• Keine Ergebnisse gefunden

Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory

N/A
N/A
Protected

Academic year: 2021

Aktie "Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory"

Copied!
136
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

quantum gauge anomalies

and generalized Chern-Simons terms

in hiral gauge theory

Torsten S hmidt

(2)
(3)

quantum gauge anomalies

and generalized Chern-Simons terms

in hiral gauge theory

Torsten S hmidt

Dissertation

an der Fakulat fur Physik

der Ludwig-Maximilians-Universitat

Mun hen

vorgelegt von

Torsten S hmidt

aus Mun hen

(4)

Zweitguta hter: Prof. Dr. Dieter Lust

Vorsitzender: Prof. Dr. Ivo Sa hs

weiteres Mitglied: Prof. Dr. Otmar Biebel

Ersatzmitglied: Prof. Dr. Dorothee S haile

(5)

The purpose of this thesis is to investigate the interplay of anomaly an ellation and

generalized Chern-Simons terms in four-dimensional hiral gauge theory. The in lusion

of generalized Chern-Simons terms and additional axioni ouplings allows to relax the

onstraintswhi hareotherwiseimposedbyanomaly-freedom. Therehasbeenalotofre ent

interest in the phenomenology of these additional ouplings. Possible models that make

use of thisare provided byinterse ting brane modelsin orientifold ompa ti ations of the

type II stringtheories. If themassof theanomalousU(1)-gauge bosonis low enough, these

modelspredi t smallsignalsthat might be dete tableinnear-future ollider experiments.

We startwitha detaileddis ussionof generalized Chern-Simonsterms and establishthe

onne tion of generalized Chern-Simons terms with the an ellation of anomalies via the

Green-S hwarzme hanism. Withthisat hand,we investigate thesituationingeneralN =1

supersymmetri eldtheorieswithgeneralized Chern-Simonsterms. Twosimple onsisten y

onditions are shown to en ode strong onstraints on the allowed anomalies for di erent

types of gauge groups. The results even apply to N = 1 matter- oupled supergravity

generalizingpreviouslyknowna tions.

In N = 1 supersymmetry or in theories without supersymmtry, the rigid symmtries of

theve torands alarse torarenotdire tlyrelated. Therigidsymmetrygroupisasubsetof

the produ t of the symple ti dualitytransformations that a t on theve tor elds and the

isometrygroup ofthe s alarmanifoldof the hiralmultiplets. Ifnontrivialele ti /magneti

dualitytransformationsare involved, the eldsbefore and after su h a symmetry operation

are not related by a lo al eld transformation. In order to use the standard pro edure for

gauging a rigid symmetry, one therefore rst has to swit h to a symple ti duality frame

in whi h the relevant symmetries a t by lo al eld transformations only. This obviously

breaks the original duality ovarian e. Re ently an alternative method has been proposed

that allows one to formally maintain the fullduality ovarian e at ea h step of the gauging

pro edure. This method requires the extension of the usual gauge degrees of freedom and

(6)

the existing formalism in order to allow for the an ellation of quantum gauge anomalies

via the Green-S hwarz me hanism. The results might be relevant for ertain N = 1 ux

ompa ti ationswith anomalousfermioni spe trum.

Attheendofthisthesiswe ommentonapuzzleintheliteratureonsupersymmetri eld

theorieswithmassivetensor elds. Theseo urnaturallyinthelow-energye e tivea tionof

ertainIIBorientifold ompa ti ationswith uxes,wheretheygive riseto s alarpotentials

that arenot of thestandard supersymmetry form. Thepotential ontainsa term that does

notarisefromeliminatinganauxiliary eld. Wewill larifytheoriginofthistermanddisplay

therelationto astandardD-term potential. Inan appendixitis expli itlyshownhowthese

lowenergye e tivea tionsmightbe onne tedtotheformulationoffour-didmensionalgauge

(7)

In dieser Dissertation untersu hen wir die Rolle verallgemeinerte Chern-Simons Terme

in vierdimensionalen hiralen Ei htheorien, genauer, wie Anomlien weggehoben werden

konnen. Unter Einbeziehung von verallgemeinertenChern-SimonsTermenundzusatzli hen

axionis hen Kopplungen ist man in der Lage die Bedingungen, die Abwesenheit von

Anomalien garantieren, zu ents harfen. Phanomenologis he Modelle, die gerade diese

Art von Kopplungen beinhalten, sind seit einiger Zeit Mittelpunkt reger Untersu hungen.

Mogli heRealisierungenfurentspre hendeModellesindzumBeispieldur hsi hs hneidende

Branen-Modelle in Orientifoldkompakti zierungen von Typ II Stringtheorien gegeben. Die

Vorhersagenderphanomenologis henUntersu hungendieserModellekonntensogarinnaher

Zukunft in Kollisionsexperimenten na hgepruft werden, falls nur die Masse des anomalen

U(1)-Ei hbosons kleingenug ist.

Na h einerkurzenEinfuhrunginQuantenanomaliendiskutierenwirim Detaildie

verall-gemeinertenChern-SimonsTermeunderlauternunterwel henUmstandensiemitHilfeeines

Me hanismus na h Green und S hwarz zum Wegfall von Anomalien fuhren konnen. Diese

ersten Ergebnisse erlauben eine umfassende Untersu hung der entspre henden Situation in

allgemeinen N = 1 supersymmetris hen Feldtheorien mit verallgemeinerten Chern-Simons

Termen. Wiegezeigt wird,konnendie starken Anforderungen,die si hausderAbwesenheit

von Anomalien unters hiedli her Ei hgruppen ergeben, dur h zwei einfa he Bedingungen

zum Ausdru kgebra ht werden. Dies giltebenfalls inN =1Supergravitationstheorien mit

Kopplungenanmassive Felder, bekannte Wirkungen verallgemeinernd.

Globale Symmetrien jener Sektoren, die Vektorfelder undSkalarfelder enthalten, stehen

in N = 1 Supersymmetrie oder in ni ht supersymmetris hen Theorien in keiner direkten

Verbindung. Die globale Symmetriegruppeist eineUntergruppe desProdukts der

symplek-tis henDualitatstransformationen,die auf die Vektorfelderwirken undderIsometriegruppe

der skalaren Mannigfaltigkeit der hiralen Multipletts dar. Ni htriviale Transformationen

der elektis h/magnetis hen Dualitat wirken derart auf Felder, dass diese ni ht mehr in

(8)

Dualitatsrahmen we hseln, in dem die Felder uber lokale Transformationen untereinander

in Beziehung stehen. Dies bri ht o ensi htli h die ursprungli he Dualitatskovarianz. Vor

ni ht all zu langer Zeit wurde eine alternative Methode vorges hlagen, die es erlaubt,

bei jedem S hritt des Ei hprozesses die volle formale Dualitatskovarianz zu bewahren.

Diese Methode verlangt eine Erweiterung der gewohnli hen Ei hfreiheitsgrade und die

Einfuhrung neuer Felder. Auf diese Art wird eine neue Formulierung der Ei htheorien in

vier Dimensionen errei ht. In einem der Hauptteile der Dissertation werden wir sehen, wie

genau nun dieser Formalismusmodi ziert werden muss, damit au h Quantenanomalien mit

Hilfe des Me hanismus na h Green und S hwarz entfernt werden konnen. Diese Resultate

sindrelevantfurgewisse N =1Flusskompakti zierungenmitanomalemFermionspektrum.

AmEndederDissertationwendenwirunseinemPunktzu,derinderLiteraturzu

super-symmetris hen Feldtheorien mit massiven Tensorfeldern angemerkt wurde. Diese Theorien

ers heinen fur gewohnli h in den e ektiven Niederenergie-Wirkungen gewisser IIB

Orien-tifold usskompati zierungenunderzeugenPotentialefurSkalarfeldervonaussergewohnli her

Form. Diese Potentiale enthalteneinenTerm,derni ht ausderEliminationeinesHilfsfeldes

resultiert. Wir werden diesen Punkt klaren und au h die Beziehung dieser Potentiale zu

gewohnli henD-TermPotentialenaufzeigen. ImAnhangzudieserArbeitistdargestellt,wie

genaudiesee ektiven Niederenergie-Wirkungenmiteinigen derzuvorerwahnten

(9)

Contents

1 Introdu tion 1

2 Quantum anomalies 5

2.1 Triangleanomaly . . . 5

2.2 Pathintegraland anomaly . . . 8

2.3 Consistent anomaly. . . 11

2.4 Can ellation ofanomalies . . . 12

3 Lie algebra ohomology and generalized Chern-Simons terms 14 3.1 GeneralizedChern-Simonsforms . . . 17

3.2 GeneralizedChern-Simonsterms andsemisimplegroups . . . 21

3.3 Appli ation: Abeliansemisimple . . . 22

3.4 Nonhomogeneous formsand anomalies . . . 23

4 N =1 Supersymmetry 27 4.1 GlobalSupersymmetry. . . 28

4.2 The gaugese tor ofN =1 supergravity . . . 33

5 Generalized Chern-Simons termsand hiral anomalies inN =1 Supersym-metry 36 5.1 GaugedisometriesandgeneralizedChern-Simonstermsinglobalsupersymmetry 37 5.2 Gaugedisometries and anomaliesinglobal N =1 supersymmetry . . . 44

5.3 GeneralizedChern-Simonsterms inSupergravity . . . 47

5.4 Redu ingto Abeliansemisimple . . . 49

5.5 Summary . . . 52

6 Symple ti ally ovariant formalismand anomalies in hiralgauge theories 54 6.1 Ele tri /magneti dualitywithoutanomalies. . . 55

6.1.1 Ele tri /magneti dualityand the onventional gauging . . . 55

6.1.2 The symple ti ally ovariant gauging . . . 57

(10)

6.2.1 Symple ti ally ovariant anomalies . . . 69

6.2.2 The new onstraint . . . 70

6.2.3 New antisymmetri tensors . . . 71

6.3 Purely ele tri gaugings . . . 74

6.4 A simpleexampleof magneti gauging . . . 75

6.5 Summary . . . 78

7 Abelian gauging and D-term potential in N =1 supersymmetry 81 8 Con lusion 88 A Appendix 92 A.1 The Lapla eequation of Liealgebra ohomology . . . 92

A.2 Appli ation: Abeliansemisimple . . . 94

B Appendix 96 C Appendix 100 D Appendix 104 D.1 The Bian hiidentity . . . 104

D.2 Gauge variationof F  M . . . 105

D.3 Gauge variationof thegeneralizedChern-Simonsterm . . . 109

E Appendix 112

(11)

In quantum physi s an anomaly is thefailure of a symmetry of the lassi al theory to be a

symmetryofthefullquantum theory. In hiralgaugetheoriesananomalyofthegauge

sym-metrymayo urbe ausethe hiralityofthegaugeintera tionsmay auseloop ontributions

(e.g. to n-point fun tions)that violatethesymmetries of the lassi ala tion. Forquantum

gauge theories this is fatal, as su h a gauge anomaly leads to a loss of renormalizeability.

To avoid this, one usually hasto imposea number of nontrivial onstraints on the possible

hargesofthe hiralfermionsinsu hawaythattheanomalyisabsent. Withoutintrodu ing

anynewparti leorintera tion,thisamountstodemandingthattheanomalousFeynman

dia-grams an el. Thevanishingofallanomalousone-loopdiagramsalreadyprovidesasuÆ ient

onditionforanomaly-freedomto all loop orders[1℄.

It is possibleto relax these onstraintsifgaugevariations ofthe lassi ala tionareable

to an elsomeoftheanomalousone-loop ontributions. Inthis asethe lassi ala tionitself

annotbegaugeinvariant,of ourse. Inthesimplestexample,thea tion ontainsan axioni

ouplingof as alara(x)to the eld strengthof someve tor eld oftheform aF^F,where

a(x)transformswithashiftundersomeAbeliangaugesymmetrywithgaugeparameter(x),

i.e. Æa(x)/(x). An Abeliananomaly may be exa tly an elledbythe gauge variation of

this axioni oupling, whi h is proportional to F ^F. This is a simple four-dimensional

exampleof theGreen-S hwarzme hanism [2℄.

Thes alara(x)isusually alled\axion"anditskineti termhastobeofStu kelberg-type

inordertobegaugeinvariant,i.e. proportionalto(

 a A

 )

2

. TheStu kelberg oupling

im-plementstheshiftsymmetryviaanAbeliangaugebosonthatgainsamassduetoits oupling

to the axion. If the mass of su h a gauge boson is low enough and if it has suitable

inter-a tions with the Standard Model parti les,it may lead to observable signals innear-future

ollider experiments. There has re ently been quite some interest in the phenomenologi al

studies of su h anomalous Z 0

-type bosons [3{ 16℄. A natural framework for su h models is

provided byinterse ting brane modelsin type II orientifolds 1

be ause the four-dimensional

Green-S hwarz me hanism israthergeneri inthese kindofmodels[23℄.

Interestingly,the Green-S hwarzme hanism alone is oftennot enoughto an elall

on-1

(12)

tributions from gauge anomalies in these orientifold ompa ti ations [12,13℄ 2

. Espe ially

the an ellationofmixedAbeliananomaliesbetweenanomalousand non-anomalousAbelian

fa torsisingeneralnota hievedbytheGreen-S hwarzme hanismalone. Instead,oneneeds

thehelpoftopologi alterms,so- alledgeneralizedChern-Simonsterms,whi harenotgauge

invariant. In general, it is the ombination of the Green-S hwarz me hanism and the

gen-eralized Chern-Simons terms whi h possibly an els the omplete gauge anomaly. In [12℄ 3

the question was raised, how to generate the generalized Chern-Simons terms from ertain

string ompa ti ations. ItwasshownthatthegeneralizedChern-Simonstermsareageneri

featureoftheorientifoldmodelswereferredto aboveandmayleadto newobservablesignals

of Z 0

-bosons. Another possibilitywas mentionedin [26℄ where ertain ux and generalized

S herk-S hwarz ompa ti ations[27,28℄ wereusedto explainpossibleorigins. Thereisalso

the possibilityto obtainN =2 supergravitytheories with generalized Chern-Simonsterms

fromordinarydimensionalredu tionof ertain ve dimensionalN =2supergravitytheories

withtensor multiplets 4

[29℄.

It should be emphasized that the generalized Chern-Simons terms need not ne essarily

appearin ombination withtheGreen-S hwarz me hanismand anomalies. Originally,these

termswere rstdis overedinextendedgaugedsupergravitytheories[32℄whi haremanifestly

freeof anomaliesdueto theusualin ompatibilityof hiralgaugeintera tionswithextended

supersymmetry in four dimensions. This motivated the dis ussions in [26{29,33{39℄ whi h

demonstrated howgeneralized Chern-Simonsterms an elaxioni shiftsindi erent lassi al

setups. Inall these ases the absen eof gauge anomalies imposes strongrestri tionson the

form ofpossiblegaugedaxioni shiftsymmetries.

In light of the above mentioned possiblephenomenologi al appli ations and given their

generi o uren einvariousstring theory ompa ti ations, itissurprisingthatthegeneral

interplaybetweentheGreen-S hwarzme hanism,generalizedChern-SimonstermsandN =1

supersymmetry wasnot very wellunderstooduntilrather re ently. It isthe purpose of this

thesis to give a systemati a ount of these issuesas they were developed in[88℄ duringthe

pastyears.

2

Forrelatedphenomenologi alwork,seealso[14{16,24,25℄

3

Thebasi ideasarepresentedbymeansofasimpletoymodelin[13℄.

4

(13)

aboutquantumanomaliesin hiralgaugetheories. Wewillillustratehowthetrianglediagram

auses a violation of the onservation law of axial urrents. Then we will review how the

anomaly an also be understood by the Ja obian of the path integral measure under axial

transformations. Withthis at hand we will present the Wess-Zumino onsisten y ondition

and, at theend of se tion 2, we will shortly omment on some general aspe ts of anomaly

an ellation.

In se tion 3, we onstru t generalized Chern-Simons terms along the lines of [34℄. We

willfurthershowthatthere arenonontrivialgeneralizedChern-Simonstermsforsemisimple

gauge groups. This motivates a short dis ussion of the example of a gauge group with

the stru ture Abeliansemisimple. The se tion ends with a generalization of the method

developed in[34℄ soasto beable to in orporate anomaliesintothe formalism.

Se tion4 summarizesthemostimportantformulae on erningthegaugese torofglobal

and lo alN =1supersymmetrywhi hwillbe ofmajor on erninthesubsequent se tion5.

Aftertheintrodu toryse tions2to4,wewillapply,inse tion5,theresultsofse tion3to

gaugedisometriesonthetarget manifoldofs alar eldsinglobaland lo alN =1

supersym-metry andgeneralizepreviouswork. Therefore,webeginbygaugingan Abelianisometryin

globalN =1supersymmetryandshowwhenitisne essarytoaddgeneralizedChern-Simons

terms to the gauge se tor presented in se tion 4 su h that the resulting a tion is invariant

under the gauged isometries. After having generalized the results to gauged nonabelian

isometries, we will display under whi h onditions gauge anomalies are possibly an elled.

Furthermore,weinvestigatethe onservation ofsupersymmetryinpresen eofgauged

isome-tries. After thisis a omplished, we willextendthe resultsto N =1 supergravity. We will

illustratethe an ellationpro edurefor agaugegroup ofthe formAbeliansemisimple.

In se tion 6, we will show that four-dimensional gauge theories with Green-S hwarz

anomaly an ellationandpossiblegeneralizedChern-Simonstermsadmitaformulationthat

is manifestly ovariant withrespe t to ele tri /magneti dualitytransformations. This

gen-eralizes previous work on the symple ti ally ovariant formulation of anomaly-free gauge

theoriesand mayhave interestingappli ations, e.g.,for ux ompa ti ation with

interse t-ingbranes.

(14)

ve tor multipletsinthe N =1 super eldformalism. We ompute theD-term potentialand

showthatitisequivalent toapotentialinstandardformexplainingan earlierresult by[90℄.

The a tion an be regarded as the supersymmetrization of a spe ial Abelian gauge of the

theorypresentedinse tion 6. Thepre ise onne tion isillustratedinappendixE.

The on lusionis foundinse tion 8,and notations and onventions, aswellaste hni al

(15)

A quantum theory is alled anomalousif there is an exa t symmetry of the lassi ala tion

whi hisnotpreserved asasymmetryafterquantization. Whenforgaugetheoriesthe

quan-tuma tionisnotgaugeinvariant,thenthequantumtheoryisnotrenormalizable. Thereason

isthatso- alled Ward-identities,whi hareabsolutelyne essaryfortherenormalization

pro- edure to bewell-de ned,do nothold.

Anomalies are not only a possible feature of gauge symmetries, but may also arise for

global symmetries of the lassi al a tion. Contrary to quantum gauge theories, in the ase

of theglobalsymmetrythisis notne essarilya problembutmayinsteadlead to interesting

measurable physi al e e ts as, for example, the de ay of the pion into gamma rays shows.

Histori ally, the observed de ay rates in experiments did not mat h the theoreti al

predi -tions. Onlyon ethe ontributionoftheglobalanomalywas onsidered,verygoodagreement

between experiment and theory ould be obtained. The anomaly does not spoil

renormal-izationhere be ause noWard-identityisviolated. Thisexamplealsoshows thatan anomaly

is not simplya mathemati al problem aused bythe formalism buthas a lear physi al

in-terpretation. In fa t, an anomaly is a onsequen e of the non-invarian e of the quantum

measure in the path integral formulation as demonstrated by Fujikawa [41℄. Nevertheless,

already triangle diagrams show whether a given theory is anomalous or free of anomalies,

whi h will be reviewed in the next se tion. In se tion 2.2, we illustrate how the anomaly

appears in the path integral formalism. The onsistent anomaly is explained in se tion 2.3

andtheWess-Zumino onsisten y onditionispresented. Finally,inse tion2.4,we omment

brie y onthe an ellationof anomalies.

2.1 Triangle anomaly

Gauge symmetry and renormalizationare loselyrelated topi s. In gaugetheory,the

renor-malization pro edure makes use of identitiesthat relate di erent Green's fun tions. These

identitieswereprovenbyWard[42℄andTakahashi[43℄andarehen e alled\Ward-Takahashi

identities". The validity of the Ward-Takahashi identities is not automati when hiral

fermions are in the theory. More expli itly, one has to he k whether there are diagrams

(16)

reprodu -ing themselves re ursively at higher orders in perturbation theory. In a theory with hiral

fermions 5

thethree-point fun tions

T  (q;k 1 ;k 2 )  h0jT[J 5  (q)J  (k 1 )J  (k 2 )℄j0i; (2.1) T  (q;k 1 ;k 2 )  h0jT[P(q)J  (k 1 )J  (k 2 )℄j0i (2.2)

ausesu hanomaloustermsthatviolatetheWard-Takahashiidentities. HereP(q)represents

the pseudos alar urrent whi h is expli itlygiven by P = 

5

. The Feynman graphsthat

illustrate(2.1) and (2.2) are, to lowest order,trianglegraphswithtwo externalphotonsand

one axialve tor inthe rst aseand a pseudos alar(if present)forthese ond ase.

ApplyingthestandardFeynmanrulestotheFeynmandiagramsdisplayedin gure1allows

Figure 1: These diagrams ause ontributions that violate expli itly the Ward-Takahashi

identities. The graphi istaken from[1℄.

5

ConsideraLagrangianwherethefermionisdenotedby and ouplestoave tor eldAandtoanaxial

ve tor eldA 5



. TheLagrangianisgivenbyL(A 5  ;A)=  (  +A  +A 5 

 5) ,forexample. Notethat

thegivenLagrangiandes ribesalsothe ouplingofave tor eld totheele tromagneti urrentrepresented

byJ  =  

andofanaxialve tor eld ouplingtotheaxialve tor urrentJ 5

 =



(17)

one to writedowntheexpli itexpressionsfor(2.1) and (2.2), whi h aregiven by T  (q;k 1 ;k 2 ) = i Z d 4 p (2) 4  tr i p   m  5 i (p q)   m  i (p k 1 )   m  + +tr i p   m  5 i (p q)   m  i (p k 2 )   m   (2.3) T  (q;k 1 ;k 2 ) = i Z d 4 p (2) 4  tr i p   m 5 i (p q)   m  i (p k 1 )   m  + +tr i p   m 5 i (p q)   m  i (p k 2 )   m   (2.4) where q := k 1 +k 2

. In order to ndthe Ward-Takahashi identityfor the axial ve tor, one

hasto ompute q  T  . A usefulidentityis 1 p   m q   5 1 p   q   m = 1 p   m 5 + 5 1 p   q   m +2m 1 p   m 5 1 p   q   m ; (2.5)

whi h an be easily proven by multiplying (2.5) from the left sideby (p 



m) and from

theright sideby(p   q  

m). Withthehelp oftheidentity(2.5) one an repla ethe

rst two fra tions in(2.3) by theright hand side of (2.5), and it is not diÆ ultto see that

we have q  T  = R 1  +R 2  +2mT  ; (2.6) whereR 1  andR 2 

denoteintegrals thatare aused bythe rsttwoterms ontheright hand

sideof(2.5). The axialWard-Takahashiidentityis

q  T  = 2mT  ; (2.7)

and we see that (2.6) violates (2.7) by the remainingterms R 1  and R 2  . These remaining

terms do not vanishbe ause, when written outwith thehelp of Feynmanrules, they result

inlinearlydivergentintegralsthatleadtoambiguitiesinthemomentumrouteofthetriangle

graph.

The amplitudeT



(2.2)is onvergent be ause theapparentlinearandlogarithmi

diver-gen ies disappearin the a tual omputation. The al ulation is not repeated here but an

be foundinthe lassi alle tureson anomaliesbyJa kiw ( [44,45℄) and inanytextbook on

(18)

TheresultinganomalousWard-Takahashiidentityisequivalentto themodi ed onservation

law fortheaxial urrent

  J 5  = 2mP(x)+A; (2.8)

wheretheanomaly, A,isgiven by

A = e 2 (4) 2 "  F  F  : (2.9)

ThisisthefamousAdler-Bell-Ja kiwanomaly[48,49℄,whereF



istheAbelian eldstrength

de nedbyF  =2 [ A ℄ . 6

The anomaly (2.9) isindependentof thefermionmassand therefore violatesthe urrent

onservation of themasslesstheory.

The Ward-Takahashi identity of the ve tor urrents is ful lledwhi h is a onsequen e of a

hosenmomentumroute.

Observethatatta hingnewphotonlinestooneloopdiagrams,whi hisequivalenttoturning

the triangle diagram into a quadrangle or in general n-angle diagram, generates an

inte-gral that is at least logarithmi ally divergent: T

:::

for fermioni loops with more than

four external photons atta hed to it. This an be understood heuristi ally by noting that

the super ialdegrees of divergen eof the higher order diagramsare less than one and the

momentum-routingambiguitydoesnotexist forthosediagrams. Thissummarizes the

theo-rembyAdlerand Bardeen[50℄,thatstatesthatradiative orre tionsinhigherordersdonot

alter(2.8) and, thus,theanomaly is already totallydeterminedbythetrianglediagram.

2.2 Path integral and anomaly

AdlerandBardeenproposedintheirtheoremthat thefullstru tureofthe hiralanomaly is

given by thetriangleanomaly [50℄ and doesnotre eive ontributionsfrom furtherradiative

orre tions. This suggests that the anomaly shouldeven exist beyond perturbation theory.

Fujikawa was the rst to re ognize that in the path integral formalism the anomaly

orre-sponds to the Ja obian of a

5

-transformation of the quantum measure [41℄. One an see

6

Hereand inthe following, [℄and () denote,respe tively, antisymmetrizationand symmetrizationwith

\strengthone",i.e.,[ab℄= 1

2

(19)

thisasfollows: Lettherebemasslessfermioni eldsinthetheorytransformingnontrivially

under hiralgauge transformationsas

! e i 5 ;  !  e i 5 : (2.10)

TheimportantstepsinFujikawa's methodare rstto de nethepathintegralmeasure more

a uratelybyde omposingthespinors and 

intoeigenfun tionsoftheDira operatorand

se ond to determine the Ja obian of the path integral measure under hirality

transforma-tions. The Ja obianof in nitesimaltransformationswillbe exa tlythe anomaly.

The eigenve torsjni ofthe operator Daregiven by:

D   jni =  n jni; (2.11)

and thespinorsde omposea ording to

(x) = X n a n hxjni; (2.12)  (x) = X n hnjxi  b n ; (2.13)

where the de omposition oeÆ ients a

n and



b

n

are independent Grassmann obje ts. These

oeÆ ients at hand, we are able to re-express thepath integralmeasures D D  a ording to D D  = Y n Da n D  b n ; (2.14)

be ause theset of eigenve tors jniis ompleteand orthonormal, i.e. hnjmi=Æ

nm

. In order

todeterminethebehaviouroftheobje tsa

n and



b

n

under hiraltransformations,we onsider

therotatedspinor

0

(x) = e i

5

(x): (2.15)

Afterde omposingbothsidesof(2.15)intotheeigenve torsjni,andusingtheorthonormality

of theeigenve tors, one ndsthat

a 0 n = X m C nm a m ; C nm := Z dxhnjxie i(x) 5 hxjmi: (2.16)

(20)

The Grassmann measure transforms with the inverse determinant and, therefore, the path

integral measure transforms with  det(C nm ) 1  2

, whi h has to be determined. Making use

of detC = e trlog (C)

and onsidering in nitesimally small transformations, one an

de om-posethe logarithmaround theunitymatrix. Then,the Ja obianJ ofin nitesimal hirality

transformationsisgiven by J = e 2i R dx ~ tr( 5 ) : (2.17)

Observe, that the fun tional tra e ~

tr(

5

) is de ned through the eigenve tors ~ tr( 5 ) := P n hnjxi 5 hxjni. 7

This tra e is a tually divergent, and we have to regulate the sum. As

theregulatorwe usethe onvergent fa tor exp  (  n M ) 2 

and take thelimitM !1. Then,

we an manipulatetheregulatedexponent of(2.17) and afterintrodu ingunityoperators of

theform R

d 4

kjkihkjand byusing ompletenessof thesetfjnig, we nd

lim M!1 ~ tr( 5 e ( n M ) 2 ) = lim M!1 Z d 4 k (2) 4 e ikx ( 5 e ( D   M ) 2 )e ikx :

We de omposethe operator  D    2

into an oddpie e proportionalto [  ;  ℄and an even pie e proportional to f  ;  g = 2g  so that we have  D    2 = D  D  + 1 4 [  ;  ℄F  .

Afterres alingthemomentumandde omposingtheexponential,thereisonlyone termthat

survivesin thelimitM !1 (thetermquadrati inthe eld strength),and we obtain:

~ tr( 5 ) = 1 32 2 "  F  F  : (2.18)

Insertingthisba kinto (2.17) we indeed ndthe anomaly(2.9), orinother words,thepath

integral measuretransforms withthe Ja obian

J = e i 16 2 R dx(x)"  F  F  : (2.19)

However, aswedidnotexpandthepathintegral,thisresultisvalidbeyondanyperturbative

expansion. In the path integral pi ture the anomaly is explained by the non-invarian e of

the path integral measure under hirality transformations. The formal reason for the

non-invarian e an be tra ed ba kto thefun tionaltra e ~ tr 5 ,whi hissingular. 7 Note,that ~

(21)

2.3 Consistent anomaly

So far we have only onsidered Abelian symmetries. If we want to generalize the above

on eptsto thenonabelian ase, thentheexpression(2.18) willof oursenolongerrepresent

thefullanomaly. The naive extension of (2.9),in whi h the eldstrength is repla ed by its

ovariant ounterpart, is not orre t be ause the ontribution of quadrangle diagrams and

pentagon diagrams, though nite, violates the nonabelian stru ture. The a ess through

diagrams be omes now more ompli atedand solet us hoose the more onvenient way by

meansof the pathintegral. As a rst step,we de ne Green'sfun tions with thehelp ofthe

generatingfun tional,whi his givenby

Z[A  ℄ = Z D  D e R d 4 x(    +A   ) ; (2.20)

where the gauge elds are treated as external elds and sour es for the fermions are

ig-nored. For the proof of renormalizeability it is suitable to use onne ted Green fun tions,

butthegeneratingfun tionalZ[A℄ ontainsboth onne tedanddis onne teddiagrams. The

onne tedGreen fun tionsaregenerated byW[A℄ de nedby

Z[A  ℄ = e W[A  ℄ : (2.21)

Fortheanomalyweonlyneedto onsiderthefermioni partofthetheory,so(2.21),givenby

(2.20), isreallyall we needfrom thefullquantuma tion. Letthegaugegroup be generated

by T

A

satisfying the algebra [T

A ;T B ℄ = f AB C T C , where f AB C

are the stru ture onstants.

In nitesimalgaugetransformationsthata tonthea tion(2.21)arede nedbytheoperators

X A (x) = D C A Æ ÆA C  (x) :=    Æ C A +f AB C A B  (x)  Æ ÆA C  (x) : (2.22)

It an be shown thatthese operatorsful lthealgebra givenby

[X A (x);X B (y)℄ = f AB C X C (x)Æ(x y); (2.23)

and thatthegauge variationof W[A℄ isgiven by

ÆW[℄ := Z d 4 x A (x)X A (x)W[A  ℄ = Z d 4 x A (x)hD C A j  C (x)i on. (2.24)

(22)

where hj  C i on. = 1 Z[A℄ R D  D (   T C )e R d 4 xL(  ; ;A)

is the expe tation value of the

on-ne ted urrent. We an easily see that for an invariant quantum a tion, ÆW[℄ = 0, the

urrentis ovariantly onserved,hD C A j  C i on.

=0. However,ifthetheoryisanomalous,then

thegeneratingfun tionalof onne tedGreenfun tionssatis esÆW[℄= A

A

A

,andinorder

to be onsistentwith thegaugealgebra(2.23), the anomalyhas to obey the ondition

X A (x)A B X B (y)A A = f AB C A C Æ(x y); (2.25)

whi h is the so- alled \Wess-Zumino onsisten y ondition" [51℄. We an also see that the

naive nonabelian extension of (2.9), where the Abelian eld strengths are repla ed bytheir

nonabelian ounterparts, isnot orre t be ause itviolates (2.25).

An expli itsolutionof(2.25) isgiven by

A C = 1 24 2 "  tr[T C   (A    A  + 1 2 A  A  A  )℄; (2.26)

whi h represents exa tly Bardeen's result [52℄ found from fermion loop omputations. This

solutionisnotuniquebe auseone anaddlo alpolynomialsoftheexternalgauge eldsf[A℄

to(2.26)andobtainanothersolution. Theselo alpolynomials anbeindu ed,e.g.,whenthe

renormalizationpro edureis hanged. The2-pointGreenfun tionsoftwove tor urrents,for

example,havearenormalizationambiguitybe ausetheirLorentzinvariantextensionsto test

fun tionsarenotunique[53℄. Forthequantuma tion,thismeansthat ~

W[A℄=W[A℄+f[A℄

and the generating fun tional re eives a phase fa tor Z[A℄e if[A℄

. A phase fa tor, however,

does not a e t the transition probability and is not observable. Consequently, we an also

all a theory anomalous, if there does not exist a lo al polynomial of the external gauge

elds,su hthat(2.26) ise e tively an elled. Possiblelo alpolynomialsaregivenby

Chern-Simons terms or generalized Chern-Simons terms (depending on the dimension). In the

following se tion we will dis uss these topologi al terms, espe ially the generalized

Chern-Simons termsbe ause theseare ofspe ialinterest infourdimensions.

2.4 Can ellation of anomalies

Although there are attemptsto live with anomalous theories, seefor example[54℄ and [55℄,

in renormalizable theories, anomalies must not o ur. This implies severe restri tions on

(23)

both hiral se tors and any potential gauge anomaly in the left-handed se tor is an elled

bytheanomalyof theright-handedfermions. In hiralgaugetheories,by ontrast, anomaly

an ellationisnotautomati andthe an ellationrequiresa arefulbalan eofthefermioni

gaugequantumnumbers,as, e.g.,inthestandard model.

Anotherpossibilityto an elanomaliesistointrodu ea ountertermintothea tion,with

parti les that transform appropriately under gauge transformations su h that the anomaly

is ompensated. Asmentionedintheintrodu tion, asimpleAbelianexampleisgivenbythe

intera tion "  ia(x)F  F  ; (2.27)

wherethes alar, a(x)varies underthegauge symmetrya ording to

Æa(x) = i(x): (2.28)

Then the variation of the intera tion (2.27) is able to an el the Abelian anomaly (2.9).

When the gauge theory is nonabelian then thefull onsistent anomaly annot be an elled

bythisme hanism. The Green-S hwarzanomaly an ellationme hanism in 10-dimensional

supergravity and super Yang-Mills theory is a sophisti ated generalization of this simple

(24)

3 Lie algebra ohomology and generalized Chern-Simons

terms

In generi e e tive eld theoriesone hass alar eld dependent fun tions appearinginfront

ofthegaugekineti terms,i.e. infrontofF 

F



andF^F. Hereingeneral,thenonabelian

eldstrength two form isde nedas

F C := dA C 1 2 f AB C A A ^A B : (3.1)

Supersymmetri theories, for example, often generalize the gauge se tor to in orporate a

nontrivial gauge kineti fun tion f

AB

that depends on a set of s alar elds, as is further

explainedinse tion4.1. Compatibilitywithsupersymmetry onstrains thisfun tionand so,

for instan e, in N = 1 supersymmetry it is required to be a holomorphi fun tion of the

omplexs alarsof the hiral multiplets.

The Lagrangian will ontain a nontrivial F ^F term when the imaginary part of the

gaugekineti fun tionis nontrivial. Inthe literaturethistermis sometimesreferred to asa

\Pe ei-Quinnterm"and reads

L PQ = iImf AB F A ^F B : (3.2)

The intera tiongiven in equation (2.27) a tually represents a spe ial ase of (3.2) wherewe

just have a U(1) gauge symmetry (and hen e only one index, whi h may be dropped), and

thegauge kineti fun tionisgiven bytheaxioni s alara(x), i.e. f=4a(x).

In theremainder,theexterior produ t^isunderstood andwillnolongerbewrittenout

expli itly.

Under thegauge transformationof the onne tion one-formsA C =A C  dx  ,whi h read ÆA C = D C :=d C +f AB C  A A B ; (3.3)

the eld strengthtwo forms(3.1) transform ovariantly, i.e. if

ÆF C = f AB C  A F B : (3.4)

Clearly,theLagrangian(3.2) isinvariantunder(3.3)ifthegaugekineti fun tiontransforms

inthesymmetri produ tof two adjointrepresentations,i.e. if

Æf AB = 2 C f C(A D f B)D : (3.5)

(25)

Æf AB = 2 C f C(A D f B)D +iC AB;D  D ; (3.6)

soasto allowfor onstantshiftsinthegaugekineti fun tion. HereC

AB;D

isareal onstant

tensorsatisfyingthe onstraints

C (AB;D) = 0; (3.7) 1 2 C AB;D f EF D C DB;[E f F℄A D C DA;[E f F℄B D = 0: (3.8)

Thismore generaltransformation(3.6) an be indu edifthes alar eldstransform

nontriv-iallyunderthegaugegroupandappearina ertainwayinf

AB

,butwewilladdressthislater

inmore detail.

Obviously,on eweallowfortheseshifts,theLagrangian(3.2)isnolongerinvariantunder

(3.3) and (3.6). Its variationis insteadgiven by

ÆL PQ = iC AB;D  D F A F B : (3.9)

Ifweonly onsiderthe lassi ala tion,thevariation(3.9) anonlybe an elledbynewterms

addedto L

PQ

,the so alledgeneralized Chern-Simonsterms [32,34℄. Inthis se tionwe will

show how a lassi ally gaugeinvariant a tiongeneralizing(3.2) an be onstru ted byusing

the te hniques of [34℄. In the following subse tion we introdu e Lie algebra valued forms

C(A;F) and analyze them bymeans of ohomologi al te hniques. This method allows one

tounderstandtheoriginofthe onstraints(3.7) and(3.8). The onstraint(3.7) demandsthe

formsC(A;F) tobehomogeneousinthe eldstrengthand thegauge onne tionseparately.

Then, forformsC(A;F) whose oeÆ ientssatisfy (3.7) we an identifythe onstraint (3.8)

as the onstraint demanding C(A;F) to be losed with respe t to the exterior derivative.

After spe ifying the transformation properties of the gauge kineti fun tion, we are able

to onstru t the gauge invariant extension of the Pe ei-Quinn term, whi h is obtained by

in ludinggeneralized Chern-Simonsterms.

In subse tion 3.2 we ndthat there are no non-trivial generalized Chern-Simons terms

for semisimple gauge groups and present the example of a gauge group that has the form

Abeliansemisimplein se tion 3.3. The results of these subse tions are dis ussed in more

(26)

Finally,insubse tion3.4, we generalizetheformalismdevelopedin[34℄ inorderto allow

forformsthatdo notneedto satisfythe onstraint (3.7). We willseethat thePe ei-Quinn

termand the generalized Chern-Simonstermareno longer gaugeinvariant on e we give up

the onstraint (3.7). The onlypossibilityto an el the gauge non-invarian e insu h a ase

isto onsideranomalies.

Beforewe onstru t thegeneralizedChern-Simonsterms,Iwould liketo give afew

om-ments on `ordinary' Chern-Simons terms [57℄ that should illustrate the di eren e between

ordinaryandgeneralized Chern-Simonsterms. The onstru tion of`ordinary'Chern-Simons

forms isusually donebymeansof so alled hara teristi orinvariant polynomialsP

n . The

hara teristi polynomials P

n

(F) are symmetri fun tions of degree n in the eld strength

formF and invariantunderthea tionofthegaugesymmetry group. Therefore, the

hara -teristi polynomials satisfy P

n (F

g

) =P

n

(F) where we denoted the gauge transformed eld

strength byF g

. Withthehelp ofthe Bian iidentity

DF :=dF +[A;F℄ = 0; (3.10)

it an be proven that the invariant polynomialsare losed, i.e. dP

n

(F)= 0. A theorem by

Chern and Weil states that the ohomology lasses of P

n

(F) do not depend on the hoi e

of the onne tion form A and hara terize the de Rham ohomology group [58℄. Then, the

ohomology lassesof invariant polynomials P

n

(F) of degree n arefurther hara terized by

theChern-SimonstermsQ

n 1

(A;F) whi h areformsof degree (n 1), i.e.

P

n

(F) = dQ

n 1

(A;F) (3.11)

Integrals of hara teristi polynomialsare topologi alinvariants. Let us onsider, for

exam-ple, in four dimensions a hara teristi polynomial of the form P

4 (F) = tr(FF) whi h is invariantbe auseofP 4 (F g )=tr(gFg 1 gFg 1 )=tr(FF) =P 4

(F). Thenthis hara teristi

polynomialleads to the three-dimensionalChern-Simonsform Q

3 (A;F) =tr[AdA+ 3 2 A 3 ℄. 8

Observe, that Chern-Simonsformsare ingeneral odd dimensionalwhilegeneralized

Chern-Simons formslive ineven dimensionsaswe willsee.

8

Sin e the determinant is invariant underthe adjoint ofthe gauge symmetry,i.e. det() =det 

g 1

()g 

if g represents anelement of the gauge group, one an also obtain invariant polynomials withthe help of

thedeterminant. However,the orrespondingChern-Simonsforms are notrelatedto theoneobtainedfrom

(27)

3.1 Generalized Chern-Simons forms

GeneralizedChern-Simonsterms annot be onstru ted from hara teristi polynomials

be- ause there are no odd dimensional invariant polynomials in the eld strength. To set the

stage we onsidera ve-formC(A;F) de nedas

C(A;F) := C AB;D A D F A F B ; (3.12)

and do notlimitourselvesto fourspa etime dimensions.

Note the pe uliarstru ture of the indi esof the onstant tensor C

AB;D

: the index

or-responding to that arried by the gauge onne tion is separated from the indi es that are

arried by the eld strengths by a omma. Therefore, the onstant tensor is symmetri in

its rst two indi eswhi h is also onsistent with(3.6). Furthermore, observe that the form

C(A;F) does not represent an invariant or hara teristi polynomial as mentioned in the

ontext of ordinary Chern-Simons terms be ause C(A;F) depends expli itly on the gauge

onne tion. Thereisno problemingeneralizing(3.12) to formsofarbitrary degreeinA and

F byintrodu ing onstanttensorsoftheformC

A 1 :::A n ;D 1 :::D m

. Nevertheless,herewefo uson

theform(3.12),whi hleadsto thegaugeinvariantgeneralizationof(3.2)infourdimensions.

Using(3.1) and (3.10) we an ompute theexteriorderivativeof (3.12), whi h leadsto

dC(A;F) = C AB;D F D F A F B +  1 2 C AB;D f D EF +f D AE C DB;F +f D BE C AD;F  A E A F F A F B :

Comparing this result with the onstraints (3.7) and (3.8) shows that these orrespond to

demanding thatC(A;F) ishomogenous 9

and losed, i.e. dC(A;F)=0. Ontheother hand,

we an de nean algebrai operator

(DC) AB;EF := 1 2 C AB;D f D EF C DB;[F f D E℄A C AD;[F f D E℄B ; (3.13) satisfying D 2 = 0 be ause of d 2

= 0 (this an also be dire tly proven from (3.13) by using

the Ja obi identity on the stru ture onstants). Hen e, we an say that as d 2

leads to the

de Rham ohomology, D 2

=0 leads to Lie algebra ohomology of forms C(A;F) satisfying

the onstraints (3.7) and (3.8). For a losed form C, i.e. if C

AB;D

ful ls the equations

9

Observethat we allC(A;F)ahomogeneousform,following[34℄, ifdC(A;F)ishomogeneousinAand

F separately. The onstraint (3.7) is satis ed by homogeneous forms. Homogeneity enables one to de ne

(28)

(3.7) and (3.8), the equivalen e lasses of all C 0

in the ohomology are, for some four-form

Z =Z AB F A F B ,given by C 0

=C+dZ. So if the ohomology lass is trivial, thenwe have

C=dZ and C is d-exa t. 10

We willseelaterwhen thisisthe ase.

At this point it is suitable to dis uss the transformation properties of the s alars that

appear in the gauge kineti fun tion f

AB

. We assume that the s alar elds z i

transform

undergauge transformationas

Æz i =  A k i A (z); (3.14)

where the ve tor elds 11 k A = k i A  i

de ne a (possibly nonlinear) realization of the gauge

groupand satisfy

k j A  j k i B k j B  j k i A = f AB C k i C : (3.15)

As transformations of the s alars in general indu e transformations of the gauge kineti

fun tion, letusassume that(3.14) indu esthetransformation (3.6),i.e.,

Æ(Imf AB ) := k j D  j (Imf AB ) D = 2f D(A E  Imf B)E   D +C AB;D  D : (3.16)

Then, in order to make use of the form C(A;F) as de ned in (3.12), let us onsider the

followingLie algebra-valuedform

k j D  j (Imf AB )A D F A F B : (3.17)

With thehelp of the Bian hiidentity(3.10) and the variation of thegauge kineti fun tion

(3.16), this an be writtenas

k j D  j (Imf AB )A D F A F B = Imf AB d(F A F B )+C AB;D A D F A F B : (3.18)

Dueto the hain-rule,we furthermore have

d(Imf AB )(z)F A F B =  j (Imf AB )dz j F A F B ; (3.19) 10

NotethatfromdZwe ande nethea tionofanalgebrai operatoronZABintotalanalogywithequation

(3.13)forC AB;D ,su hthatC AB;D =(DZ) AB;D

. Thealgebrai operator(DZ)

AB;D

isde nedasinequation

(A.5),whi hforthe aseathandreads(DZ)

AB;D =2f D(A E Z B)E . 11

(29)

from whi h we subtra t(3.18) to nallyobtain  j (Imf AB )(dz j k j D A D )F A F B = d  (Imf AB )F A F B  C AB;D A D F A F B : (3.20)

Letushave a loserlookat thisresultand ndoutaboutits impli ations.

Firstly,the left handside of (3.20) is gauge invariant be ause dz j k j D A D is the gauge

ovariantderivativeforthes alar eldsz i

,andfrom(3.16)weseethat

j (Imf AB )transforms ovariantlyasC AB;D

is a onstant. Consequently,theleft hand sideof (3.20) represents an

invariant Lagrangianin 5dimensions.

Se ondly,letus onsidertherighthandsideof(3.20). We anseethatanyshiftofC

AB;D

byanexa t (in theLiealgebra ohomology)pie e (DZ)

AB;D =2f D(A E Z B)E leadsto a shift

of the ve form C(A;F) by an exa t form dZ, as was explained in footnote 10. A ording

to (3.20), this exa t form dZ an then be absorbed by a shift Imf

AB ! Imf AB +Z AB , as

is also suggested by(3.16). Therefore, we an say that anyexa t ontributionsof C an be

absorbed bya rede nitionof thegauge kineti fun tionby a onstant imaginaryshift.

Now, that we have an invariant a tion in ve dimensions, we want to pave the way to

obtain invarian e in four dimensions. If we demand that C

AB;D

satis es the onstraints

(3.7) and (3.8),weknowthatC(A;F) is losed. It thenfollows fromPoin are'slemma that

lo ally there exists a form !, su h that C = d!. In order to ndan expli itexpression for

!,we singleout one oordinate tand require A D

(t)=tA D

with A D

dependingonlyon the

remaining oordinates. After introdu ingd t =d+ t dt and de ning H A (t) := tdA 1 2 t 2 f BC A A B A C ; (3.21)

we an verify thefollowingformulae

F C (t) = H C (t)+dtA C ; (3.22) F A (t)F B (t) = H A (t)H B (t)+2dtA (B H A) (t): (3.23)

As by assumption C(A;F) is a losedform, the parti ular t-dependent form C(A(t);F(t)),

onstru tedfrom thede nitionsmadeabove,is losed,too thereasonis thatthe onstants

C

AB;D

satisfythe onstraints (3.7) and(3.8) 

. Then itis notdiÆ ultto prove that

0 = d t C(A(t);F(t))=dt t C(A(t);F(t))+dC(A(t);F(t)) = dt t C(A(t);F(t))+dC(A(t);H(t))+2tdtd(C AB;C A C A B H A ): (3.24)

(30)

These ond terminthelastlinevanishes,whi hone seesvery easilyon ethetermiswritten

inits omponentform

dC(A(t);H(t)) = d[C AB;D A D (t)H A (t)H B (t)℄: (3.25)

Ifwenowabsorbthefa tortbyres aling,At!A,thenitfollowsfromthede nition(3.21),

that H(t) ! F, and (3.25) be omes dC(A;F) whi h vanishes be ause C(A;F) is losed.

Finally,integrating (3.24) overt leaves uswith

C(A;F) = d  2C AB;D Z 1 0 dttA D A B H A (t)  : (3.26)

Inserting(3.21), theintegral an be omputed,andwe nd

! = 2 3 C BC ;D A D A B (dA C 3 8 f EF C A E A F ): (3.27)

Fromtheargumentsbelow(3.20)weknowthatd[Imf

AB F

A

F B

℄ C(A;F)isagaugeinvariant

expression in ve dimensions and, onsequently, Imf

AB F A F B !  represents a gauge

invariant Lagrangian in four dimensions. Con retely, the gauge invariant extension of the

Pe ei-QuinnLagrangian reads

L PQ +L GCS = iImf AB F A F B + 2i 3 C BC ;D A D A B (dA C 3 8 f EF C A E A F ); (3.28)

wherethese ond termis theso alledgeneralized Chern-Simonsterm.

These onsiderationsarequitegeneraland allowtheextensionof thetransformationlaw

forthe gauge kineti fun tion bya onstant imaginary shiftiC

AB;D

when at the same time

thePe ei-Quinntermisa ompaniedbythegeneralizedChern-Simonsterm. Thepro edure

isnotlimitedto fourdimensionsand an beeasilygeneralizedto arbitraryeven dimensions.

The generalized Pe ei-Quinnterm then be omes the2n form f

A1A2:::An F A 1 F A 2 :::F A n and

startingfrom the (2n+1) form C(A;F) =C

A 1 :::A n ;D A D F A1 :::F An

thesame pro edureas

outlinedabove determinesthe orrespondinggeneralized Chern-Simonsform to be

! = Z 1 0 dtntC A 1 A 2 :::A n ;D A D A A 1 H A 2 (t):::H A n (t): (3.29)

The Abelian ase is simply obtained by setting all stru ture onstants to zero, and the

generalized Chern-Simonstermforan Abeliangaugetheory isgiven by

L GCS = 2i 3 C BC ;D A D A B dA C : (3.30)

(31)

3.2 Generalized Chern-Simons terms and semisimple groups

As we presented in the previous subse tion, when C

AB;D

is D-exa t it an be absorbed by

rede ning the gauge kineti fun tion and, as a onsequen e, the new Pe ei-Quinn term

be omes gaugeinvariant. Now, we will showthis is the ase for semisimplealgebras, whi h

means that the main appli ation of generalized Chern-Simons terms is for non-semisimple

gaugealgebras.

We startwiththeresult thatif

C AB;C =2f C(A D Z B)D ; (3.31)

for a onstant real symmetri matrix Z

AB

, theChern-Simons term an be reabsorbed into

thePe ei-Quinntermusing

f 0 AB =f AB +iZ AB : (3.32)

In fa t, one easily he ks that with the substitution(3.31) in thetransformation law of the

gauge kineti fun tion (3.6), the C-termsare absorbed bythe rede nition (3.32). Equation

(3.31) an be writtenas C AB;C =T C ;AB DE Z DE ; T C ;AB DE 2f C(A (D Æ E) B) : (3.33)

In the ase that the algebra is semisimple, one an always onstru t a Z

AB

su h that this

equation isvalidforanyC

AB;C : Z AB =C 2 (T) 1 AB CD T E;CD GH g EF C GH ;F ; (3.34) whereg AB andC 2 (T) 1

arethe inversesof theCartan-Killingmetri

g AB = f AC D f BD C ; (3.35)

and,respe tively,theCasimiroperatorde nedby

C 2 (T) CD EF := g AB T A;CD GH T B;GH EF : (3.36)

Theseinversesexistforsemisimplegroups. To showthat(3.34) leadsto(3.33) oneneedsthe

onstraint (3.8), whi h an be brought to thefollowingform

g HD T H  1 2 C C f DE C +T [D C E℄  =0: (3.37)

(32)

We have dropped doublet symmetri indi es here, using the notation  for ontra tions of

su h doubleindi es. Furthermore,thisimplies

g AB T E T B C A =C 2 (T)C E ; (3.38)

withwhi hthementioned on lusions an easily be obtained.

Thisresult anbealsoobtainedfroma ohomologi alanalysisandwerefertheinterested

readerto appendixA.1.

3.3 Appli ation: Abeliansemisimple

The simplest nontrivial appli ation are gauge groups of the form Abeliansemisimple for

whi h one obtains an interesting result. Abelian generalized Chern-Simons terms are not

trivial,butaswe ouldshow, thepurelysemisimpleterms are. However, the dire tprodu t

ofanAbeliangaugegroupwithasemisimplegaugegroupisnottrivialagain,espe iallyithas

anontrivialmixed se tor, whi hisgoingto beinvestigatedingreaterdetailinthefollowing.

To re e ttheprodu tstru ture, wesplittheadjointindi esA;B;:::into indi esa;b; ;::: for

theAbelian part and adjoint indi es x;y;z;w;::: forthesemisimple part. Dueto thegroup

stru ture, onlythe stru ture onstants ofthe type f

xy z

are nonzero. As before, we de ne a

homogeneous ve-form C(A;F),whi his given by

C(A;F) = 2C (xb);a A a F x F b +C xy;a A a F x F y +2C (ax);y A y F a F x ; (3.39) with onstants C xb;a , C bx;a , C xy;a , C ax;y and C ya;x

. The losure relations an be dire tly

obtainedfrom (3.8) bysimplyinsertingAbelianand semisimpleindi es 12

and we are ledto

f v xu C vb;a = 0 (3.40) f v xy C bv;a = 0 (3.41) f u(y v C x)v;a = 0 (3.42) f uy v C ax;v +f xy v C av;u f xu v C av;y = 0 (3.43) f uy v C xa;v +f xy v C va;u f xu v C va;y = 0: (3.44)

These relations already lead to various interesting results. By de nition, a semisimple Lie

algebrahasnoAbelianideals. Thisimplies,inparti ular,thatthere annotbeanynon-trivial

12

(33)

nulleigenve tor of thestru ture onstants, sothat (3.40) and (3.41) imply C xb;a  0; (3.45) C bx;a  0: (3.46)

Equation (3.42) means that C

xy;a

is for ea h a, a symmetri invariant tensor inthe adjoint

representation of the semisimple part of the gauge group. C

xy;a

therefore has to be

pro-portional to the Cartan-Killing metri g

xy

of the semisimple Lie algebra. Thus, we have

C xy;a =B a g xy wheretheB a

's arearbitrary but onstant. The onlynontrivialpart of(3.39)

is C(A;F) = 2C (xy);a A a F x F y +(C ya;x +C ay;x )A x F a F y : (3.47)

What we have doneisto simply applytheformalismdeveloped earlierinthisse tionto the

mixed part of a gauge group with the stru ture Abeliansemisimple. The purely Abelian

part is not trivial and leads to the Chern-Simons term (3.30). After the ohomologi al

analysis we found that the only nontrivial generalized Chern-Simons terms in the mixed

se tor of Abeliansemisimpleare determinedbythe ve form (3.47) and, onsequently,the

generalized Chern-Simonsterms ofthe mixedse tor read

L GCS = 4i 3 C (xy);a A a A x (dA y 3 8 f rs y A r A s )+ 2i 3 C ya;x A x A y dA a + + 2i 3 C ay;x A x A a (dA y 3 8 f rs y A r A s ): (3.48)

be ause all the other omponents of the onstant tensor C vanish due to ohomologi al

reasons. Observe, that if we do not allow for o -diagonal elements of the gauge kineti

fun tion, i.e. f

ax = f

xa

=0, then thegeneralized Chern-Simonstermin the mixed se tor is

given by L GCS = 4i 3 C (xy);a A a A x (dA y 3 8 f rs y A r A s ): (3.49)

The purely semisimplepart of C an be absorbed into the gaugekineti fun tionby

rede -nition. Thismat hesthe situationen ountered in[12℄ withoutanomalies.

3.4 Nonhomogeneous forms and anomalies

IntermsofLiealgebra ohomology,the onstraintsonC(A;F),theequations(3.7)and(3.8),

(34)

is losed under thealgebrai operator D de ned in (3.13) if it satis es the onstraint (3.8).

However, is the formalism stillvalid fornonhomogeneous forms or, in other words, an the

onstraint (3.7) berelaxed?

In order to understand this, let C(A;F) be nonhomogeneous, i.e. C

(AB;D)

6= 0.

Conse-quently,C(A;F) annotbe losedeither,butisinstead

dC(A;F) = C (AB;D) F D F A F B : (3.50)

Clearly, the omputation that led to the generalized Chern-Simons term (3.27) annot be

validanymore. More pre isely,insteadof (3.24) one nowhas

C (AB;D) F D (t)F A (t)F B (t) = dt t C(A(t);F(t))+dC(A(t);H(t))+ +2tdtd C AB;D A D A B H A  : (3.51)

By using(3.22) one an prove easilythatthe lefthandsidede omposes a ordingto

C (AB;D) F D (t)F A (t)F B (t) = C (AB;D) H D (t)H A (t)H B (t)+ +3dtC (AB;D) A D (t)H A (t)H B (t): (3.52)

Of oursethese ondtermontherighthandsideof(3.51)nolongervanisheseitherbut auses

the ontributionC (AB;D) H D (t)H A (t)H B

(t)that an els the orresponding terminequation

(3.52). Therefore,(3.26) re eivesanextra ontributionand isrepla ed by

C(A;F) = 3C (D;AB) Z 1 0 dtA D (t)H A (t)H B (t) 2C AB;D d Z 1 0 dtA D (t)A B (t)H A (t)  : (3.53)

We see, that the nonvanishing totally symmetri part of C

AB;D

introdu es the

ve-dimensionalform Q 5 (A;F) = 3C (D;AB) Z 1 0 dtA D (t)H A (t)H B (t) (3.54)

This form is nothingelsebut the ve-dimensionalChern-Simonsterm orresponding to the

invariant polynomialP 6 (F)= C (D;AB) F D F A F B

. As thenonhomogeneous form C(A;F) is

nolonger losed,theredoesnotexistaform!,su hthatC=d!or,equivalently,the

Chern-SimonsformQ

5

isnotrepresentablebya oboundary,i.e. there isno! 0 su hthatQ 5 =d! 0 .

(35)

Consequently, the ve-dimensional form d(Imf AB F A F B

) C(A;F) annot be represented

bythe oboundary(3.28)ofhomogeneousforms. Furthermore,itisnolongergaugeinvariant

be ause Q

5

isnot gaugeinvariant. However, thisis onlya problemin theoriesthat arefree

of quantum anomalies. The solutionisgiven bythedes ent equations [59{ 62℄. By meansof

this set of equations, Stora and Zumino ould relate theChern-Simons forms Q

2n 1

to the

onsistent anomalyA

2n 2

(;A)in2n 2dimensions. The des ent equationrelevant forour

ase is Æ  Q 5 (A;F) = dA(;A); (3.55)

representing the gauge variation of the Chern-Simons form as the oboundary of the

four-dimensional onsistent anomaly. Applyinga gauge variation to d(Imf

AB F A F B ) C(A;F), we have d  Æ  (f AB F A F B )  d  2C AB;D Æ  Z 1 0 dtA D (t)A B (t)H A (t)   +d[ A(;A)℄; (3.56)

whi hisequaltozerobe auseof(3.20) asthestepsleadingto(3.20)arequitegeneralanddo

notdependonC(A;F)beinghomogeneousornot. ThetensorC

AB;D

in(3.6),however,isno

longerrestri tedtoitsmixedsymmetri partalonebutnowalso ontainsatotallysymmetri

part. Therefore, it an be de omposed into its totally symmetri part C (s) AB;D and a part of mixed symmetryC (m) AB;D ,i.e. C AB;D = C (s) AB;D +C (m) AB;D : (3.57)

The generalized Chern-Simons termis still onlyproportional to the mixed symmetri part.

The totallysymmetri partis to beexa tly an elledby theanomaly as(3.56) shows. Note

that(3.54) anonlybe onsistentwith(3.55)ifthetotallysymmetri partofC

AB;D ,C (s) AB;D = C (AB;D)

is related to thequantum anomaly (we willdis uss thisin greater detailin se tion

5.2).

We see that the onstraint (3.7) an be relaxed to allow for nonhomogeneous forms

C(A;F). As a onsequen e, the four-dimensional a tion(3.28) is no longer gauge invariant

be ausethegeneralizedChern-Simonstermisstillonlyproportionaltothemixedsymmetri

part of thetensor C

AB;D

. The left overvariationproportionalto C

(AB;D)

may be an elled

(36)

aretheappropriateformsne essaryinappli ationsto anomaloustheoriesinorder to absorb

the anomaly. The ohomologi al reason is that the nonhomogeneous forms introdu e the

ve-dimensional Chern-Simonsform Q

5

into the ohomologi al dis ussion, whi h in turn is

relatedtotheanomalyinfourdimensionsbytheStora-Zuminodes entequation(3.55).

Con-sequently,thegaugevariationof(3.28) doesno longervanish,butisgiven bythenegative of

thegauge anomaly,i.e.

Æ  L PQ +L GCS  = A(;A): (3.58)

Thisresult goesbeyond thework of [34℄ andallows fornonhomogeneous forms.

At the end of this se tion, let us dis uss again the example of a gauge group with the

stru tureAbeliansemisimple. We setallo -diagonalelementsofthegaugekineti fun tion

to zero, i.e. f

ax

= 0. The onstraints (3.40) to (3.44) do not hange for nonhomogeneous

forms(althoughtheydonotimply losureanymore),butarenowvalidforthefull oeÆ ient

C AB;D =C (s) AB;D +C (m) AB;D

. Nevertheless,theimpli ationsdrawnfrom(3.40)to(3.44) arestill

validand, onsequently,theonlynontrivialpartofa ve-dimensionalnonhomogeneousform

C(A;F) isdetermined byC xy;a ,i.e. C xy;a 6=0. De omposingC xy;a ,we obtain C (s) xy;a =C (s) ax;y = 1 3 C xy;a ; (3.59) C (m) xy;a = 2 3 C xy;a ; (3.60) C (m) ax;y = 1 3 C xy;a : (3.61)

Thus, we see that the generalized Chern-Simons term in the mixed se tor is still given by

(3.49). However, there are new ontributions due to the totally symmetri tensors C (s)

xy;a

and C (s)

ax;y

whi h ause nontrivial gauge variations of L

PQ +L

GCS

. Can ellation of these

remaining ontributions an only be a hieved with thehelp of mixed gauge anomalies, but

we will dis uss this example in more detail in se tion 5.4, where we will expli itly larify

therelationof thesymmetri oeÆ ientsC (s)

tothequantumanomalyand showhowmixed

(37)

In theearly 1960s, Gell-Mann and Ne'eman,proposeda way to arrangethe known hadrons

into a uni edframework and, inthis way, brought some order into a whole zoo of parti les

that had beenfounduntilthen [63℄. The su ess of their model is based on a globalSU(3)

symmetry whi h puts parti les of the same spininto SU(3)-multiplets. This model aused

a lotof enthusiasm, ande orts weremade to uniteparti les ofdi erent spinaswell. Inthe

non-relativisti regime this ould be a hieved by an SU(6) model, whi h made predi tions

that were quite well approximated by experimental data [64{ 66℄. Unfortunately, further

attemptsto onstru ttherelativisti versionsofsu hmodels,inwhi htheinternalsymmetry

group is nontrivially entangled with the Poin are group to form a so- alled Master group,

failed. Allthese e orts to reate aMastergroup didnotsu eedbe ausethe Mastergroups

alwayshad nonphysi alproperties su h asanin nitenumberofparti les inea h irredu ible

representation or ontinuous mass spe tra. After Coleman and Mandula proved a no-go

theorem, that stated that every nontrivial union of the Poin are group with an internal

symmetry group within the framework of ordinary Lie algebras would yield an essentially

trivialS-matrix[67℄, all these e ortsseemed to be leadingnowhere.

In1971,anewsymmetrywasfoundfromtheNeveu-S hwarz-Ramondsuperstring[68{ 72℄

that Wess and Zumino extended to quantum eld theories in four dimensions [73℄. 13

As a

novel feature, some of the generators of the symmetry algebra satisfy anti ommuting

rela-tions instead of ommutation relations. This, however, evaded theColeman-Mandula

theo-rem be ause the assumptions made in its proof onsidered only symmetry generators with

ommutationrelations. Thisnewsymmetry, alledsupersymmetry,doesnotonlyrepresenta

mathemati aloddity,butprovidedthegroundsfornontriviallyentanglingthePoin aregroup

withinternalsymmetry groups. To date, there is no dire t experimentalhint for

supersym-metry beingrealized innature butit hasmanypropertiesthat justify furtherinvestigation.

It is for example the onlyknown symmetry, that an prote t fundamental s alars, su h as

theHiggs eld,fromobtaininghugeradiative orre tions up to veryhigh energys ales(this

13

Unknownto Wess and Zumino at that time, this symmetry had already appeared in a pairof papers

publishedinthe SovietUnion. In1971, Gol'fand and Likhtmanhad extended the algebraof the Poin are

grouptoasuperalgebraandhadeven onstru tedsupersymmetri eldtheoriesinfourdimensions[74℄. The

(38)

is the so- alled \hierar hy problem") where more fundamental theories like grand unifying

theoriesorsuperstringtheory ouldsupersedethestandardmodel.

Another feature of supersymmetry is the improved renormalization evolution of the three

gauge oupling onstants of the standard model. These oupling onstants do not exa tly

meet ata ommonenergys aleifweusetherenormalizationgroupequationsobtainedfrom

thestandardmodel. Withtheaddition ofsupersymmetry,gauge ouplinguni ation anbe

a hieved in onsisten ywithphenomenologi al onstraints.

There is extensive observational eviden e for an additional omponent of the matter

den-sity in the universe that goes under the name dark matter. Dark matter parti les must

be ele tri ally neutral,otherwise they would s atter light and, thus, be dire tly observable.

Thelightestof theadditionalhypotheti alparti lesfoundinsupersymmetri models( alled

\lightest supersymmetri parti le") is apossible andidatefordark matter.

Inse tion4.1weintrodu eglobalN =1supersymmetryanddis ussbrie y

supersymme-try in thegauge se tor. We willsee that a nontrivialgaugekineti fun tionindu es several

newintera tionsinthegaugese tor. Forfuturereferen ewequotethesupersymmetri gauge

se torand thene essary supersymmetrytransformations.

In se tion4.2we brie ymotivateN =1 supergravityandwepresent thegaugese torof

N =1supergravitytogetherwiththe supergravitytransformations.

4.1 Global Supersymmetry

Supersymmetryisa symmetryrelatingbosons and fermionsand, therefore,we an make an

ansatz forin nitesimalsupersymmetrytransformationswithparameter"to behave roughly

as

Æf = "b; (4.1)

Æb = "f : (4.2)

Thesetransformationlawsareonlys hemati andbosonsarerepresentedbyb,whilef stands

for fermions. Although, equations (4.1) and (4.2) are of a rather symboli nature, we an

already drawseveral important on lusions fromthem. The rst is,that thetransformation

(39)

be ausethelefthandsideof(4.1),andthereforealsotherighthandside,hastobefermioni ,

i.e. anti ommuting. The parameter" arriesspin 1

2

insupersymmetry[75℄.

In natural units (~ = = 1) the a tion be omes dimensionless and the dimension of

massand length areinverse to one another. The derivative operatorhasthen positivemass

dimension(inverselength),i.e. [



℄=1. FromtheDira a tionforthefermionandthe

Klein-Gordona tionforthes alar wetherefore obtainthe anoni al massdimensionforfermioni

and bosoni elds in four spa etime dimensions: [f℄ = 3

2

and [b℄ = 1. The transformation

lawforbosons (4.2) wouldthenlead usto ["℄= 1

2

,whi hwouldbein onsistent with(4.1).

The simplest way to obtain an algebra linear in the elementary elds without introdu ing

new dimensionfulparametersis to assume

Æf = 

"



b; (4.3)

whi htogetherwith(4.2)is onsistentwith["℄= 1

2

. Thus,already fordimensionalreasons,

transformation laws for a symmetry relating fermionsand bosons must have theform (4.1)

and (4.3), and the derivative in (4.3) an be understood as the mismat h in derivatives

betweentheDira and theKlein-Gordonequation. The lastimpli ationofthis on ernsthe

ommutator of two transformations,whi hwe an expe tto have theform

[Æ(" 1 );Æ(" 2 )℄b / (" 2  " 1 )  b (4.4)

forbosonsandequivalentlyforfermions. The ommutatoroftwosupersymmetry

transforma-tions ausesatranslationinspa etimeandthisresultisfoundinanygloballysupersymmetri

model.

Nowlet us onstru ta globallysupersymmetri modelwithgauge elds, asthisplaysan

important role in se tion 5. The Abelian ase is onvenient to begin with, and it leads to

resultsthatare straightforwardlygeneralized to thenonabelian ase.

Supersymmetry relates fermions and bosons, and, onsequently, the gauge elds ome

together with fermioni partners, so- alled gaugini 14

. A rst ansatz for a supersymmetri

gaugekineti a tionis

L gk = 1 4 F  F  1 2       (4.5) 14

Thegauginiareparti lesofspin 1

2 .

(40)

wherewein orporatedthegaugino,,bymeansofakineti term. Notationsand onventions

aresummarizedinappendixB. The rsttermrepresentstheusualMaxwellLagrangian. Let

usde nethetransformation laws of the eldsina ordan ewith (4.1) and (4.3) by

Æ =   "  A  = 1 2   "F  (4.6) Æ   = 1 2  "  F  (4.7) ÆA  = 1 2  "  : (4.8) Here,   := 1 4 [  ; 

℄ are the generators of SO(1,3) in the spinor representation. The

transformation behaviour ofthe eld strength an be reado from (4.24) to be

ÆF  = "  [  ℄ : (4.9)

Usingthis,the variationof theMaxwelltermin(4.5) is theneasilywritten down

Æ( 1 4 F  F  ) = 1 2 F   "    : (4.10)

The variationof these ond termof (4.5) isa little bit more involved, and relations su h as

(B.4) and (B.5) are onvenient for the relevant omputations. The variation of the se ond

termof (4.5) isfoundto be Æ( 1 2      ) = 1 2 F   "     i 8 "  F   " 5    : (4.11)

Altogether, thevariationof(4.5) gives

ÆL gk = i 8 "  F   " 5    : (4.12)

Observe, that (4.12) a tually vanishes,be ause after a partialintegration the variation

be- omesproportionalto"    F 

whi hisidenti allyzerodueto theBian hi-identity. Thus,

we haveproventhat(4.5) isinvariantunderthetransformations(4.6)and (4.8). Wearenot

nished yet be ause ounting the degrees of freedom, we nd for the fermion 4 degrees of

freedom,whiletheve tor eldonlyprovides3degreesoffreedomo -shell. On-shell,however,

thenumberofdegreesoffreedomforthegauginois2,justasfortheve tor eld. Soon-shell

thedegreesoffreedomareequalforfermionsandbosons. Tobalan ethedegreesoffreedom,

we introdu eanother real s alar eld D 15

that hasalgebrai equations of motionand, thus,

15

(41)

an be eliminated on-shell. The additional termin theLagrangian ontaining theauxiliary eld is 1 2 D 2

. Thisauxiliary eld hasto transforminto thegaugino, and the transformation

law forthefermionhasto beextended byaterm ontaining D. Note, thatD isa real eld.

The Lagrangian 16 L gk = 1 4 F  F  1 2      + 1 2 D 2 (4.13)

isindeedinvariant underthe variations

Æ = 1 2   "F  + i 2 5 "D (4.14) ÆD = i 2  " 5     (4.15)

and (4.8) be ause theextravariationof theDira a tionproportionalto Dpre isely an els

against thevariationof theauxiliaryLagrangian.

The a tion (4.5) an be generalized by means of a gauge kineti fun tion f(z). The

gauge kineti fun tiondependson a set of s alar elds and if then again supersymmetry is

demanded, the superpartners of these s alars must be taken into a ount, too. So let there

be s alar elds z i

and their orrespondingsuperpartners i

. In omplete analogy, one nds

thatthe Lagrangian

L matter = X i    z i   z i +2 i L     i F i F i  (4.16)

whi h onsistsof omplexs alar eldsz i

andtheir orrespondingfermioni superpartners i

.

The matterLagrangian is invariantunder thefollowingsupersymmetrytransformations

Æz i = " L  i L ; (4.17) Æ i L = 1 2  " R   z i + 1 2 F i " L : (4.18) ÆF i = " R     i L : (4.19)

We used the hiral proje tions  i L = 1 2 (1+ 5 ) i and " R = 1 2 (1 5 )". The supermultiplet

ontainingthiss alarand thisfermionisa ompaniedbya omplexauxiliary eld,F i

,that

16

TheLagrangian(4.13) anbeobtainedbysuperspa emethods,too.Superspa eisintrodu edinappendix

(42)

balan es the o -shell degrees of freedom. It is important to note that, a ording to (4.17)

and the hainrule, thegaugekineti fun tionwilltransformunder supersymmetry,i.e.,

Æf(z) = 

i f(z)" 

i

: (4.20)

Observethatthegaugekineti fun tionisimpli itlyspa etimedependentthroughits

depen-den eons alar elds. Atseveralstepsthatledto(4.11) weusedapartialintegration,whi h

in presen e of a nontrivial gauge kineti fun tion will produ e new terms in (4.12)

propor-tional to   f(z) = i f(z)  z i where  i ==z i

. Observe thatespe iallythe term(4.12) will

not vanish anymore, but will ontribute with i 8 "    Ref(z)" 5  F  to the

supersym-metry variation. In addition to these ontributions, one has to take Æ[Ref(z)℄F

 F



into

a ount, whi h has to be an elled, too. Adding ounterterms that an el these variations

and taking the variations of the ounterterms into a ount, one is led indu tivelyto an

in-variant Lagrangian after a nite number of steps. 17

The omputation is standard and will

not be repeated here but instead let us give the nal result as given in, e.g., [76,77℄. The

supersymmetri Lagrangian ontainingn

V ve tormultiplets(F A ; A ;D A ),A=1:::n V ,and

a nontrivialgauge kineti fun tionf

AB isgiven by L gk = 1 4 Ref(z) AB F A  F B 1 2 Ref(z) AB   A  D   B + 1 2 Ref(z) AB D A D B + + 1 8 Imf(z) AB "  F A  F B  + i 4 (D  Imf(z) AB )   A 5   B + +  i 2  i f(z) AB   i L  A L D B 1 2  i f(z) AB F A    i L    B L 1 4 F i  i f(z) AB   A L  B L + 1 4   i L  j L  i  j f(z) AB   A L  B L +h. .  (4.21)

wherewede ned the ovariant derivatives

D  Imf AB =   Imf AB 2A C  f C(A D f B)D ; (4.22) D   A =    A A B   C f BC A : (4.23)

The Lagrangian (4.21) is invariant under the supersymmetry transformations of the gauge

17

Notethatthesuper eldformalismasintrodu edintheappendixCleadsalsoto theresultthatwill be

Referenzen

ÄHNLICHE DOKUMENTE

Search the online catalogue of a library from the eBooks on Demand (EOD) network and or- der the book as an eBook from all over the world – 24 hours a day, 7 days a week. The

Search the online catalogue of a library from the eBooks on Demand (EOD) network and or- der the book as an eBook from all over the world – 24 hours a day, 7 days a week.. The

Thus, we may conclude that CS gravity does not allow for static and axisymmetric solutions, apart from flat space, the Schwarzschild solution and two additional (un-

• This talk: What does the Weyl symmetry give rise to at the

This is be- cause the Ricci scalar R contains second derivatives of the metric, so variation of the action produces boundary terms involving the variation of both the metric and

“Chemistry of the Chern-Simons Supergrav- ity term: reduction to BPS kink, oxidation to M-theory and thermodynamical

In chapter 3, after constructing a good simplicial model for the relative K- theory, we construct the relative Chern character and compare it with the Deligne-Beilinson Chern

Motivated by this progress, we consider deriving the ABL model from a 4D Chern-Simons (CS) theory with a meromorphic one-form with four double poles and six simple zeros.. We