• Keine Ergebnisse gefunden

Detector Concept 5

N/A
N/A
Protected

Academic year: 2022

Aktie "Detector Concept 5"

Copied!
34
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A 3D Track Fit with Multiple Scattering for the Mu3e Experiment

Moritz Kiehn for the Mu3e Collaboration

Physikalisches Institut, Universität Heidelberg

Connecting The Dots, Berkeley, 2015-02-10

(2)

The Mu3e Experiment 2

Precision experiment

Search for µ+→e+ee+ In this talk

Experimental concept

Track fitting in different regimes

Triplet fit for Mu3e

Performance comparisons

(3)

µ → eee in the Standard Model 3

Features

Charged lepton flavor violating

Expected BR(µ→eee)≪10−50

Current limit from Sindrum

BR(µ→eee)<1·10−12 @90 % CL

Nucl.Phys. B299(1) 1988 (1–6)

Our Sensitivity: 1 in 1016 decays Importance

Observable rate only from New Physics

(4)

Signal and Backgrounds 4

Signal

e+

e+ e-

Backgrounds Internal Conversion

e- e+

e+ ν

ν

Accidental

e+

e+ e-

Common vertex

Pp~i =0

p <53 MeV

Common vertex

P~pi 6=0

In-time

No common vertex

Out-of-time Requiresσp<0.3 MeV

σt<1 ns

(5)

Detector Concept 5

Target μ Beam

28 MeV/c

Magnetic field1 T

Environment

>109 µ+ decays/s (continous)

Electrons p <53 MeV/c

Pixel Tracker

Monolithic active pixels

50 µm silicon, 80 µm pixel size

Continous readout

(6)

Detector Concept 5

Target Inner pixel layers

Scintillating fibres

Outer pixel layers μ Beam

28 MeV/c

Magnetic field1 T

Environment

>109 µ+ decays/s (continous)

Electrons p <53 MeV/c

Pixel Tracker

Monolithic active pixels

50 µm silicon, 80 µm pixel size

Continous readout

(7)

Detector Concept 5

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

28 MeV/c

Magnetic field1 T

Environment

>109 µ+ decays/s (continous)

Electrons p <53 MeV/c

Pixel Tracker

Monolithic active pixels

50 µm silicon, 80 µm pixel size

Continous readout

(8)

Multiple Scattering 6

Ω MS

θMS

B

θ

MS

1p

p x /X

0

Mu3e Example

p = 35 MeV/c

50 µm Si

ΩR=5 cm

→ ∆y ≈320 µm

→ Scattering dominates

(9)

Tracking Models 7

Position Resolution

σ

ΘMS Scattering

d

Scattering scale factor:

d ·θMS

σ ≪1

Dominated byhit resolution Reconstruction

Helix fit

1. Circle fit in xy-plane

e.g. Karimaeki 1991

2. Straight line in sz-space

2.5D fit, global parameters

(10)

Tracking Models (cont’d) 8

Position Resolution

σ

ΘMS Scattering

d

Scattering scale factor:

d ·θMS

σ ≈1

Reconstruction

Kalman filter

e.g. Fruewirth 1987

General Broken Lines

Blobel,Kleinwort 2011

3D fit

(11)

Tracking Models / General Broken Lines 9

☓ ☓ ☓ ☓

ui ui+1 ui-1

Θi

reference trajectory

reference trajectory Global Trajectory (3D)

Local Trajectory (2D)

☓ ☓ ☓ ☓

linearize around reference

Minimize ui andθi

see Kleinwort 2012

(12)

Tracking Models (cont’d) 10

Position Resolution

σ

ΘMS Scattering

d

Scattering scale factor:

d ·θMS

σ ≫1

Dominated byscattering Reconstruction

Kalman filter

General Broken Lines

Anything else?

(13)

A Triplet of Hits 11

Sensor 1 Sensor 2

Sensor 3

# parameters

+ 9 data points

- 3 start position - 2 direction angles - 1 curvature / radius - 2 path lengths

+ 1 constraints

(14)

A Triplet of Hits (cont’d) 12

Sensor 1 Sensor 2

Sensor 3

θMS,2 θMS,1

# parameters

+ 9 data points

- 3 start position - 2 direction angles - 1 curvature / radius - 2 path lengths - 2 scattering angles

- 1 constraints

Additional constraints

< θMS,i >=0

< θ2MS,i >=PDG

∆E ≈0

(15)

A Triplet of Hits (cont’d) 12

Sensor 1 Sensor 2

Sensor 3

θMS,2 θMS,1

# parameters

+ 9 data points

- 3 start position - 2 direction angles - 1 curvature / radius - 2 path lengths - 2 scattering angles

- 1 constraints

Additional constraints

< θMS,i >=0

< θ2MS,i >=PDG

∆E ≈0

(16)

Triplet Fit 13

s01 s12

c2 c1

r01 r12

h0 h2

h1

ϕ01x

ϕ12x

ϕM S

d01 d12

ϕ01

ϕ12

x y

z s

z01 z12

h2

h1

h0

θ12

θ01

s01

s12

θM S

Assumptions:

No position error

No energy loss

Thin scatterer at middle hit

Minimize:

χ2i(R3D) = ϕMS(R3D)2

σϕ2MS(R3D)2 σθ2 Problem: highly non-linear

Solution: linearize around circle.

(17)

Triplet Fit 13

s01 s12

c2 c1

r01 r12

h0 h2

h1

ϕ01x

ϕ12x

ϕM S

d01 d12

ϕ01

ϕ12

x y

z s

z01 z12

h2

h1

h0

θ12

θ01

s01

s12

θM S

Assumptions:

No position error

No energy loss

Thin scatterer at middle hit

Minimize:

χ2i(R3D) = ϕMS(R3D)2

σϕ2MS(R3D)2 σθ2 Problem: highly non-linear

Solution: linearize around circle.

(18)

Triplet Fit (cont’d) 14

triplet 1

triplet 2

1. Define overlapping triplets χ2( ¯R3D) =X

χ2i 2a. Minimizeχ2 globally

3D =arg min

x

χ2(x)

2b. Equivalent: minimize each triplet R¯3D =

PwiR3D,i Pwi

(19)

Compared Track Fits 15

What is considered?

Positions Scattering

Helix ✓ ✗

Triplet ✗ ✓

GeneralBrokenLines ✓ ✓

(20)

Coordinates and Track Parameters 16

Coordinate System

x y

z

B~ θ φ

λ

Track Parameters

r

z λ x

x y Φ

All parameters defined at inner-most layer

(21)

Mu3e Geometry 17

0 10 20 30 40 50 60 70 80

x position / mm

0 10 20 30 40 50 60 70 80

y position / mm

4 layers

B = 1 T

x/X0 = 1 ‰

σ = 23 µm

p = 15–53 MeV

(22)

Momentum Resolution 18

20 25 30 35 40 45 50

Momentum / MeV/c

0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040

Relative momentum resolution

= 10°

Helix Triplet

GeneralBrokenLines

7.1

Scattering scale factor f = d

4.5 3.3 MS2.6

/

2.1

(23)

Dip Angle λ Resolution 19

20 25 30 35 40 45 50

Momentum / MeV/c

0.000 0.005 0.010 0.015 0.020

re so lut ion / r ad

= 10°

Helix Triplet

GeneralBrokenLines

7.1

Scattering scale factor f = d

4.5 3.3 MS2.6

/

2.1

(24)

Azimuthal Angle φ Resolution 20

20 25 30 35 40 45 50

Momentum / MeV/c

0.000 0.005 0.010 0.015 0.020 0.025

re so lut ion / r ad

= 10°

Helix Triplet

GeneralBrokenLines

7.1

Scattering scale factor f = d

4.5 3.3 MS2.6

/

2.1

(25)

Local Offset x

Resolution 21

20 25 30 35 40 45 50

Momentum / MeV/c

0.00 0.01 0.02 0.03 0.04 0.05 0.06

x re so lut ion / m m

= 10°

Helix Triplet

GeneralBrokenLines

7.1

Scattering scale factor f = d

4.5 3.3 MS2.6

/

2.1

(26)

Mu3e Geometry with Recurlers 22

0 50 100 150 200 250 300 350

x position / mm

200 150 100 50 0 50 100 150

y position / mm

4 layers, but>4 hits

B = 1 T

x/X0 = 1 ‰

σ = 23 µm

p = 15–53 MeV

(27)

Momentum Resolution 23

20 25 30 35 40 45 50

Momentum / MeV/c

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Relative momentum resolution

= 10°

Helix Triplet GBL/Helix GBL/Triplet

7.1

Scattering scale factor f = d

4.5 3.3 MS2.6

/

2.1

(28)

LHC-like Geometry 24

0 50 100 150 200

x position / mm

0 50 100 150 200

y position / mm

6 layers

B = 2 T

x/X0 = 2 %

σ = 25 µm

p = 100–2000 MeV

(29)

Momentum Resolution 25

500 1000 1500

Momentum / MeV/c

0.04 0.06 0.08 0.10 0.12

Relative momentum resolution

= 10°

Helix Triplet

GeneralBrokenLines

4.8

Scattering scale factor f = d

1.1 0.63 0.44MS

/

0.34

(30)

Speed 26

2·109µ/s 50 ns integration

Prototype online reconstruction Single Nvidia GTX 680

>109Triplets/s

(31)

Summary and Outlook 27

Mu3e triplet fit

3D fit w/ scattering

Fast, non-iterative

Works for us Applications

Low momentum, dominating scattering

Fast online reconstruction

Reference for refit

Next?

Full paper coming soon

http://www.psi.ch/mu3e

(32)

Backup

(33)

The Mu3e Collaboration A1

University Geneva Heidelberg University

Karlsruhe Institute of Technology Mainz University

Paul Scherrer Institute ETH Zürich

University Zürich

(34)

Performance Full Mu3e Simulation A2

4 Hits

[MeV/c]

- pmc prec

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 10000 20000 30000 40000 50000 60000

70000 µ = -0.24

= 1.43 σ

6 Hits (Recurler)

[MeV/c]

- pmc prec

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 20 40 60 80 100 120

103

×

= -0.35 µ

= 0.22 σ

Geant4 simulation w/ complete detector No energy loss correction

Referenzen

ÄHNLICHE DOKUMENTE

Scintillating fibres Outer pixel layers μ Beam. Target Inner

• Switch the data stream between front-end FPGAs and the filter farm. • Merge the data of sub-detectors and the data from

Physics Institute, University of Heidelberg Charged Lepton Flavour Violation Workshop,.. Lecce,

High Voltage Monolithic Active Pixel Sensors.. • The

Zimmermann: Cooling with Gaseous Helium for the Mu3e Experiment (Bach- elor thesis, 2012). available from

❏ Converters compensate for voltage drops and extra power losses after conversion. Ribbons of 3 layers of 250 μm thin scintillating fibres in the

On each side, the flex print cables from both sensors end at the bottom of the support structure, where they are connected to the scintillating fibre board (scifi board).. Figure

The experiment is built in a modular principle consisting of silicon pixel sensors for the vertex and momentum measurement and of scintillator fibers and tiles that deliver