• Keine Ergebnisse gefunden

Ultra-low material pixel layers

N/A
N/A
Protected

Academic year: 2022

Aktie "Ultra-low material pixel layers"

Copied!
41
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Ultra-low material pixel layers for the Mu3e experiment

Sebastian Dittmeier

for the Mu3e Collaboration

Physikalisches Institut - UniversitΓ€t Heidelberg PIXEL 2016

Sestri Levante – 9 September 2016

(2)

β€’ Decays of stopped muons β†’ low momentum electrons

β€’ Design sensitivity BR < 10 βˆ’16 requires

β€’ High muon rates π’ͺ 10 8 βˆ’ 10 9 s βˆ’1

β€’ Excellent momentum resolution 𝜎 𝑝 < 0.5 MeV/c

Mu3e - Experimental Concept

Search for the charged lepton flavor violating decay πœ‡ + 𝑒 + 𝑒 βˆ’ 𝑒 +

36 cm

12 cm 2.1 cm 2.5 cm

7.6 cm

8.9 cm

(3)

Material budget of selected pixel detectors

Experiment Material budget per layer

ATLAS IBL 1.9 % 𝑋

0

CMS (current) ~ 2.0 % 𝑋

0

CMS (upgrade) ~ 1.1 % 𝑋

0

ALICE (current)* 1.1 % 𝑋

0

ALICE (upgrade)* 0.3 % 𝑋

0

STAR 0.4 % 𝑋

0

BELLE II 0.2 % 𝑋

0

Mu3e 0.1 % 𝑿

𝟎

* arXiv:1211.4494v1

‑ ATL-INDET-PROC-2015-001

†CERN-LHCC-2012-016 ; CMS-TDR-11

‑

†

†

β‹„

β–³

β‹„talk by G. Contin

β–³

talk by C. Koffmane

(4)

How to reach the material goal?

Approach for a Mu3e tracking detector layer

(5)

How to reach the material goal?

Approach for a Mu3e tracking detector layer

HV-MAPS MuPix

50 ΞΌm ~ 0.5 ‰ 𝑋

0

Talk by Frank Meier Aeschbacher

about MuPix 7

(6)

How to reach the material goal?

Approach for a Mu3e tracking detector layer

HV-MAPS MuPix

50 ΞΌm ~ 0.5 ‰ 𝑋

0

Talk by Frank Meier Aeschbacher about MuPix 7

FPC

Flexible printed circuit Sensor powering Signal transmission

45 ΞΌm Kapton + 28 ΞΌm Aluminium + 10 ΞΌm Glue

~ 0.5‰ 𝑋

0

(7)

How to reach the material goal?

Approach for a Mu3e tracking detector layer

HV-MAPS MuPix

50 ΞΌm ~ 0.5 ‰ 𝑋

0

Talk by Frank Meier Aeschbacher about MuPix 7

FPC

Flexible printed circuit Sensor powering Signal transmission

45 ΞΌm Kapton + 28 ΞΌm Aluminium + 10 ΞΌm Glue

~ 0.5‰ 𝑋

0

Kapton support structure

Helium cooling distribution

25 ΞΌm ~ 0.1 ‰ 𝑋

0

(8)

How to reach the material goal?

Approach for a Mu3e tracking detector layer

HV-MAPS MuPix

50 ΞΌm ~ 0.5 ‰ 𝑋

0

Talk by Frank Meier Aeschbacher about MuPix 7

FPC

Flexible printed circuit Sensor powering Signal transmission

45 ΞΌm Kapton + 28 ΞΌm Aluminium + 10 ΞΌm Glue

~ 0.5‰ 𝑋

0

Kapton support structure

Helium cooling distribution

25 ΞΌm ~ 0.1 ‰ 𝑋

0

(9)

How to reach the material goal?

Approach for a Mu3e tracking detector layer

HV-MAPS MuPix

50 ΞΌm ~ 0.5 ‰ 𝑋

0

Talk by Frank Meier Aeschbacher about MuPix 7

Material budget estimated 𝒙 ~ 1.15‰ 𝑿 𝟎 per layer

FPC

Flexible printed circuit Sensor powering Signal transmission

45 ΞΌm Kapton + 28 ΞΌm Aluminium + 10 ΞΌm Glue

~ 0.5‰ 𝑋

0

+ 10-20 ΞΌm Glue

~ 0.05‰ 𝑋

0

Kapton support structure

Helium cooling distribution

25 ΞΌm ~ 0.1 ‰ 𝑋

0

(10)

FPC technology

Two layer aluminium (LTU Ltd.)

β€’ 14ΞΌm Al + 10ΞΌm polyimide per layer

β€’ Structure sizes β‰₯ 65ΞΌm

β€’ Dielectric spacing 45ΞΌm

Layer stack

(11)

FPC technology

Two layer aluminium (LTU Ltd.)

β€’ 14ΞΌm Al + 10ΞΌm polyimide per layer

β€’ Structure sizes β‰₯ 65ΞΌm

β€’ Dielectric spacing 45ΞΌm

β€’ SpTAB technology (by LTU)

Single point Tape Automated Bonding

οƒ˜ No additional (high Z) material for bonding!

Via Sensor bond

Layer stack

(12)

36 cm

12 cm

FPC design considerations

β€’ Clock, reset, configuration as bus

β€’ High Voltage (β‰ˆ 85 V)

β€’ Power (𝑃

𝑀𝑒𝑃𝑖π‘₯

≀ 400 mW/cm

2

)

β€’ Readout at both ends

FPC Length Sensors LVDS links @ 1.25 Gb/s

Inner layers 12 cm 6 3 per sensor

Outer layers 36 cm 18 1 per sensor

(13)

FPC feasibility studies

Two layer FPC with test structures bonded to testboard

6.85 cm

1.90 cm

(14)

FPC studies – preliminary results

Bit error rate measurements

β€’ 10 differential pairs

β€’ Data rate = 1.25 Gbit/s

β€’ No bit errors observed BER < 2 βˆ™ 10

βˆ’13

per pair

β€’ Up to 2.5 Gbit/s: no bit errors

BER < 3 βˆ™ 10

βˆ’13

(15)

FPC studies – preliminary results

Time Domain Reflectometry

β€’ Differential target impedance 𝑍

𝑑𝑖𝑓𝑓

= 100 Ξ©

β€’ Off by more than 10%

β€’ Bottom: glue and board coating Will behave differently with MuPix

β€’ Top: missing Kapton foil

Also tested:

β€’ Resistance of power lines: 50 βˆ’ 120 mΞ©

β†’ compatible with actual conductor thickness ~12.3 ΞΌm

(16)

Mu3e cooling concept

β€’ Cool sensors below 70℃ for up to 400 mW/cm

2

β€’ Minimize material budget of cooling in active volume

β€’ Gaseous Helium: low density, reasonable cooling capabilities

(17)

Mu3e cooling concept

β€’ Cool sensors below 70℃ for up to 400 mW/cm

2

β€’ Minimize material budget of cooling in active volume

β€’ Gaseous Helium: low density, reasonable cooling capabilities

(18)

Mu3e cooling concept

β€’ Cool sensors below 70℃ for up to 400 mW/cm

2

β€’ Minimize material budget of cooling in active volume

β€’ Gaseous Helium: low density, reasonable cooling capabilities

(19)

Mu3e cooling concept

V-shapes for local cooling channels

Kapton Frame

V-shape

Cooling outlets

(20)

Mu3e cooling concept

β€’ Cool sensors below 70℃ for up to 400 mW/cm

2

β€’ Minimize material budget of cooling in active volume

β€’ Gaseous Helium: low density, reasonable cooling capabilities

(21)

Mu3e cooling concept

β€’ Cool sensors below 70℃ for up to 400 mW/cm

2

β€’ Minimize material budget of cooling in active volume

β€’ Gaseous Helium: low density, reasonable cooling capabilities

(22)

Simulation of Mu3e helium cooling

𝑣

π‘™π‘œπ‘π‘Žπ‘™

= 16 m s 𝑣

π‘”π‘Žπ‘

= 3.5 m/s

𝑣

π‘™π‘Žπ‘¦π‘’π‘Ÿ1βˆ’2

= 4 m s 𝑣

π‘”π‘™π‘œπ‘π‘Žπ‘™

= 3.5 m/s 𝑃 = 250 mW/cm

2

β€’ Target power consumption (𝑃 = 250 mW/cm

2

) seems feasible

β€’ Higher power consumption (𝑃 = 400 mW/cm

2

) requires higher flow velocities

(23)

Cooling tests with detector model

Heatable Kapton and glass staves

Measurement

β€’ Large benefit from local cooling in outer detector layers

β€’ Reduces maximum

temperature by 20Β°C

(24)

Summary and Outlook

β€’ Ultra-low material tracking detector using HV-MAPS for Mu3e

β€’ Material budget of ~ 1.15‰ 𝑿 𝟎 per layer

β€’ Aluminium FPC prototype works very well: BER < 2 βˆ™ 10 βˆ’13 @ 1.25 Gb/s

β€’ Cooling of sensors with Helium gas seems feasible

β€’ End of this year: MuPix 8 (β‰ˆ 2 Γ— 2 π‘π‘š 2 )

β€’ Integration of MuPix with FPC

οƒ˜ First inner detector modules

(25)
(26)

The Mu3e Experiment

Search for the charged lepton flavor violating decay πœ‡ + 𝑒 + 𝑒 βˆ’ 𝑒 +

Standard Model

Highly suppressed branching ratio BR 𝑺𝑴 < 𝟏𝟎 βˆ’πŸ“πŸ’

Probe physics beyond SM Any observation is a clear

sign for new physics!

(27)

Searching for New Physics with Mu3e

AndrΓ© de GouvΓͺa, Petr Vogel,

Lepton flavor and number conservation, and physics beyond the standard model,

πœ… 1 + πœ…

1 Ξ›

2

π‘š

πœ‡

1 + πœ…

1 Ξ›

2

+

(28)

The Mu3e Experiment

Current limit on πœ‡ + 𝑒 + 𝑒 βˆ’ 𝑒 + BR π’Žπ’†π’‚π’” < 𝟏𝟎 βˆ’πŸπŸ (SINDRUM 1988)

Goal of Mu3e

Enhance sensitivity to BR < 𝟏𝟎 βˆ’πŸπŸ”

How to achieve this in a reasonable time?

β€’ High muon rate π“ž 𝟏𝟎 πŸ— 𝐬 βˆ’πŸ

οƒ˜ Beamline at PSI (CH)

β€’ Radiative SM decay πœ‡ + 𝑒 + 𝑒 βˆ’ 𝑒 + 𝜈 𝜈

β€’ Accidental combinations

What are the main backgrounds?

(29)

Event Topologies

β€’ Common vertex

β€’ Coincident

β€’ 𝑝 = 0

β€’ 𝐸 = π‘š

πœ‡

β€’ Common vertex

β€’ Coincident

β€’ 𝑝 β‰  0

β€’ 𝐸 β‰  π‘š

πœ‡

β€’ No common vertex

β€’ Not coincident

β€’ 𝑝 β‰  0

β€’ 𝐸 β‰  π‘š

πœ‡

Signal Background

(30)

Material budget constraints

β€’ Momentum resolution 𝜎

𝑝

𝑝 ∝ π‘₯ 𝑋

0

β€’ Requirement

R.M Djilkibaev and R.V. Konoplich, Phys.Rev., D79 073004, 2009

Material budget required

Major background contribution

Radiative SM decay πœ‡

+

𝑒

+

𝑒

βˆ’

𝑒

+

𝜈 𝜈

(31)

History of CLFV Experiments

Updated from W.J Marciano et al., Ann.Rev.Nucl.Part.Sci. 58, 315 (2008)

(32)

Serial Readout of the MuPix7

1.25 Gbit/s LVDS

Eye Width > 0,65 UI

Eye Height > 100 mV

(33)

FPC design study – two layers

MuPix MuPix

MuPix

Composite View

Bottom Layer

(34)

Inner detector – FPC design study

Signal bus

β€’ Clock, reset

β€’ Configuration

β€’ HV

Power lines

Mock-up with dummy chips

(35)

Inner detector – FPC design study

Signal bus

β€’ Clock, reset

β€’ Configuration

β€’ HV

Power lines

Estimated voltage differences between sensors below 50 mV

Mock-up with dummy chips

(36)

Inner detector – FPC design study

Signal bus

β€’ Clock, reset

β€’ Configuration

β€’ HV

Individual signals Power lines

Mock-up with dummy chips

(37)

FPC feasibility studies – ongoing

Two layer FPC with test structures

β€’ Impedance measurements using Time Domain Reflectometry

β€’ Bit error rate measurements

β€’ Resistance and voltage drop measurements

(38)

FPC - Time Domain Reflectometry

(39)

FPC - Time Domain Reflectometry

β€’ 17.5 cm long differential pair

β€’ Glue thickness variations β†’ gradient in impedance

(40)

Outer detector – FPC design study

Two layer FPC for 9 sensors

β€’ Minimum number of signals

β€’ 1 LVDS data link per sensor

β€’ Clock, Reset, configuration as bus signals

β€’ Supply different voltages to compensate voltage drop

(41)

Helium cooling – Vibration studies

β€’ Helium flow velocities β‰ˆ 20 m s

β€’ Thin detector:

β€’ HV-MAPS 50 ΞΌm

β€’ FPC β‰ˆ 80 ΞΌm

β€’ Kapton support 25 ΞΌm

β€’ Vibrations induced by Helium flow?

β€’ Michelson Interferometer

≀ 10 ΞΌm amplitude for

typical flow velocity

Referenzen

Γ„HNLICHE DOKUMENTE

The Theory of Atomic Collisions, Oxford University Press (1965) 5. primary beam energy [eV] for carbon and gold b) simulated interaction volume of 300 eV electrons in gold

The small interaction volume of helium ions means that the helium ion beam induced secondary electrons come from a small local area close to the helium beam impact spot on the

Below, the reference storage will be examined in more detail. This should clarify, why a heat transfer structure is required to get a better storage behavior. 5

Flow directions in the inner double layers... Outer

Cooling with gaseous helium Power consumption of Si pixel sensors is 250 mW / cm

ring 1 8 edges diameter 52mm Outer/Recurl pixel layers.. ring 3 24 edges

Gaseous Helium Cooling of a Thin Silicon Pixel Detector for the Mu3e Experiment..

The measurement with helium showed that cooling of the layers with a heat dissipation of 400 mW / cm 2 caused a temperature increase of around 70 βˆ’ 75 K compared to the