• Keine Ergebnisse gefunden

HV-MAPS Tracking Telescope: Alignment and Efficiency Analysis

N/A
N/A
Protected

Academic year: 2022

Aktie "HV-MAPS Tracking Telescope: Alignment and Efficiency Analysis"

Copied!
28
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

HV-MAPS Tracking Telescope: Alignment and Efficiency Analysis

Dorothea vom Bruch for the Mu3e Collaboration

DESY Telescope Workshop January 20, 2015

(2)

Outline

The Mu3e Experiment Mupix Sensors

Telescope Setup Beam Tests Alignment

Efficiency Analysis

(3)

The Mu3e Experiment

Mu3e searches for the charged lepton-flavour violating decay µ+ →e+e+e with a sensitivity better than 10-16

Ee <53MeV

e+

e+ e-

Signal

Coincident in time Single vertex Σ~pi =0

Random Combinations Not coincident in time No single vertex Σ~pi 6=0

E 6=mµ

(4)

The Mu3e Experiment

Mu3e searches for the charged lepton-flavour violating decay µ+ →e+e+e with a sensitivity better than 10-16

Ee <53MeV

e+

e+ e-

Signal

Coincident in time Single vertex Σ~pi =0 E =mµ

e+

e+ e-

Random Combinations Not coincident in time No single vertex Σ~pi 6=0

E 6=m

(5)

The Mu3e Detector

Requirements:

Excellent momentum resolution: <0.5 MeV/c

Good timing resolution: 100 ps for tiles, 1 ns for fibres, 20-50 ns for pixels

Good vertex resolution: 100µm

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(6)

The Mu3e Detector

Requirements pixel detector:

Pixel size: 80µm x 80µm

Continuous readout frequency: 20 MHz Low material budget → 50µm thickness

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(7)

High Voltage Monolithic Active Pixel Sensors

P-substrate N-well

Particle E field

Zero suppressed readout 8 bit timestamps

HV applied: 50 - 90 V Charge collection via drift

(I. Peric, P. Fischer et al., NIM A 582 (2007) 876)

(8)

Mupix Prototypes

Mupix6

Pixel area: 103 x 80µm2 Active area: 9.4 mm2 Analog + digital readout Double stage amplifier

Time stamp resolution: <17 ns 250µm chip

On 100µm PCB board x/X0 =2.5h

Thinned Mupix4

50µm sensor on 25µm Kapton foil

⇒ 0.6h radiation lengths

(9)

Telescope Setup

4 layers of Mupix6 sensors Read out by two FPGAs

Scintillating tiles in front and back

z x y

(10)

Telescope Setup

(11)

Comparison with EUDET Telescope

EUDET Telescope HV-MAPS Telescope Pixel size 18.4µm x 18.4µm 103µm x 80µm

Active area 224 mm2 9.4 mm2

Material 50µm sensor 50µm sensor

50µm protective foil 25µm Kapton

in radiation lengths 0.7h 0.6h

Time resolution (115.2 /√

12)µs 17 ns

Frame rate 9 kHz 20 MHz

Maximum track rate ∼100 kHz ∼20 MHz

(12)

Beam Tests

DESY

First test at T22 beamline with Mupix4 chips PSI

πM1 beamline 250 MeV π,µ, e

Beam trigger rate of tiles: > kHz

First test with Mupix6 chips including time stamps On one layer (DUT), scans were performed:

High Voltage Threshold Voltage

(13)

Online Alignment

Adjust planes mechanically with help of laser Study correlations between hits on different planes

→ Improve mechanical adjustment

0 5 10 15 20 25 30

0 5 10 15 20 25 30

corr_col_1_col2 Entries 2732497 Mean x 16.78 Mean y 19.54 RMS x 7.406 RMS y 7.376

0 2000 4000 6000 8000 10000 corr_col_1_col2 Entries 2732497 Mean x 16.78 Mean y 19.54 RMS x 7.406 RMS y 7.376 column column correlation between 1 and 2

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

corr_row_1_row2 Entries 2732497 Mean x 19.05 Mean y 17.86 RMS x 10.71 RMS y 10.68

1000 2000 3000 4000 5000 6000 7000 8000 corr_row_1_row2 Entries 2732497 Mean x 19.05 Mean y 17.86 RMS x 10.71 RMS y 10.68 row row correlation between 1 and 2

0 5 10 15 20 25 30

0 5 10 15 20 25 30

corr_col_1_col3 Entries 1245382 Mean x 15.72 Mean y 20.84 RMS x 7.639 RMS y 7.46

0 500 1000 1500 2000 2500 3000 3500 corr_col_1_col3 Entries 1245382 Mean x 15.72 Mean y 20.84 RMS x 7.639 RMS y 7.46 column column correlation between 1 and 3

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

corr_row_1_row3 Entries 1245382 Mean x 18.25 Mean y 19.14 RMS x 10.86 RMS y 10.96

200 400 600 800 1000 1200 1400 1600 1800 2000 corr_row_1_row3 Entries 1245382 Mean x 18.25 Mean y 19.14 RMS x 10.86 RMS y 10.96 row row correlation between 1 and 3

0 5 10 15 20 25 30

0 5 10 15 20 25 30

corr_col_2_col3 Entries 1745551 Mean x 15.21 Mean y 21.26 RMS x 7.021 RMS y 7.013

0 1000 2000 3000 4000 5000 6000 corr_col_2_col37000 Entries 1745551 Mean x 15.21 Mean y 21.26 RMS x 7.021 RMS y 7.013 column column correlation between 2 and 3

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

corr_row_2_row3 Entries 1745551 Mean x 17.36 Mean y 19.6 RMS x 10.51 RMS y 10.8

500 1000 1500 2000 2500 3000 3500 4000 4500 corr_row_2_row3 Entries 1745551 Mean x 17.36 Mean y 19.6 RMS x 10.51 RMS y 10.8 row row correlation between 2 and 3

0 5 10 15 20 25 30

0 5 10 15 20 25 30

corr_col_3_col4 Entries 2229456 Mean x 17.62 Mean y 19.7 RMS x 7.419 RMS y 7.501

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 corr_col_3_col4 Entries 2229456 Mean x 17.62 Mean y 19.7 RMS x 7.419 RMS y 7.501 column column correlation between 3 and 4

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

corr_row_3_row4 Entries 2229456 Mean x 16.06 Mean y 20.97 RMS x 10.32 RMS y 10.44

1000 2000 3000 4000 5000 6000 corr_row_3_row4 Entries 2229456 Mean x 16.06 Mean y 20.97 RMS x 10.32 RMS y 10.44 row row correlation between 3 and 4

(14)

Straight Track Fit

Simple straight track:

~x(z) =~x0+~a·z

~x: x and y position

~a: two dimensional slope

Loop over all possible hit combinations and fit tracks with 1 hit in each plane

∆t<250 ns Hot pixels removed Calculate residuals

Adjust alignment manually in several iterations

(15)

Fit: Position and Slope

h1 Entries 120787 Mean 0.01106 RMS 0.01028

0.030 0.02 0.01 0 0.01 0.02 0.03 0.04 0.05 1000

2000 3000 4000 5000 6000 7000 8000

h1 Entries 120787 Mean 0.01106 RMS 0.01028

Slope x

h2 Entries 120787 Mean 0.001612 RMS 0.009754

0.040 0.03 0.02 0.01 0 0.01 0.02 0.03 0.04 1000

2000 3000 4000 5000 6000 7000 8000

h2 Entries 120787 Mean 0.001612 RMS 0.009754

Slope y

h3 Entries 120787 Mean 4494 RMS 780.1

25000 3000 3500 4000 4500 5000 5500 6000µ6500 500

1000 1500 2000 2500 3000 3500 4000

4500 h3

Entries 120787 Mean 4494 RMS 780.1 X Intersect

h4 Entries 120787 Mean 1435 RMS 812.4

500 µ

0 0 500 1000 1500 2000 2500 3000 3500 500

1000 1500 2000 2500 3000 3500 4000 4500

h4 Entries 120787 Mean 1435 RMS 812.4 Y Intersect

(16)

Residuals

Run number

360 380 400 420 440

Residuals x mean [um]

-30 -20 -10 0 10 20 30

Residuals in x for plane 0 Residuals in x for plane 1 Residuals in x for plane 2 Residuals in x for plane 3

Run number

360 380 400 420 440

Residuals y mean [um]

-30 -20 -10 0 10 20 30

Residuals in y for plane 0 Residuals in y for plane 1 Residuals in y for plane 2 Residuals in y for plane 3

Run number

360 380 400 420 440

RMS of residuals x mean [um]

0 10 20 30 40 50 60 70

RMS of residuals in x for plane 0 RMS of residuals in x for plane 1 RMS of residuals in x for plane 2 RMS of residuals in x for plane 3

Run number

360 380 400 420 440

RMS of residuals y mean [um]

0 10 20 30 40 50 60 70

RMS of residuals in y for plane 0 RMS of residuals in y for plane 1 RMS of residuals in y for plane 2 RMS of residuals in y for plane 3

Aligned to within 10µm

(17)

Residuals Versus Position

µm]

x [ 3000 3500 4000 4500 5000 5500 6000

m]µResiduals in x [

30

20

10 0 10 20 30

Plane 1: Residuals in x versus x Plane 1: Residuals in x versus x

µm]

y [ 0 500 1000 1500 2000 2500 3000

m]µResiduals in y [

30

20

10 0 10 20 30

Plane 1: Residuals in y versus y Plane 1: Residuals in y versus y

µm]

x [ 3500 4000 4500 5000 5500 6000 6500

m]µResiduals in x [

30

20

10 0 10 20 30

Plane 2: Residuals in x versus x Plane 2: Residuals in x versus x

µm]

y [ 0 500 1000 1500 2000 2500 3000

m]µResiduals in y [

30

20

10 0 10 20 30

Plane 2: Residuals in y versus y Plane 2: Residuals in y versus y

µm]

x [ 3500 4000 4500 5000 5500 6000 6500

m]µResiduals in x [

30

20

10 0 10 20 30

Plane 3: Residuals in x versus x Plane 3: Residuals in x versus x

µm]

y [ 0 500 1000 1500 2000 2500 3000

m]µResiduals in y [

30

20

10 0 10 20 30

Plane 3: Residuals in y versus y Plane 3: Residuals in y versus y

µm]

x [ 4000 4500 5000 5500 6000 6500 7000

m]µResiduals in x [

30

20

10 0 10 20 30

Plane 4: Residuals in x versus x Plane 4: Residuals in x versus x

µm]

y [

5000500 1000 1500 2000 2500

m]µResiduals in y [

30

20

10 0 10 20 30

Plane 4: Residuals in y versus y Plane 4: Residuals in y versus y

Threshold = 0.68 V, HV = 60 V, single run

(18)

Efficiency Analysis

Fit tracks from three hits without DUT Extrapolate tracks onto DUT

Match extrapolated tracks to hits on DUT

0 1 2 3 4 5 6 7 8 9 10

0 200 400 600 800 1000 1200 1400

2 of fit with three hits χ

χ2 < 2

µm]

Difference [

0 100 200 300 400 500 600 700 800

0 100 200 300 400 500

Extrapolated track - hit position on DUT

Difference < 400µm

(19)

Efficiency Analysis

Columns

0 5 10 15 20 25 30

Rows

0 5 10 15 20 25 30 35

0 100 200 300 400 500 600 700 800 900 Matched Hits

Columns

0 5 10 15 20 25 30

Rows

0 5 10 15 20 25 30 35

0 100 200 300 400 500 600 700 800 900 Total Hits

/

Columns

0 5 10 15 20 25 30

Rows

0 5 10 15 20 25 30 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Efficiency

=

(20)

Efficiency Analysis

Columns

0 5 10 15 20 25 30

Rows

0 5 10 15 20 25 30 35

0 100 200 300 400 500 600 700 800 900 Matched Hits

Columns

0 5 10 15 20 25 30

Rows

0 5 10 15 20 25 30 35

0 100 200 300 400 500 600 700 800 900 Total Hits

/

Columns

0 5 10 15 20 25 30

Rows

0 5 10 15 20 25 30 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Efficiency

=

Columns

0 5 10 15 20 25 30

Rows

0 5 10 15 20 25 30 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Efficiency

Threshold = 0.7 V, HV = 60 V

(21)

High Voltage Scan

Threshold = 0.65 V

High voltage [-V]

0 10 20 30 40 50 60 70 80

Efficiency

0.3 0.4 0.5 0.6 0.7 0.8

by Jan Repenning

(22)

Signal Wave Form

0.8

(23)

Threshold Scan

HV = 60 V

Threshold voltage [V]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Efficiency

0 0.2 0.4 0.6 0.8 1

by Jan Repenning

(24)

Conclusions

First test of Mupix6 telescope Achieved alignment:

to within 10µm

minimized rotations of planes Straight track model works

Efficiency of Mupix6 determined to

> 94 %

Voltage and threshold dependency studied

(25)

Outlook

Improve mechanics:

Adjust y-position more precisely

Integrate tiles as triggers with movable posts

Possibly use software for minimization of residuals and alignment, such as Millepede

Next beam test at DESY in March:

Further measurements at other thresholds

Test new prototype Mupix7 Final goal: Working telescope with online reconstruction, streaming readout

⇒ Test Mu3e DAQ

(26)

Thank you for your attention!

(27)

Backup Slides

(28)

Time Resolution

trigger_ts_s_diff

Entries 6910482

Mean 1.238

RMS 16.43

/ ndf

χ2 8741 / 17

Constant 3.257e+05 ± 2.058e+02

Mean -1.931 ± 0.005

Sigma 7.162 ± 0.006

-100 -50 0 50 100

0 50 100 150 200 250 300

103

× trigger_ts_s_diff

Entries 6910482

Mean 1.238

RMS 16.43

/ ndf

χ2 8741 / 17

Constant 3.257e+05 ± 2.058e+02

Mean -1.931 ± 0.005

Sigma 7.162 ± 0.006

Trigger TimeStamp Difference Distribution for Single Events

Referenzen

ÄHNLICHE DOKUMENTE

High voltage monolithic active pixel sensors - Ivan Perić. • Use a high voltage commercial process

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz

High-Voltage Monolithic Active Pixel Sensor (HV-MAPS) Konzept.. Diode

HV-MAPS Tracking Telescope: Fast Data Transfer with Direct Memory Access.. Dorothea vom Bruch for the

HV-MAPS: High Voltage Monolithic Active Pixel Sensors fast: small active region, charge collection via drift (O(10ns)) thin: &lt; 50 µm. zero-suppressed data: addresses

High Voltage Monolithic Active Pixel Sensors. M A P S

In summary, the Mu3e detector must provide excellent vertex and timing resolution as well as an average momentum resolu- tion better than 0.5 MeV/c with a large geometrical

The Mu3e detector consists of two double layers of high voltage monolithic active pixel sensors (HV-MAPS) around a target double cone..