• Keine Ergebnisse gefunden

Track Based Alignment for the Mu3e Pixel Detector

N/A
N/A
Protected

Academic year: 2022

Aktie "Track Based Alignment for the Mu3e Pixel Detector"

Copied!
57
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Track Based Alignment for the Mu3e Pixel Detector

U. Hartenstein

DPG-Fr¨uhjahrstagung 2017

For the Mu3e Collaboration

(2)

The Mu3e Experiment

(3)

Mu3e - In the Standard Model

1/8

µ

+

→ e

+

e

e

+

(4)

Mu3e - In the Standard Model

µ

+

→ e

+

e

e

+

(5)

Mu3e - In the Standard Model

1/8

µ

+

→ e

+

e

e

+

BR < 10

−54

(6)

Beyond the Standard Model?

Motivation

• new physics?!

- predictions from SUSY, Leptoquarks, . . .

• current status (SINDRUM 1988): BR<10−12

Goal

µ+→e+ee+

with a sensitivity ofO(10−16)

(7)

The Detector

(8)

Building the Detector

µ-beamline at PSI withO(108(9))µ/s

muon beam

target

• ”MuPix”: HighVoltage

Monolithic ActivePixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm

impossible to have sufficient alignment after construction!

(9)

Building the Detector

3/8 muon beam

target

inner pixel layers

• ”MuPix”: HighVoltage

MonolithicActive PixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm

impossible to have sufficient alignment after construction!

(10)

Building the Detector

outer pixel layers

muon beam

target

inner pixel layers

• ”MuPix”: HighVoltage

Monolithic ActivePixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm

impossible to have sufficient alignment after construction!

(11)

Building the Detector

3/8

• ”MuPix”: HighVoltage

Monolithic ActivePixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm

impossible to have sufficient alignment after construction!

(12)

Building the Detector

• ”MuPix”: HighVoltage

MonolithicActive PixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm

impossible to have sufficient alignment after construction!

(13)

Building the Detector

3/8

• ”MuPix”: HighVoltage

MonolithicActive PixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm alignment goal: σ ≈2µm

impossible to have sufficient alignment after construction!

(14)

Building the Detector

• ”MuPix”: HighVoltage

MonolithicActive PixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm alignment goal: σ ≈2µm

impossible to have sufficient alignment after construction!

(15)

Building the Detector

3/8

• ”MuPix”: HighVoltage

MonolithicActive PixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm alignment goal: σ ≈2µm

impossible to have sufficient alignment after construction!

(16)

Building the Detector

• ”MuPix”: HighVoltage

MonolithicActive PixelSensors

(I.Peric,Nucl.Instr.Meth.,2007, A582, 876)

• 2×2cm2 sensors

• 80×80µm2 pixels

• thinned to 50µm alignment goal: σ ≈2µm

impossible to have sufficient alignment after construction!

(17)

Track Based Alignment

(18)

Track Based Alignment and the Software for it

• with cosmics, lower rate, . . .

→σposition≤80µm,σorientation ≤0.3 (from misalignment studies)

→ track based alignment

→ σ≈2µm

• Mu3e software package

• General Broken Lines (GBL)(V. Blobel, C. Kleinwort, arXiv:1201.4320v1)

• Millepede-II (MP-II) (V. Blobel, C. Kleinwort, arXiv:1103.3909v1)

(19)

Track Based Alignment and the Software for it

4/8

• with cosmics, lower rate, . . .

→σposition≤80µm,σorientation ≤0.3 (from misalignment studies)

→ track based alignment

→ σ≈2µm

• Mu3e software package

• General Broken Lines (GBL)(V. Blobel, C. Kleinwort, arXiv:1201.4320v1)

• Millepede-II (MP-II) (V. Blobel, C. Kleinwort, arXiv:1103.3909v1) Mu3e Track-Reconstruction:

A. Kozlinskiy - Thu,16:45 T 116.1

(20)

General Broken Lines Fit

5/8

• multiple scattering & energy loss

→ more advanced track models: e.g. GBL

• track refit to account formultiple scattering

• complete covariance matrix of all track parameters at any point

→ track based alignment withMillepede-II

V. Blobel, C. Kleinwort,

(21)

General Broken Lines Fit

5/8

• multiple scattering & energy loss

→ more advanced track models: e.g. GBL

• track refit to account formultiple scattering

• complete covariance matrix of all track parameters at any point

→ track based alignment withMillepede-II

V. Blobel, C. Kleinwort, arXiv:1201.4320v1

(22)

Millepede-II

A least squares fit with a very large number of parameters

6/8

eachtrack j has

measurements: mij ±σij and is modelled byfij(qj,p)

V. Blobel, C. Kleinwort,

(23)

Millepede-II

A least squares fit with a very large number of parameters

6/8

eachtrack j has

measurements: mij ±σij and is modelled byfij(qj,p)

χ2 =

tracks

X

j

measurements

X

i

mij −fij(qj,p) σij

2

V. Blobel, C. Kleinwort, arXiv:1103.3909v1

(24)

Millepede-II

A least squares fit with a very large number of parameters

6/8

• minimiseχ2

- 1.5 mio track parametersqj

- 45 000 alignment parametersp

invert a 1545000×1545000 matrix - MP-IIreduction to 45000×45000

χ2 =

tracks

X

j

measurements

X

i

mij −fij(qj,p) σij

2

V. Blobel, C. Kleinwort,

(25)

Millepede-II

A least squares fit with a very large number of parameters

6/8

• minimiseχ2

- 1.5 mio track parametersqj

- 45 000 alignment parametersp

invert a 1545000×1545000 matrix

- MP-IIreduction to 45000×45000

χ2 =

tracks

X

j

measurements

X

i

mij −fij(qj,p) σij

2

V. Blobel, C. Kleinwort, arXiv:1103.3909v1

(26)

Millepede-II

A least squares fit with a very large number of parameters

6/8

• minimiseχ2

- 1.5 mio track parametersqj

- 45 000 alignment parametersp

invert a 1545000×1545000 matrix - MP-IIreduction to 45000×45000

χ2 =

tracks

X

j

measurements

X

i

mij −fij(qj,p) σij

2

V. Blobel, C. Kleinwort,

(27)

Surface Deformations

(28)

Surface Deformations

• 50µm chips won’t be rigid!

• Idea: align not only for rotations and shifts but also for - surface deformations

- temperature effects (∆T 70K)

• 3rd order polynomials for modelling sensors

50µm silicon

(29)

Surface Deformations

7/8

• 50µm chips won’t be rigid!

• Idea: align not only for rotations and shifts but also for - surface deformations

- temperature effects (∆T 70K)

• 3rd order polynomials for modelling sensors

x

10 5 0 5 10

y 1050510

h(x,y)

0.200.150.100.05 0.00 0.050.100.150.20

a deformed sensor

(30)

Outlook

(31)

Status & Outlook

8/8

• misalignment StudiesX

• basic software X

• MP-II testbed for the “MuPix-Telescope” X

• missing bits and pieces

• blinded tests of alignment software

(32)

Status & Outlook

• misalignment StudiesX

• basic software X

• MP-II testbed for the “MuPix-Telescope” X

• missing bits and pieces

• blinded tests of alignment software

h

Entries 986896

Mean 3.563e05

RMS 0.02265

/ ndf

χ2 1.075e+04 / 48

Constant 1.814e+05 ± 2.355e+02 Mean 5.187e05 ± 2.173e05 Sigma 0.02147 ± 0.00002

00.3 0.2 0.1 0 0.1 0.2 0.3

20 40 60 80 100 120 140 160 180 103

× Entries h 986896

Mean 3.563e05

RMS 0.02265

/ ndf

χ2 1.075e+04 / 48

Constant 1.814e+05 ± 2.355e+02 Mean 5.187e05 ± 2.173e05 Sigma 0.02147 ± 0.00002

Residuals

pitch≈100µm σ22µm

(33)

Status & Outlook

8/8

• misalignment StudiesX

• basic software X

• MP-II testbed for the “MuPix-Telescope” X

• missing bits and pieces

• blinded tests of alignment software

h

Entries 986896

Mean 3.563e05

RMS 0.02265

/ ndf

χ2 1.075e+04 / 48

Constant 1.814e+05 ± 2.355e+02 Mean 5.187e05 ± 2.173e05 Sigma 0.02147 ± 0.00002

residual in mm

00.3 0.2 0.1 0 0.1 0.2 0.3

20 40 60 80 100 120 140 160 180 103

× Entries h 986896

Mean 3.563e05

RMS 0.02265

/ ndf

χ2 1.075e+04 / 48

Constant 1.814e+05 ± 2.355e+02 Mean 5.187e05 ± 2.173e05 Sigma 0.02147 ± 0.00002

Residuals

pitch≈100µm σ22µm

(34)

Backup

(35)

Parametrization

• span sensors by two orthonormal vectors u and v

• use right-handed local coordinate system u,v,w

• w =w(u,v) parametrized withLegendre-polynomials and surface coefficients

x

10 5 0 5 10

y 1050510

h(x,y)

0.200.150.100.05 0.000.050.100.150.20

Figure 1: Legendre-Plane: coefficients of 030µm

(36)

Parametrization

• spanned by two orthonormal vectors defining the local u- &

v-coordinates

• w-coordinate defined via u×v with a value ofh(u,v)

h(x,y) =

N

X

i=0 i

X

j=0

cijPi−j(x)Pj(y), (1) withLegendre-ploynomials

Pn(x) = 2n

n

X

k=0

n k

n+k−1 2

n

xk. (2) and surface coefficientscij

(37)

General Broken Lines Fit

V. Blobel, C. Kleinwort, arXiv:1201.4320v1

(38)

Alignment Procedure

Watson

Track (re-)fit with GBL

Jacobian calculation

Geometry information

Global positions & orientations

Surface coefficients

Temperature scaling

Hit information

Local hit information

Sensor ID's

MilleBinary & Steering File(s)

Local & global derivatives

“instructions” for pede

Interpret & update

produce

pass (not tested)

Pede

Least squares fit

Alignment corrections

(39)

Misalignment

• perfect alignment

• misaligned sensors

(40)

Misalignment

• perfect alignment • misaligned sensors

(41)

Misalignment Studies

• what does that mean?

→ need foralignment algorithm

• for track based alignment tracks are needed!

• “how well(mechanically) aligned to be able to align(with software)?”

(42)

Misalignment Studies

(43)

Misalignment Studies

(44)

Misalignment Studies

(45)

Misalignment Studies

(46)

Momentum Reconstruction Efficiency

Randomly Misaligned Sensors

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

]°Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

• normalised to the efficiency of a perfectly aligned detector

• efficiency plateau

Efficiency

(47)

Momentum Reconstruction Resolution

Randomly Misaligned Sensors

1.7 1.8 1.9 2 2.1 2.2

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

]°Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

1.7 1.8 1.9 2 2.1 2.2

• momentum resolution from RMS ofprec−pMC

• for random sensor shifts & rotations in MeV/c

Resolution

(48)

Misalignment Studies - Momentum Resolution Sigma

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 4-hit-segments

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 4-hit-segments

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 6-hit-segments

Standard Deviation of Shifts [mm]

0 0.1 0.2 0.3 0.4 0.5 0.6

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 6-hit-segments

0.15 0.2 0.25 0.3 0.35 8-hit-segments

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

0.15 0.2 0.25 0.3 0.35 8-hit-segments

(49)

Misalignment Studies - Momentum Reconstruction Efficiency (4-hit seg- ments)

shift [mm]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

shift [mm]

0 0.1 0.2 0.3 0.4 0.5

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

°] rotation [

0 0.2 0.4 0.6 0.8 1

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

°] rotation [

0 0.1 0.2 0.3 0.4 0.5

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

shift [mm]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

shift [mm]

0 0.1 0.2 0.3 0.4 0.5

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

°] rotation [

0 0.2 0.4 0.6 0.8 1

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

°] rotation [

0 0.1 0.2 0.3 0.4 0.5

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

°] torsion angle [ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

shifts of layer 0 in x-direction shifts of layer 0 in z-direction rotations of layer 0 along x-axis

rotations of layer 0 along z-axis shifts of layers 0 & 1 in x-direction shifts of layers 0 & 1 in x-direction

rotations of layers 0 & 1 along x-axis rotations of layers 0 & 1 along z-axis torsion of the whole detector

(50)

Momentum Reconstruction Resolution

°] torsion angle [ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

reconstruction resolution [MeV]

0 0.5 1 1.5

2 2.5

• torsion of the whole detector

• maximum rotation angle of each detector end (total: 4)

• fairly insensitive to torsion

(51)

Momentum Reconstruction Efficiency

shift [mm]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

reconstruction efficiency

0.5 0.6 0.7 0.8 0.9 1

• shifts of the innermost layer in x-direction

(52)

Momentum Reconstruction Resolution

shift [mm]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

momentum resolution [MeV]

0 0.5 1 1.5

2 2.5

• shifts of the innermost layer in x-direction

(53)

Misalignment Studies - Momentum Resolution RMS (4-hit segments)

shift [mm]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

momentum resolution [MeV]

0 0.5 1 1.5 2 2.5

shift [mm]

0 0.1 0.2 0.3 0.4 0.5

momentum resolution [MeV]

0 0.5 1 1.5 2 2.5

°] rotation [

0 0.2 0.4 0.6 0.8 1

momentum resolution [MeV]

0 0.5 1 1.5 2 2.5

°] rotation [

0 0.1 0.2 0.3 0.4 0.5

momentum resolution [MeV]

0 0.5 1 1.5 2 2.5

shift [mm]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

momentum resolution [MeV]

0 0.5 1 1.5 2 2.5

shift [mm]

0 0.1 0.2 0.3 0.4 0.5

momentum resolution [MeV]

0 0.5 1 1.5 2 2.5

°] rotation [

0 0.2 0.4 0.6 0.8 1

momentum resolution [MeV]

0 0.5 1 1.5 2 2.5

°] rotation [

0 0.1 0.2 0.3 0.4 0.5

momentum resolution [MeV]

0 0.5 1 1.5 2 2.5

°] torsion angle [ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

reconstruction resolution [MeV]

0 0.5 1 1.5 2 2.5

shifts of layer 0 in x-direction shifts of layer 0 in z-direction rotations of layer 0 along x-axis

rotations of layer 0 along z-axis shifts of layers 0 & 1 in x-direction shifts of layers 0 & 1 in x-direction

rotations of layers 0 & 1 along x-axis rotations of layers 0 & 1 along z-axis torsion of the whole detector

(54)

Momentum Reconstruction Efficiency

For Individual Sensors

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4-hit-segments

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4-hit-segments

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6-hit-segments

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6-hit-segments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

8-hit-segments

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

8-hit-segments

(55)

Momentum Resolution

For Individual Sensors

1.7 1.8 1.9 2 2.1 2.2

4-hit-segments

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

1.7 1.8 1.9 2 2.1 2.2

4-hit-segments

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

6-hit-segments

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

6-hit-segments

0.4 0.45 0.5 0.55 0.6

8-hit-segments

Standard Deviation of Shifts [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

]° Standard Deviation of Rotations [

0 0.2 0.4 0.6 0.8 1 1.2

0.4 0.45 0.5 0.55 0.6

8-hit-segments

(56)

The Detector

Target Inner pixel layers

Outer pixel layers Recurl pixel layers

Scintillator tiles μ Beam

110cm

18cm

• barrel detector

two double layers of silicon sensors

scintillating fibre tracker &

scintillating tiles (timing)

• hollow double cone target

• use re-curlers

allow precise momentum measurements

(57)

The Phases of the Mu3e Detector

Target Inner pixel layers

Scintillating fibres Outer pixel layers μ Beam

Target Inner pixel layers

Outer pixel layers Recurl pixel layers

Scintillator tiles μ Beam

Target Inner pixel layers

Scintillating fibres Outer pixel layers Recurl pixel layers

Scintillator tiles μ Beam

Referenzen

ÄHNLICHE DOKUMENTE

The timestamp marks when the signal crosses the threshold voltage, however there is a delay between the particle hit and the threshold.

The measurements leading to beam test results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF). We would like

Large area O(1m 2 ) monolithic pixel detectors with X/X 0 = 0.1% per tracking layer Novel helium gas cooling concept.. Thin scintillating fiber detector with ≤ 1mm thickness

Time walk observed for pixel analogue behaviour.. The Mu3e Experiment The MuPix Testbeam Results Summary

HV-MAPS pixel size = 80µm mount to 2x2cm 2 sensors thinned to 50µm.. Kapton as

Store time stamp and row address of 1 st hit in column in end-of-column cell Delete hit flag.. LdCol

o Integrated cooling Beam pipe supports detectors..

The measurement with helium showed that cooling of the layers with a heat dissipation of 400 mW / cm 2 caused a temperature increase of around 70 − 75 K compared to the