Challenges

(24)

Niklaus Berger – Mainz, June 2015 – Slide 24

Muons from PSI

Paul Scherrer Institute in Villigen, Switzerland

(25)

Niklaus Berger – Mainz, June 2015 – Slide 25

Muons from PSI

Paul Scherrer Institute in Villigen, Switzerland World’s most intensive proton beam

2.2 mA at 590 MeV: 1.3 MW of beam power

(26)

Niklaus Berger – Mainz, June 2015 – Slide 26

Muons from PSI

DC muon beams at PSI:

• πE5 beamline: ~ 108 muons/s

(MEG experiment, Mu3e phase I)

• Surface muons, p = 29.7 MeV/c Stopped in < 1 mm of plastic

(27)

Niklaus Berger – Mainz, June 2015 – Slide 27

Muons from PSI

DC muon beams at PSI:

• πE5 beamline: ~ 108 muons/s

(MEG experiment, Mu3e phase I)

• Surface muons, p = 29.7 MeV/c Stopped in < 1 mm of plastic

• The μ → eee experiment (final stage) requires 2 × 109 muons/s focused and collimated on a ~2 cm spot

(28)

Niklaus Berger – Mainz, June 2015 – Slide 28

Muons from PSI

DC muon beams at PSI:

• πE5 beamline: ~ 108 muons/s

(MEG experiment, Mu3e phase I)

• Surface muons, p = 29.7 MeV/c Stopped in < 1 mm of plastic

• The μ → eee experiment (final stage) requires 2 × 109 muons/s focused and collimated on a ~2 cm spot

• More than ~ 1011 muons/s are produced;

bring magnetic elements closer to cap- ture them:

High intensity muon beamline (HiMB) study currently ongoing

(29)

Niklaus Berger – Mainz, June 2015 – Slide 29

Building the

Mu3e Experiment

(30)

Niklaus Berger – Mainz, June 2015 – Slide 30

Stop muons, let them decay

muon beam

target

(31)

Niklaus Berger – Mainz, June 2015 – Slide 31

e +

e + e -

• μ+ → e+e-e+

• Two positrons, one electron

• From same vertex

• Same time

• Sum of 4-momenta corresponds to muon at rest

• Maximum momentum: ½ mμ = 53 MeV/c

The signal

(32)

Niklaus Berger – Mainz, June 2015 – Slide 32

• Combination of positrons from ordinary muon decay with electrons from:

- photon conversion, - Bhabha scattering, - Mis-reconstruction

• Need very good timing, vertex and momentum resolution

Accidental Background e

+

e

+

e

-

(33)

Niklaus Berger – Mainz, June 2015 – Slide 33

• Allowed radiative decay with internal conversion:

μ

+

→ e

+

e

-

e

+

νν

• Only distinguishing feature:

Missing momentum carried by neutrinos

Internal conversion background

Branching Ratio

mμ - Etot (MeV)

0 1 2 3 4 5 6

10-12

10-16 10-18 10-13

10-17 10-15 10-14

10-19

• Need excellent μ3e

momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

(34)

Niklaus Berger – Mainz, June 2015 – Slide 34

2 Billion Muon Decays/s

50 ns, 1 Tesla field

(35)

Niklaus Berger – Mainz, June 2015 – Slide 35

• High granularity (occupancy)

• Close to target (vertex resolution)

• 3D space points (reconstruction)

• Minimum material

(momenta below 53 MeV/c)

• Gas detectors do not work (space charge, aging, 3D)

• Silicon strips do not work (material budget, 3D)

• Hybrid pixels (as in LHC) do not work (material budget)

Detector Technology

(36)

Niklaus Berger – Mainz, June 2015 – Slide 36

• Maximum electron/positron momentum:

53 MeV/c (mμ/2)

• Momentum resolution dominated by multiple Coulomb scattering

• As little material as possible

Scattering dominated tracking

(37)

Niklaus Berger – Mainz, June 2015 – Slide 37

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

Fast and thin sensors: HV-MAPS

P-substrate

N-well E field

(38)

Niklaus Berger – Mainz, June 2015 – Slide 38

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

Fast and thin sensors: HV-MAPS

P-substrate N-well

Particle

E field

(39)

Niklaus Berger – Mainz, June 2015 – Slide 39

High voltage monolithic active pixel sensors - Ivan Perić

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

Fast and thin sensors: HV-MAPS

P-substrate N-well

Particle E field

• Implement logic directly in N-well in the pixel - smart diode array

• Can be thinned down to < 50 μm

(I.Perić, P. Fischer et al., NIM A 582 (2007) 876 )

(40)

Niklaus Berger – Mainz, June 2015 – Slide 40

HV-MAPS chips: AMS 180 nm HV-CMOS

• 5 generations of prototypes

• Current generation:

MuPix7

40 x 32 pixels

80 x 103 μm pixel size 9.4 mm2 active area

• Test beam results with MuPix4/6

• MuPix7 has all features of final sensor, currently under test

• Left to do: Scale to 2 x 2 cm2

The MuPix chip prototypes

MuPix2

MuPix4

MuPix6

(41)

Niklaus Berger – Mainz, June 2015 – Slide 41

HV-MAPS

3 m m

(42)

Niklaus Berger – Mainz, June 2015 – Slide 42

HV-MAPS

3 m m

Pixels with amplifier

40 x 32 pixels

80 x 103 μm pixel size

(43)

Niklaus Berger – Mainz, June 2015 – Slide 43

Introduction

Y

• X

HV-MAPS

3 m m

Pixels with amplifier

40 x 32 pixels

80 x 103 μm pixel size

Comparator and digital pixel logic

(44)

Niklaus Berger – Mainz, June 2015 – Slide 44

Test beam at DESY

(45)

Niklaus Berger – Mainz, June 2015 – Slide 45

Position resolution given by pixel size

Position Resolution

(46)

Niklaus Berger – Mainz, June 2015 – Slide 46

Hit efficiency above 99% without tuning

Efficiency

(47)

Niklaus Berger – Mainz, June 2015 – Slide 47

Hit timestamp resolution better than 17 ns

(significant setup contribution in the measurement)

Time resolution

-400 -200 0 400

500 1000 1500 2000 2500 3000

200

Difference between trigger and timestamp [ns]

σ = 16.6 ns

Hits per 10 ns bin Timestamp frequency 100 MHz

(48)

Niklaus Berger – Mainz, June 2015 – Slide 48

Built our own pixel telescope

• Four planes of thin MuPix sensors

• Fast readout into PCIe FPGA cards

• Currently about 1 MHz hits/plane possible

• Tested at DESY, PSI and MAMI

MuPix Telescope

(49)

Niklaus Berger – Mainz, June 2015 – Slide 49

Introduction

Y

• X

(50)

Niklaus Berger – Mainz, June 2015 – Slide 50

Introduction

Y

• X

(51)

Niklaus Berger – Mainz, June 2015 – Slide 51

Building a detector thinner than a hair

(52)

Niklaus Berger – Mainz, June 2015 – Slide 52

Introduction

Y

• X

(53)

Niklaus Berger – Mainz, June 2015 – Slide 53

• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium traces

• 25 μm Kapton™ frame as support

• Less than 1‰ of a radiation length per layer

Mechanics

(54)

Niklaus Berger – Mainz, June 2015 – Slide 54

(55)
(56)

Niklaus Berger – Mainz, June 2015 – Slide 56

(57)

Niklaus Berger – Mainz, June 2015 – Slide 57

• Add no material:

Cool with gaseous Helium (low scattering, high mobility)

• ~ 150 mW/cm2 - total 2 kW

• Simulations: Need ~ several m/s flow

Cooling

• Full scale heatable prototype built

• 36 cm active length

• No visible vibrations

(58)

Niklaus Berger – Mainz, June 2015 – Slide 58

Introduction

Y

• X

(59)

Niklaus Berger – Mainz, June 2015 – Slide 59

Cooling tests

Global helium stream

Local helium stream

(60)

Niklaus Berger – Mainz, June 2015 – Slide 60

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(61)

Niklaus Berger – Mainz, June 2015 – Slide 61

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

33 cm

(62)

Niklaus Berger – Mainz, June 2015 – Slide 62

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(63)

Niklaus Berger – Mainz, June 2015 – Slide 63

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(64)

Niklaus Berger – Mainz, June 2015 – Slide 64

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

(65)

Niklaus Berger – Mainz, June 2015 – Slide 65

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

Ω ~ π MS

θMS

B

(66)

Niklaus Berger – Mainz, June 2015 – Slide 66

Detector Design

muon beam

target

(67)

Niklaus Berger – Mainz, June 2015 – Slide 67

Detector Design

muon beam

target

(68)

Niklaus Berger – Mainz, June 2015 – Slide 68

Detector Design

muon beam

target

inner pixel layers

(69)

Niklaus Berger – Mainz, June 2015 – Slide 69

Detector Design

outer pixel layers

muon beam

target

inner pixel layers

(70)

Niklaus Berger – Mainz, June 2015 – Slide 70

Performance Simulations: Vertexing

distance to target [mm]

-3 -2 -1 0 1 2 3

0 20 40 60 80 100 120 140 160 180 200

103

×

µm RMS = 580 mµ RMS = 580

µm = 279 σ = 279 µm σ

Mu3e Phase Ia Mu3e Phase Ia

(71)

Niklaus Berger – Mainz, June 2015 – Slide 71

Performance Simulations: Mass reconstruction

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

0 10000 20000 30000 40000

50000 Mu3e Phase Ia; all tracksMu3e Phase Ia; all tracks Efficiency 22.51 %

Efficiency 22.51 % RMS 1.69 MeV/c22

RMS 1.69 MeV/c 1.38 MeV/c2

σ 1.38 MeV/c2 σ

(72)

Niklaus Berger – Mainz, June 2015 – Slide 72

Performance Simulations: Mass reconstruction

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

0 2000 4000 6000 8000 10000 12000 14000 16000

18000 Mu3e Phase Ia; 3 recurling tracksMu3e Phase Ia; 3 recurling tracks Efficiency 3.86 %

Efficiency 3.86 % RMS 1.01 MeV/c22

RMS 1.01 MeV/c 0.70 MeV/c2

σ 0.70 MeV/c2 σ

(73)

Niklaus Berger – Mainz, June 2015 – Slide 73

Detector Design

outer pixel layers

muon beam

target

inner pixel layers recurl pixel

layers

recurl pixel layers

(74)

Niklaus Berger – Mainz, June 2015 – Slide 74

Performance Simulations: Mass reconstruction

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

0 10000 20000 30000 40000 50000 60000 70000

Mu3e Phase Ib; 3 recurling tracks Mu3e Phase Ib; 3 recurling tracks Efficiency 13.44 %

Efficiency 13.44 % RMS 0.91 MeV/c22

RMS 0.91 MeV/c 0.56 MeV/c2

σ 0.56 MeV/c2 σ

(75)

Niklaus Berger – Mainz, June 2015 – Slide 75

Performance Simulations: Background

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1

Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

µ/s on Target; 107

µ 1014

Mu3e Phase Ia; 1 ⋅ 1014 µ on Target; 107 µ/s Mu3e Phase Ia; 1

+ Michel e+

e-

Bhabha e+

(76)

Niklaus Berger – Mainz, June 2015 – Slide 76

Performance Simulations: Background

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1 10

Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

eee at 10-15

µ

µ/s on Target; 108

µ 1015

Mu3e Phase Ia; 1 ⋅ 1015 µ on Target; 108 µ/s Mu3e Phase Ia; 1

+ Michel e+

e-

Bhabha e+

(77)

Niklaus Berger – Mainz, June 2015 – Slide 77

Need better suppression of accidental background:

Timing

(78)

Niklaus Berger – Mainz, June 2015 – Slide 78

Detector Design

scintillating fibres

outer pixel layers

muon beam

target

inner pixel layers

(79)

Niklaus Berger – Mainz, June 2015 – Slide 79

Detector Design

outer pixel layers

muon beam

target inner pixel layers recurl pixel

layers

recurl pixel layers

scintillating fibres

Scintillating tiles

(80)

Niklaus Berger – Mainz, June 2015 – Slide 80

Pixels: O(50 ns)

Timing measurements

Scintillating fibres O(1 ns);

Scintillating tiles O(100 ps)

(81)

Niklaus Berger – Mainz, June 2015 – Slide 81

• 3-5 layers of 250 μm scintillating fibres

• Read-out by silicon photomultipliers (SiPMs) and custom ASIC (STiC)

• Timing resolution O(1 ns)

(measured with sodium source)

Timing Detector: Scintillating Fibres

Single photon Efficiency > 98%

(≥ 2 photons)

(82)

Niklaus Berger – Mainz, June 2015 – Slide 82

Timing Detector: Scintillating tiles

• ~ 0.5 cm3 scintillating tiles

• Read-out by silicon photomultipliers (SiPMs) and custom ASIC (STiC)

Scin ator Tiles

SiPM Readout

Electronics

(83)

Niklaus Berger – Mainz, June 2015 – Slide 83

Timing Detector: Scintillating tiles

• Test beam with tiles, SiPMs and readout ASIC

• Timing resolution ~ 80 ps

Time Difference [ps]

-7500 -500 -250 0 250 500 750

2000 4000 6000 8000 10000

σ = 79.2 ps

Front

Back

3.5 cm

(84)

Niklaus Berger – Mainz, June 2015 – Slide 84

Performance Simulations: Background

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1 10

Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

eee at 10-15

µ

µ/s on Target; 108

µ 1015

Mu3e Phase Ib; 1 ⋅ 1015 µ on Target; 108 µ/s Mu3e Phase Ib; 1

+ Michel e+

e-

Bhabha e+

(85)

Niklaus Berger – Mainz, June 2015 – Slide 85

Performance Simulations: Background

2] Reconstructed Mass [MeV/c

96 98 100 102 104 106 108 110

2 Events per 100 keV/c

10-4

10-3

10-2

10-1

1 10 102

Internal Conversion Background

eee at 10-12

µ

eee at 10-13

µ

eee at 10-14

µ

eee at 10-15

µ

eee at 10-16

µ

µ/s on Target; 108

µ 1016

Mu3e Phase Ib; 1 ⋅ 1016 µ on Target; 108 µ/s Mu3e Phase Ib; 1

+ Michel e+

e-

Bhabha e+

(86)

Niklaus Berger – Mainz, June 2015 – Slide 86

• 280 Million pixels (+ fibres and tiles)

• No trigger

• ~ 1 Tbit/s

• FPGA-based switching network

• O(50) PCs with GPUs

Data Acquisition

1116 Pixel Sensors

up to 45 800 Mbit/s links

FPGA FPGA FPGA

...

38 FPGAs

RO Boards 1 6.4 Gbit/s

link each

GPU

PC GPU

PC

GPU 12 PCs PC

12 6.4 Gbit/s ...

links per RO Board 4 Inputs each

Data Collection

Server

Mass Storage Gbit Ethernet

2 RO Boards Pixel DAQ

(87)

Niklaus Berger – Mainz, June 2015 – Slide 87

Online software filter farm

• Continuous front-end readout (no trigger)

• ~ 1 Tbit/s

• PCs with FPGAs and Graphics Processing Units (GPUs)

• Online track and event reconstruction

• 109 3D track fits/s achieved

• Data reduction by factor ~1000

• Data to tape < 100 Mbyte/s

Online filter farm

(88)

Niklaus Berger – Mainz, June 2015 – Slide 88

Sensitivity

Phase IA: Starting 2017 2∙107 μ/s

Target Inner pixel layers

Outer pixel layers μ Beam

(89)

Niklaus Berger – Mainz, June 2015 – Slide 89

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

Sensitivity

Phase IB: 2018+

1∙108 μ/s

(90)

Niklaus Berger – Mainz, June 2015 – Slide 90

Sensitivity

Phase II: 2020+

New Beam Line 2∙109 μ/s

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(91)

Niklaus Berger – Mainz, June 2015 – Slide 91

• Mu3e aims for μ → eee at the 10-16 level

• First large scale use of HV-MAPS

• Build detector layers thinner than a hair

• Timing at the 100 ps level

• Reconstruct 2 billion tracks/s in 1 Tbit/s on ~50 GPUs

• Start data taking in 2017

• 2 billion muons/s not before 2020

Conclusion

1940 1960 1980 2000 2020

Year

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(92)

Niklaus Berger – Mainz, June 2015 – Slide 92

Backup Material

(93)

Niklaus Berger – Mainz, June 2015 – Slide 93

Radiation Hardness

• Requirements not as strict as at LHC

• Irradiation at PS

• After 380 MRad (8×1015 neq/cm2)

• Chip still working

(Courtesy Ivan Perić, RESMDD 2012)

(94)

Niklaus Berger – Mainz, June 2015 – Slide 94

MUPIX electronics

(95)

Niklaus Berger – Mainz, June 2015 – Slide 95

A general effective Lagrangian

Tensor terms (dipole)

L

μ → eee

= 2 G

F

( m

μ

A

R

μ

R

σ

μν

e

L

F

μν

+ m

μ

A

L

μ

L

σ

μν

e

R

F

μν

+ g

1

R

e

L

) (e

R

e

L

) + g

2

L

e

R

) (e

L

e

R

)

+ g

3

R

γ

μ

e

R

) (e

R

γ

μ

e

R

) + g

4

L

γ

μ

e

L

) (e

L

γ

μ

e

L

)

+ g

5

R

γ

μ

e

R

) (e

L

γ

μ

e

L

) + g

6

L

γ

μ

e

L

) (e

R

γ

μ

e

R

) + H. C. )

e.g. supersymmetry

Four-fermion terms scalar

vector

e.g. Z’

(Y. Kuno, Y. Okada,

Rev.Mod.Phys. 73 (2001) 151)

(96)

Niklaus Berger – Mainz, June 2015 – Slide 96

Comparison with μ

+

→ e

+

γ

L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ (κ+1)Λ

2

• One loop term and one contact term

• Ratio κ between them

• Common mass scale Λ

• Allows for sensitivity comparisons between μ → eee and μ → eγ

• In case of dominating dipole couplings (κ = 0):

B(μ → eee) = 0.006 (essentially αem) B(μ → eγ)

(97)

Niklaus Berger – Mainz, June 2015 – Slide 97

Detector Design

outer pixel layers

muon beam

target inner pixel layers recurl pixel

layers

recurl pixel layers

scintillating fibres

Scintillating tiles

Referenzen

ÄHNLICHE DOKUMENTE

High voltage monolithic active pixel sensors - Ivan Perić. • Use a high voltage commercial process

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz

High Voltage Monolithic Active Pixel Sensors. M A P S

In summary, the Mu3e detector must provide excellent vertex and timing resolution as well as an average momentum resolu- tion better than 0.5 MeV/c with a large geometrical

The Mu3e detector consists of two double layers of high voltage monolithic active pixel sensors (HV-MAPS) around a target double cone..

Perić: A novel monolithic pixelated particle detector implemented in high-voltage CMOS

Using a commercial 180 nm CMOS process originating in the automotive industry, high voltage monolithic active pixel sensors housing the pixel electronics inside a deep N-well can

This chapter gives a detailed introduction to the High Voltage Monolithic Active Pixel Sensors (HV-MAPS) used in the Mu3e experiment.. 3.1 High Voltage Monolithic Active