• Keine Ergebnisse gefunden

A Systems Approach to Eutrophication Management with Application to Lake Balaton

N/A
N/A
Protected

Academic year: 2022

Aktie "A Systems Approach to Eutrophication Management with Application to Lake Balaton"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT F O R QUOTATION WITHOUT P E R M I S S I O N O F THE AUTHOR

A SYSTEMS APPROACH T O E U T R O P H I C A T I O N MANAGEMENT

WITH A P P L I C A T I O N T O LAKE BALATON

L . S o m l y o d y

S e p t e m b e r 1 9 8 2 W P - 8 2 - 7 9

W o r k i n g P a p e r s a r e i n t e r i m r e p o r t s o n w o r k of t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s a n d have r e c e i v e d o n l y l i m i t e d r e v i e w . V i e w s o r o p i n i o n s e x p r e s s e d h e r e i n do n o t n e c e s s a r i l y r e p r e - s e n t t h o s e of t h e I n s t i t u t e o r of i t s N a t i o n a l M e m b e r O r g a n i z a t i o n s .

I N T E R N A T I O N A L I N S T I T U T E FOR A P P L I E D SYSTEMS A N A L Y S I S

A - 2 3 6 1 L a x e n b u r g , A u s t r i a

(2)

PREFACE

One of t h e main r e s e a r c h e f f o r t s o f t h e R e s o u r c e and E n v i r o n - ment Area o f IIASA d u r i n g t h e p a s t few y e a r s was t h e Lake B a l a t o n E u t r o p h i c a t i o n S t u d y , u n d e r t a k e n i n c o o p e r a t i o n w i t h t h e Hungarian Academy of S c i e n c e s and o t h e r Hungarian i n s t i t u t i o n s . The s t u d y was i n i t i a t e d b e c a u s e o f t h e r e c o g n i t i o n t h a t o u r u n d e r s t a n d i n g on e u t r o p h i c a t i o n w a s m u c h l e s s s a t i s f a c t o r y f o r s h a l l o w l a k e s t h a n f o r d e e p l a k e s . Lake B a l a t o n was s e l e c t e d f o r s e v e r a l r e a - s o n s , o n e o f them b e i n g t h e pronounced economic i n t e r e s t i n s o l v - i n g t h e r e a l - l i f e p r o b l e m s o f t h e l a k e and t h e s u r r o u n d i n g r e g i o n . The s t u d y c o v e r e d v a r i o u s s c i e n t i f i c i s s u e s ( c o u p l e d b i o c h e m i c a l - h y d r o p h y s i c a l m o d e l i n g o f a l a k e , s e d i m e n t - w a t e r i n t e r a c t i o n , t h e d e r i v a t i o n o f n u t r i e n t l o a d s , u n c e r t a i n t i e s and s t o c h a s t i c i n f l u - e n c e s , e t c . ) on one s i d e , and t h e management o f t h e l a k e ' s w a t e r q u a l i t y - - a much more n a c r o s c o p i c i s s u e - - o n t h e o t h e r .

T h i s p a p e r o f f e r s a swtunary, a l b e i t b r i e f , o f t h e e n t i r e e f f o r t , r e f l e c t i n g a s t a g e s h o r t l y b e f o r e t h e c l o s e o f t h e s t u d y . More d e t a i l e d r e s u l t s on t h e a p p l i c a t i o n o f t h e w a t e r q u a l i t y manage- ment model w i l l b e s e t o u t i n t h e f o r t h c o m i n g book on E u t r o p h i c a - t i o n Management f o r L a k e - r e g i o n S y s t e m s , and t h e p r o c e e d i n g s o f t h e c o n f e r e n c e on t h e E u t r o p h i c a t i o n o f S h a l l o w Lakes: N o d e l i n g , M o n i t o r i n g and Managenent (The Lake B a l a t o n Case S t u d y ) , 29 August t o 3 S e p t e m b e r , 1982, Veszprem, Hungary, b o t h L > u b l i c a t i o n s t o a p p e a r i n f a l l 1983.

~ A s z l 6 somly6dy L e a d e r

B a l a t o n Case S t u d y

(3)

A SYSTEMS APPROACH TO EUTROPHICATION MANAGEMENT WITH APPLICATION TO LAKE BALATON"

LAszlb Somlybdy 3

Abstract.--The problem o f t h e l a k e - r e g i o n system s t u d - i e d is c h a r a c t e r i z e d by complexity, u n c e r t a i n t y , and by t h e need t o i n c o r p o r a t e d i f f e r e n t l e v e l s o f a n a l y s i s such a s s c i e n t i f i c u n d e r s t a n d i n g and p o l i c y making. The a p p r o a c h a d o p t e d i s based o n d e c o m p o s i t i o n and a g g r e g a t i o n . D e t a i l e d s t u d i e s were made o n s u b p r o c e s s e s (sediment-water i n t e r a c - t i o n , b i o c h e m i c a l and h y d r o p h y s i c a l phenomena, n u t r i e n t l o a d s , e t c . ) . The e s s e n t i a l f e a t u r e s o f t h e s e p r o c e s s e s were p r e s e r v e d a t t h e l e v e l of w a t e r q u a l i t y management and

i n c o r p o r a t e d i n a n o p t i m i z a t i o n model a c c o u n t i n g f o r uncer- t a i n t i e s .

INTRODUCTION

The a r t i f i c i a l e u t r o p h i c a t i o n of l a k e s and r e s e r - v o i r s is recognized worldwide a s a s e r i o u s problem; i t encompasses b o t h t h e physico-chemical changes o f w a t e r q u a l i t y and t h e economic and s o c i a l p r o c e s s e s t h a t un- d e r l i e t h e s e changes. E x c e s s i v e a l g a l blooms, provoked by augmented n u t r i e n t l o a d s of a g r i c u l t u r a l , m u n i c i p a l , and i n d u s t r i a l o r i g i n , r e d u c e t h e r e c r e a t i o n a l poten- t i a l o f t h e w a t e r b o d i e s and h a v e s e r i o u s a d v e r s e e f - f e c t s o n t h e i r s u i t a b i l i t y a s s o u r c e s o f d r i n k i n g w a t e r . Furthermore, e u t r o p h i c a t i o n e n t a i l s u n d e s i r e d changes i n t h e ecology o f t h e system, making i t g e n e r a l l y l e s s s t a b l e and more v u l n e r a b l e .

To c o n t r o l e u t r o p h i c a t i o n i s n o t a n e a s y t a s k . Although i n most c a s e s a s o l u t i o n would i n c l u d e r e - d u c i n g n u t r i e n t l o a d s i n one form o r another--in i t s e l f a d i f f i c u l t t a s k - v a r i o u s u n c e r t a i n t i e s i n e v i t a b l y e x i s t r e g a r d i n g t h e e x t e n t o f t h e r e d u c t i o n s r e q u i r e d t o a c h i e v e d e s i r a b l e improvements i n t h e l a k e ' s w a t e r q u a l - i t y . Thus, t h e e f f e c t i v e n e s s o f a l t e r n a t i v e s o l u t i o n s measured by t h e i r r e s p o n s e s i n t h e l a k e (and consequent- l y w i t h r e s p e c t t o i t s d e s i r e d f u n c t i o n s ) c a l l s f o r t h e e x p l i c i t t r e a t m e n t of t h e p r o b l e m - r e l a t e d u n c e r t a i n t i e s ( r a n g i n g from d a t a u n c e r t a i n t y t o u n c e r t a i n t y due t o a l i m i t e d u n d e r s t a n d i n g of t h e p r o c e s s e s i n v o l v e d ) .

Thus, u s i n g a systems appmach t o a n a l y z e and e v a l - u a t e a l t e r n a t i v e m g e m e n t s t m t e g i e s o f f e r s p a r t i c u l a r a d v a n t a g e s . I n f a c t , t h i s i s perhaps t h e o n l y way t o perform a n i n t e g r a t e d s t u d y encompassing t h e l a k e , t h e r e g i o n , and t h e r e l a t e d p h y s i c a l . b i o l o g i c a l , c h e m i c a l , economic, and s o c i a l p r o c e s s e s . T h i s approach s t r u c - t u r e s i n f o r m a t i o n i n a f o r m a t a p p r o p r i a t e f o r b o t h t h e research phase and t h e s u b s e q u e n t phase o f policy i n r plementatwn. A t t h e c o r e o f t h e approach, m d e l s p l a y a n i m p o r t a n t r o l e and a r e e f f e c t i v e t o o l s . Model re- s u l t s c a n be f e d back t o f i e l d workers t o f o c u s t h e i r a t t e n t i o n on a r e a s where o u r knowledge of t h e r e a l world i s s t i l l i n s u f f i c i e n t . Model r e s u l t s a l s o e n a b l e managers t o v i s u a l i z e t h e e f f e c t s o f p o s s i b l e manage- ment o p t i o n s .

The n a j o r f e a t u r e o f man-caused e u t r o p h i c a t i o n i s t h a t , a l t h o u g h t h e consequences a p p e a r w i t h i n t h e l a k e , t h e cause-the g r a d u a l i n c r e a s e of n u t r i e n t s ( v a r i o u s phosphorous and n i t r o g e n compounds) r e a c h i n g t h e lake-- l i e s i n t h e r e g i o n . Consequently, e u t r o p h i c a t i o n man- agement r e q u i r e s a n a l y s i s o f t h e complex i n t e r a c t i o n s between the water body v u l n e r a b l e t o e u t r o p h i c a t i o n and

i t s surrounding region. I n t h e l a k e , d i f f e r e n t b i o l o g - i c a l , chemical and h y d r o p h y s i c a l p r o c e s s e s a r e impor- t a n t , w h i l e i n t h e r e g i o n t h e r e a r e human a c t i v i t i e s g e n e r a t i n g n u t r i e n t r e s i d u a l s t h a t a r e u l t i m a t e l y wash- ed t o t h e l a k e s and r e s e r v o i r s .

The r e l a t i o n o f c a u s e and e f f e c t of e u t r o p h i c a t i o n i s s i m i l a r b o t h f o r deep and s h a l l o w l a k e s . S t i l l t h e u n d e r s t a n d i n g of p r o c e s s e s i n s h a l l o w l a k e s i s much

-

lpaper presented a t the Third International Con- l e s s s a t i s f a c t o r y t h a n f o r deep l a k e s . I n c o n t r a s t t o f e r e n c e o n State-of-the-Art i n E c o l o g i c a l Modelling. deep l a k e s , t h e r e l a t i v e l y f a s t and i r r e g u l a r dynamics Colorado S t a t e U n i v e r s i t y . May 24-28, 1982. i n f l u e n c e d by t h e n e a r l y complete a b s e n c e of tempera-

,,

t u r e s t r a t i f i c a t i o n , and c l i m a t i c and h y d r o l o g i c f a c -

% i s s t u d y was i n i t i a t e d by IIASA's Resources and t o r s b e i n g s t r o n g l y s t o c h a s t i c i n n a t u r e s h o u l d b e men- Environment Area and c a r r i e d o u t i n c o o p e r a t i o n w i t h t i o n e d . Because t h e l a k e i s s h a l l o w , wind-induced s e d i - t h e Hungarian Academy o f S c i e n c e s and o t h e r Hungarian m e n t l w a t e r i n t e r a c t i o n and s p a t i a l mass exchange p l a y i n s t i t u t i o n s . i m p o r t a n t r o l e s . The l i g h t c o n d i t i o n s i n t h e w a t e r

3Dr. L. Somly6dy ( o n leave f r o m the Research Cen- f l u c t u a t e a g r e a t d e a l more, owing t o changes i n t h e ter f o r

water

Resources Development (VITUKI), Budapest, c o n c e n t r a t i o n o f suspended s o l i d s - As a s p e c i a l i s s u e . Hungary) is a t present leader of the Balaton Case Study t h e gap between h y d r o p h y s i c a l and e c o l o g i c a l modeling o f t h e Besources and Environment Area a t t h e I n t e r n a - s h o u l d a l s o b e n o t e d , t h e r e a s o n b e i n g t h a t b i o l o g i c a l , t i o n a l I n s t i t u t e f o r Applied Sys terns A n a l y s i s , Laxen- c h e m i c a l , and p h y s i c a l p r o c e s s e s of q u i t e d i f f e r e n t

burg, A u s t r i a . time and s p a t i a l s c a l e s a r e i n v o l v e d .

(4)

To a n a l y z e a l l t h e s e i s s u e s , Lake Balaton, t h e l a r g e s t l a k e i n C e n t r a l Europe, was s e l e c t e d a s t h e sub- j e c t of a c a s e s t u d y . T h i s l a k e i s t h e most important r e c r e a t i o n a l a r e a i n Hungary and has e x h i b i t e d t h e un- f a v o r a b l e s i g n s of a r t i f i c i a l e u t r o p h i c a t i o n . There i s n o t only a s c i e n t i f i c , b u t a l s o a s t r o n g economic i n t e r e s t i n t h e s t u d y (roughly 40% of t h e income from tourism i n Hungary stems from t h e Balaton r e g i o n ) . T h i s paper gives a sumnary of t h e s t u d y , which is now n e a r i n g completion. For f u r t h e r d e t a i l s on t h e c a s e s t u d y , t h e r e a d e r i s r e f e r r e d t o van S t r a t e n e t a 1

.,

1979. van S t r a t e n and Somlybdy 1980. Somlybdy 1981a.

and Somlyddy and van S t r a t e n , forthcoming.

MAJOR CHARACTERISTICS OF THE SYSTEM

The l a k e and i t s watershed a r e i l l u s t r a t e d i n f i g - u r e 1. The l e n g t h of t h e l a k e i s 78 km, t h e average width around 8 km ( s u r f a c e a r e a n e a r l y 600 km2) and

t h e average depth 3.1 m. The major inflow of t h e l a k e is t h e River Zala a t t h e southwestern end of t h e l a k e which d r a i n s h a l f of t h e t o t a l catchment a r e a (- 5800 km2). There i s a s i n g l e outflow a t t h e o t h e r end of t h e l a k e , Sidfok, through a c o n t r o l g a t e . The mean r e s i d e n c e time of water is about 2 y e a r s .

The f l u c t u a t i o n i n t h e w a t e r ' s temperatufe is h i g h . There i s a r e l a t i v e l y long ice-covered period

(around two months), w h i l e t h e temperature i n s m e r may exceed 25O C. Concerning t h e chemical composition of t h e w a t e r , t h e high calcium c a r b o n a t e c o n t e n t and pH v a l u e (8.3 t o 8.7) should be mentioned. Wind a c t i o n i s important r e s u l t i n g i n f a v o r a b l e oxygen c o n d i t i o n s and a permanent back and f o r t h motion ( s e i c h e ) along t h e l a k e and a complicated c i r c u l a t i o n p a t t e r n . Wind s t r o n g l y i n f l u e n c e s s e d i m e n t a t i o n and r e s u s p e n s i o n of t h e sediment ( i t s o r g a n i c m a t e r i a l c o n t e n t is low) which i s a s s o c i a t e d w i t h an e f f e c t i v e adsorption-desorp-

t i o n p r o c e s s . The y e a r l y n e t d e s o r p t i o n a s i n t e r n a l load has t h e same o r d e r of magnitude a s t h e e x t e r n a l one ( s e e Gelencskr e t a l . , 1982).

I n r e c e n t y e a r s , remarkable changes have been ob- served i n t h e water q u a l i t y due t o t h e r a p i d i n c r e a s e i n tourism, sewage d i s c h a r g e s , f e r t i l i z e r use, and oth- e r f a c t o r s . The a l g a l biomass ( a l g a e is t h e most i n r p o r t a n t primary producer i n t h i s c a s e ) i n c r e a s e d by a

' i g u r e 1.-Major c h a r a c t e r i s t i c s of t h e system K

-

Keszthely. T

-

Tihany. S

-

S i d f o k I . . . I V t y p i c a l b a s i n s of t h e l a k e

- . -

boundary of t h e catchment

=== boundary of t h e r e c r e a t i o n a l a r e a sewage d i s c h a r g e s i n t h e r e g i o n

f a c t o r of 10 when compared y i t h t h e p a s t 15-20 y e a r s . The t r e n d i n primary production i s s i m i l a r and a t the most p o l l u t e d western b a s i n , peaks of up t o 13.6gc/m2d were observed, a h y p e r t r o p h i c v a l u e (Herodek and Tamds.

1975). I n s h o r t . t h e average l a k e c o n d i t i o n s moved from mesotrophic t o e u t r o p h i c , thus endangering t h e use of t h e l a k e f o r r e c r e a t i o n a l purposes, t h e prime water u s e i n t h i s c a s e .

Phosphorus p l a y s a dominant r o l e i n the e u t r o p h i - c a t i o n of the l a k e . Thus. both f r o m t h e p o i n t of view of understanding and managing t h e system, t r a c i n g t h e phosphorus compounds i n t h e l a k e and on t h e watershed is of primary i n t e r e s t . The t o t a l phos horus load of

S

t h e l a k e i s around 1000 kgld (0.52 mgfm d i n a lake- wide average) ( J o l l n k a i and Somlyddy, 1981). h a l f of which is estimated t o be a v a i l a b l e f o r a l g a l uptake.

The load has many components: 33% i s derived from sew- age. 27% from d i f f u s e s o u r c e s . 22% is r e l a t e d t o run- o f f p r o c e s s e s i n t h e d i r e c t v i c i n i t y of t h e l a k e , while

t h e c o n t r i b u t i o n of atmospheric p o l l u t i o n i s 18%. The r a t i o of s w a g e d i s c h a r g e s i n t h e a v a i l a b l e load i s h i g h e r ; o n l y t h e sewage r e l e a s e d i n t h e r e c r e a t i o n a l a r e a ( f i g u r e 1 ) a c c o u n t s f o r 36% of t h e a v a i l a b l e l o a d . This d i r e c t load v a r i e s q u i t e a l o t i n time, f o l l o w i n g

t h e f l u c t u a t i o n s i n p o p u l a t i o n due t o tourism, and h a s a 2-4 times h i g h e r v a l u e i n suarmer than d u r i n g t h e o f f - s e a s o n . The load d i s t r i b u t i o n along t h e l a k e i s approx- i m a t e l y uniform ( t h e t r i b u t a r y l o a d is higher f o r t h e Western end of t h e l a k e , w h i l e t h e sewage load is q u i t e t h e o p p o s i t e ) ; however, t h e volume r e l a t e d v a l u e i s twelve times h i g h e r a t t h e Keszthely Bay ( f i g . 1) t h a n a t t h e o t h e r end of t h e l a k e , due t o d i f f e r e n c e s i n t h e volume of t h e f o u r main b a s i n s . T h i s f a c t i s a l s o r e f l e c t e d i n t h e pronounced l o n g i t u d i n a l g r a d i e n t of v a r i o u s water q u a l i t y parameters, e.g.. f o r Chloro- phyll-a t h e r a t i o of t h e maximum and minimum v a l u e s ranges between 4 and 20 (van S t r a t e n e t a l . . 1979).

The g r a d i e n t observed a t t h e same time i n d i c a t e s t h a t t h e s t r o n g wind a c t i o n and t h e mixing a s s o c i a t e d w i t h i t a r e s t i l l n o t s u f f i c i e n t f o r l e v e l i n g o u t t h e spa- t i a l n o n u n i f o r m i t i e s

.

From a n a n a l y s i s of t h e d a t a i t i s c l e a r t h a t t h e r e is n o t o n l y a c r i t i c a l s t a t e of t h e water q u a l i t y a t Keszthely Bay, b u t a l s o a s p r e a d i n g d e t e r i o r a t i o n process which extends towards o t h e r a r e a s of t h e l a k e where t h e water q u a l i t y i s s t i l l good. Thus a c t i o n is u r g e n t l y r e q u i r e d from t h e view of t h e e n t i r e l a k e .

Based on h y d r o l o g i c and water q u a l i t y considera- t i o n s , t h e l a k e was d i v i d e d i n t o f o u r b a s i n s , a s i n d i - c a t e d i n f i g u r e 1. The a p p l i c a t i o n of t h e p r i n c i p l e of segmentation proved t o b e a u s e f u l t o o l f o r modeling.

d a t a c o l l e c t i o n , and d a t a handling.

Concerning d a t a , e x t e n s i v e r e c o r d s a r e a v a i l a b l e on hydrology and meteorology. Regular w a t e r q u a l i t y monitoring s t a r t e d t e n y e a r s ago, i n two network sys-

tems c o n s i s t i n g of 9 and 16 s p a t i a l sampling p o i n t s . r e s p e c t i v e l y (10-20 measurements per y e a r ) , b u t i r r e g u - l a r d a t a a r e a l s o a v a i l a b l e d a t i n g back t o t h e e a r l y s i x t i e s . S e v e r a l o t h e r i n s i t u and l a b o r a t o r y measure- ments were a l s o taken (primary production, e x t i n c t i o n , sediment-water i n t e r a c t i o n , v e l o c i t y . e t c .)

.

A survey was done on t h e n u t r i e n t load between 1975-1979, which

involved 20 t r i b u t a r i e s and 27 sevage d i s c h a r g e p o i n t s (JolAnkai and Somlyddy. 1981) ( i n d i c a t e d i n f i g . 1 ) . On t h e major t r i b u t a r y , d a i l y o b s e r v a t i o n s were made d u r i n g t h i s p e r i o d .

(5)

THE APPROACH

As mentioned i n S e c t i o n 1 t h e s t u d y s h o u l d c o v e r s e v e r a l i n t e r r e l a t e d b u t s t i l l q u i t e d i v e r s e i s s u e s and p r o c e s s e s s u c h a s s c i e n t i f i c u n d e r s t a n d i n g and p o l i c y making, t h e l a k e and i t s r e g i o n , w a t e r s h e d p r o c e s s e s , b i o c h e m i s t r y , hydrodynamics, e t c . Thus t h e d i l e a m a i s which approach c a n b e used f o r t h e r e s e a r c h and w i t h i n

t h i s , f o r modeling. Two e x t r e m e s a r e a s f o l l o w s : ( i ) t o b a s e i t o n i n t u i t i o n and t o d r a s t i c a l l y

s i m p l i f y t h e problem a p r i o r i ;

( i i ) t o e s t a b l i s h o n e l a r g e , d e t a i l e d model which a c c o u n t s f o r a l l t h e s u b p r o c e s s e s and t h e d i f - f e r e n t l e v e l s ( u n d e r s t a n d i n g and management)

.

As t h e f i r s t a p p r o a c h i s n o t a c c e p t a b l e and t h e second is u n r e a l i s t i c , a d i f f e r e n t approach was worked o u t which i s based on t h e i d e a o f d e c o m p o e i t i o n and a g g r e g a t i o n (Somlyddy. 1 9 8 1 a ) .

The a p p r o a c h b e g i n s by decomposing t h e s y s t e m i n t o s m a l l e r , t r a c t a b l e u n i t s f o r m i n g a h i e r a r c h y o f i s s u e s s u b j e c t t o s t u d y . One c a n make d e t a i l e d i n v e s t i g a t i o n s o f each o f t h e s e i s s u e s , u s i n g i n s i t u and l a b o r a t o r y o b s e r v a t i o n s , models and o t h e r a v a i l a b l e i n f o r m a t i o n . T h i s s t e p is f o l l o w e d by a g g r e g a t i o n , t h e aim o f which

i s t o p r e s e r v e and i n t e g r a t e o n l y t h e i s s u e s t h a t a r e e s s e n t i a l f o r t h e h i g h e r s t r a t a o f t h e h i e r a r c h y ( a t t h e u p p e r m s t l e v e l , u l t i m a t e l y f o r a n s w e r i n g q u e s t i o n s o f management), r u l i n g o u t t h e u n n e c e s s a r y d e t a i l s . Prom a s t r u c t u r a l v i e v p o i n t , t h i s i s a n off-line ap- proach, which a l l o w s a p p l i c a t i o n o f d i f f e r e n t t e c h n i q u e s and p r i n c i p l e s a t v a r i o u s l e v e l s a s d e s i r e d , a c c o u n t s f o r u n c e r t a i n t i e s , and l e a d s t o a r e a l i s t i c , y e t s i m p l e . model a t t h e h i g h e s t l e v e l of t h e h i e r a r c h y , where e v a l - u a t i n g management a l t e r n a t i v e s is t h e o b j e c t i v e .

I t is n o t e d t h a t i n e c o l o g i c a l modeling. t h e r e i s a c e r t a i n gap between " l a r g e r " models and " s m a l l e r " mod- e l s ( s e e Beck. 1 9 8 2 ) . I n t h e f i r s t c a s e t h e r e is n e a r l y no hope f o r a p r e c i s e c a l i b r a t i o n , b u t " s m a l l e r " models c a n a l s o b e j u s t a s u n r e a l i s t i c f o r complex problems b e c a u s e of t h e i r s i m p l i c i t y . The a p p r o a c h o u t l i n e d o f - f e r s a r e a s o n a b l e a l t e r n a t i v e f o r s u c h c a s e s .

The a p p l i c a t i o n o f t h i s a p p r o a c h f o r t h e Lake Bala- t o n problem i s e x p l a i n e d w i t h t h e h e l p of f i g u r e 2.

The f i r s t d e c o m p o s i t i o n t h a t d i r e c t l y comes t o mind is t h e d i s t i n c t i o n between l a k e and w a t e r s h e d , s i n c e , a s

F i g u r e 2.-The method o f d e c o m p o s i t i o n : h i e r a r c h y of models

(1) submodels f o r u n i f o r m segments ( d o t t e d a r e a s ) (2) c o u p l i n g o f t h e submodels

.

mentioned b e f o r e , t h e w a t e r q u a l i t y problem l i e s i n t h e l a k e , b u t t h e c a u s e s , and p r a c t i c a l l y 211 c o n t r o l pos- s i b i l i t i e s , a r e t o b e found i n t h e w a t e r s h e d .

The p r o c e d u r e , i n v o l v i n g f i v e s t r a t a , w i l l b e d i s - c u s s e d i n g r e a t e r d e t a i l f o r t h e Lake E u t r o p h i c a t i o n Model (LEM), w i t h r e f e r e n c e t o t h e models which h a v e b e e n e l a b o r a t e d . The p a r a l l e l s i n t h e N u t r i e n t Loading Model (NLM) c a n b e s e e n i n f i g u r e 2.

S t r a t u m 5

F i r s t , t h o s e segments o f t h e l a k e s h o u l d b e i s o l a t - ed which can b e c o n s i d e r e d a p p r o x i m a t e l y u n i f o r m from t h e v i e w p o i n t of w a t e r q u a l i t y ( c o m p l e t e mixing i n s i d e each u n i t ) and from t h e f a c t o r s i n f l u e n c i n g them. The o b j e c t i v e o f t h e m o d e l s o n t h i s s t r a t u m i s t o d e s c r i b e t h e a l g a l dynamics and n u t r i e n t c y c l i n g f o r a l l t h e seg- ments, i n v o l v i n g b o t h t h e w a t e r body and t h e s e d i m e n t . s i n c e t h e l a t t e r i s a s i n k and s o u r c e of v a r i o u s mate- r i a l s and t h e i r i n t e r a c t i o n p l a y s a n i m p o r t a n t r o l e i n s h a l l o w l a k e s . These k i n d s o f models b a s e d o n t h e mass c o n s e r v a t i o n p r i n c i p l e and f o r m u l a t e d t h r o u g h a s e t o f n o n l i n e a r o r d i n a r y d i f f e r e n t i a l e q u a t i o n s (ODES) a r e well-known i n t h e l i t e r a t u r e ( S c a v i a and Robertson.

1 9 7 9 ) . I n t h e frame o f t h e p r e s e n t s t u d y . t h r e e sub- models. BPI. BALSECT, and SPlBAL w e r e developed (Hero- d e k e t a l . , 1980; L e o m v . 1980; and v a n S t r a t e n . 1980).

w i t h r e s p e c t t o t h e i r comparison ( v a n S t r a t e n and Somly- ddy. 19801 which d i f f e r s b a s i c a l l y i n t h e number o f s t a t e v a r i a b l e s (between 4 and 7) and e s s e n t i a l para- m e t e r s (10-17). a s w e l l a s i n t h e m a t h e m a t i c a l formula- t i o n o f v a r i o u s p r o c e s s e s and i n t h e p a r a m e t e r e s t i m a - t i o n t e c h n i q u e a d o p t e d . I t is n o t e d h e r e t h a t some o f t h e p a r a m e t e r s c a n b e d e r i v e d from f u r t h e r i s o l a t i o n up t o a lower l e v e l w i t h a p p r o p r i a t e l y d e s i g n e d e x p e r i - ments. As examples, t h e e s t i m a t i o n o f a l g a l growth p a r a m e t e r s from v e r t i c a l p r i m a r y p r o d u c t i o n measure- ments ( v a n S t r a t e n and Herodek. 1981) and t h e s t u d y o f wind induced sediment-water i n t e r a c t i o n ( s e e t h e sec- t i o n o n wind induced s e d i m e n t w a t e r i n t e r a c t i o n ) may b e mentioned

.

S t r a t u m 4

On t h e n e x t l e v e l t h e s e g m e n t - o r i e n t e d b i o c h e m i c a l and sediment models a r e c o u p l e d by i n v o l v i n g mass in- and o u t f l o w s a t t h e b o u n d a r i e s of t h e u n i t s . F o r t h i s p u r p o s e , a h y d r o d y n a m i c - t r a n s p o r t model c a n b e u s e d . I n l i g h t o f t h e e x p e r i e n c e s g a i n e d from t h e s t u d y of t h e G r e a t Lakes (Boyce e t a l . . 1979). i t was d e c i d e d m t t o u s e a c o u p l e d m u l t i - d i m e n s i o n a l hydrodynamic- t r a n s p o r t model i n c o r p o r a t i n g t h e submodels o f t h e . 1 0 ~ e r s t r a t u m : t h e g a i n i n i n f o r m a t i o n is n o t p r o p o r t i o n - a l t o t h e i n c r e a s e i n c o m p l e x i t y . Here a g a i n , a n o f f - l i n e t e c h n i q u e is a p p l i e d . The b a s i c a s s u m p t i o n i s t h a t it is s u f f i c i e n t t o s u b d i v i d e t h e l a k e i n a l o n g i - t u d i n a l d i r e c t i o n o n l y . T h i s i s s u p p o r t e d by t h e r i v e r - i n e s h a p e of t h e l a k e and t h e presumably e x t e n s i v e t r a n s v e r s a l mixing. s i n c e t h e p r e v a i l i n g wind d i r e c t i o n i s n e a r l y p e r p e n d i c u l a r t o t h e l a k e ' s a x i s ( t h e d e s c r i p - t i o n of t h e s h o r e l i n e e f f e c t s is n o t t h e o b j e c t i v e h e r e ) . C o n s e q u e n t l y , t h e p a r a l l e l development o f a n u n s t e a d y three-. two-, and one-dimensional hydrodynamic model was d e c i d e d o n (Shanahan e t a l . , 1981; Shanahan, 1981; Somlyddy. 1982; Somlyddy and V i r t a n e n . 1 9 8 2 ) . The f i r s t two c a n b e used t o d e r i v e c o n v e c t i o n and t h e l o n g i t u d i n a l d i s p e r s i o n c o e f f i c i e n t ( e i t h e r d i r e c t l y o r i n d i r e c t l y a s a n " e m p i r i c a l " f u n c t i o n of t h e major wind p a r a m e t e r s ) , w h i l e t h e 1-D model c o u l d d e s c r i b e convec- t i o n o n l y ( i t s a d v a n t a g e l i e s i n i t s s i m p l i c i t y and s h o r t e x e c u t i o n t i m e o n t h e c o m p u t e r ) . S u b s e q u e n t l y , t h e s u b m d e l s of s t r a t u m 5 w i l l b e i n c o r p o r a t e d i n a

(6)

s t r a i g h t f o r w a r d way i n t o a s e t of l o n g i t u d i n a l d i s p e r - s i o n equations on s t r a t u m 4 .

A t t h i s l e v e l , t h e 1-D model was aggregated from t h e 3-D v e r s i o n . A f u r t h e r a g g r e g a t i o n can be a r r i v e d a t through t h e u s e of t h e coupled dispersion-biochemical m d e l ( s e e t h e s e c t i o n on a p p l i c a t i o n of hydrodynamic models). O r i g i n a l l y , i n a l l t h r e e biochemical m d e l s ( s e e "Major C h a r a c t e r i s t i c s of t h e System") f o u r seg- ments ( s r mixed r e a c t o r s , s e e f i g . 1 ) a r e assumed; t h e i r c o u p l i n g is based on hydrologic throughflow and a wind i n f l u e n c e d mass exchange process d e s c r i b e d g l o b a l l y . S i n c e t h e model s t r u c t u r e based on ODES has many advan- t a g e s , one of t h e o b j e c t i v e s of t h e s t u d y on t h e 1-D coupled model is whether t h e f o u r b a s i n s concept can be maintained o r n o t .

Stratum 3

The involvement of mass exchange among segments a s d e s c r i b e d b e f o r e w i l l r e s u l t i n t h e Lake E u t r o p h i c a t i o n Model (LPI) ( f i g . 2) which has s e v e r a l f o r c i n g f u n c t i o n s . such a s s o l a r r a d i a t i o n , w a t e r temperature, wind, e t c . ,

( n a t u r a l o r u n c o n t r o l l a b l e f a c t o r s ) and t h e n u t r i e n t l o a d . S i n c e t h e l a t t e r is the only f a c t o r which can be c o n t r o l l e d , i t plays a d i s t i n g u i s h e d r o l e . A thorough d a t a c o l l e c t i o n and t h e d e r i v a t i o n of a n u t r i e n t bal- ance f o r t h e whole l a k e gave a s o l i d background ( f o r d e t a i l s s e e J o l d n k a i and Somlyddy, 1981). The main c o n c l u s i o n s have been sumsarized i n '!Major C h a r a c t e r i s - t i c s of t h e System". Because of t h e high c o n t r i b u t i o n of t h e sewage Load and t h e i n s u f f i c i e n t amount of water- shed d a t a o n l y l i m i t e d e f f o r t was expended on non-point s o u r c e modeling ( ~ o g d r d i and Duckstein, 1979). Rather, t h e a n a l y s i s of h i s t o r i c a l r i v e r load d a t a was pre- f e r r e d , which then s a t i s f a c t o r i l y r e s u l t e d i n u n c e r t a i n - t i e s i n t h e load ( s e e t h e s e c t i o n on n u t r i e n t l o a d un- d e r u n c e r t a i n t y and s t o c h a s t i c i t y ) due t o t h e stochas- t i c c h a r a c t e r of t h e h y d r o l o g i c regime and d a t a s c a r c i - t y . The r e s e a r c h a l s o allowed t h e d e r i v a t i o n of t h e temporal and s p a t i a l p a t t e r n of t h e load components, both f o r LEM and t h e Water Q u a l i t y Management Model

(WQMM) on Stratum 2.

Stratum 2

The o b j e c t i v e of WQMM i s t o g e n e r a t e a l t e r n a t i v e management o p t i o n s and s t r a t e g i e s ( t h e e f f e c t of t h e s e being expressed through NLM which should be used h e r e

i n a planning m d e ) and t o s e l e c t from among t h e s e a l - t e r n a t i v e s , on t h e b a s i s of one o r m r e o b j e c t i v e s . Both w a t e r q u a l i t y and c o s t s can b e used a s o b j e c t i v e f u n c t i o n s o r c o n s t r a i n t s , and q u i t e o f t e n t h e i r weight- ing i s r e q u i r e d . Frequently t h e load c a n r e p l a c e t h e l a k e ' s w a t e r q u a l i t y i n t h e o p t i m i z a t i o n , i n which c a s e LEM i s used merely t o check t h e r e a c t i o n of t h e l a k e and WQKM may have a s i m p l e r s t r u c t u r e . Admittedly h o w e v e r , t h e i n c l u s i o n of water q u a l i t y is = r e obvious because of t h e n a t u r e of t h e problem. This f o r m u l a t i o n however l e a d s t o t h e dilemma: how should a complex mod- e l be i n c o r p o r a t e d i n t o t h e o p t i m i z a t i o n framework?

A t t h i s s t e p a g g r e g a t i o n i s a l s o needed. T h i s s t a r t s w i t h t h e s e l e c t i o n of c e r t a i n w a t e r q u a l i t y in- d i c a t o r s c h a r a c t e r i z i n g t h e l a r g e s c a l e and long-term behavior of t h e system s e r v i n g a s a b a s i s f o r d e c i s i o n making. D i f f e r e n t parameters ( y e a r l y peak, d i f f e r e n t averages, d u r a t i o n of c r i t i c a l c o n c e n t r a t i o n s , frequen- cy d i s t r i b u t i o n s , e t c . ) of t y p i c a l v a t e r q u a l i t y com- ponents (primary production, a l g a l biomass, Chloro- phyll-a, e t c . ) can be employed a s i n d i c a t o r s . S u b s e q u e n t l y t h e dynamic model LEM can be used i n t e r m of

i n d i c a t o r s e s t a b l i s h e d , I , under reduced l o a d i n g con- d i t i o n s o r i n another way under s e v e r a l l o a d i n g s c t n a r - i o s . L . S i n c e t h e d e f i n i t i o n of i n d i c a t o r s i n t r o d u c e s temporal a v e r a g i n g , i t i s expected t h a t t h e l a k e ' s re- sponse w i l l be l e s s complex compared t o t h e dynamic s i m u l a t i o n and a simple, d i r e c t I ( L ) type r e l a t i o n s h i p can be found f o r t h e new e q u i l i b r i u m . I f such a solu- t i o n has a l r e a d y been a t t a i n e d , LEM could be r e p l a c e d by 1(L) i n WQm; an e s s e n t i a l a g g r e g a t i o n ( s e e t h e sec- t i o n on t h e w a t e r q u a l i t y management model).

Among t h e management a l t e r n a t i v e s , o n l y t h e two most important o p t i o n s a r e mentioned here: ( i ) t e r t i a r y t r e a t m e n t ( p o i n t s o u r c e l o a d r e d u c t i o n ) , ( i i ) e s t a b l i s h - ing r e s e r v o i r s ( c o n s i s t i n g of two segments s e r v i n g f o r t h e removal of both p a r t i c u l a t e and d i s s o l v e d n u t r i e n t forms, r e s p e c t i v e l y (van S t r a t e n e t a 1

.,

1979) a t t h e mouth of r i v e r s which a r e t h e r e c i p i e n t s of p o i n t and non-point s o u r c e p o l l u t a n t s . The o p t i m i z a t i o n should t h e n be based on t h e trade-off between t h e tvo b a s i c a l t e r n a t i v e s , with r e s p e c t t o t h e i r l o c a t i o n s and t h e s p a t i a l v a r i a t i o n of t h e l a k e ' s w a t e r q u a l i t y .

S t r a t u m 1

For t h e sake of completeness i t has t o be mention- ed t h a t WQMM could be thought of a s being a p a r t of a r e g i o n a l development p o l i c y model forming the top of t h e pyramid, a f i e l d which i s beyond t h e scope of t h i s s t u d y .

ILLUSTRATION OF THE DIFFERENT STEPS OF THE APPROACH Wind Induced Sediment Water I n t e r a c t i o n (Stratum 5 )

For s t u d y i n g t h e sediment-water i n t e r a c t i o n i n l a k e s , s e v e r a l approaches a r e p o s s i b l e (Sheng and Lick.

1979). I n t h i s s t u d y , y e t a n o t h e r method was chosen (Somlyddy, 19801, i n r e c o g n i t i o n t h a t when eutrophica- t i o n i s c o n s i d e r e d , more than j u s t t h e p h y s i c a l pro- c e s s e s should be examined. Daily measurements were taken f o r 6 months, a t t h e mid-point of t h e Szemes ba- s i n (Basin 2, f i g . 1 ) . The measurements included S e c c h i depth, temperature, suspended s o l i d s (SS), Chloro- phyll-a, and phosphorus f r a c t i o n s a t d i f f e r e n t v e r t i c a l l o c a t i o n s . Wind v e l o c i t y and d i r e c t i o n were recorded c o n t i n u o u s l y , from which hourly averages were c a l c u l a t e d . The o b j e c t i v e of t h e f i r s t p a r t of t h e a n a l y s i s was t o d e s c r i b e t h e dynamics of t h e suspended s o l i d s a s a func- t i o n of wind. T h i s then allowed f o r a c h a r a c t e r i z a t i o n of t h e temporal changes i n t h e l i g h t c o n d i t i o n s , t h e d e p o s i t i o n , and r e s u s p e n s i o n of p a r t i c u l a t e m a t e r i a l and t h e a s s o c i a t e d s o r p t i o n phenomenon. Here t h e be- h a v i o r of SS w i l l be d i s c u s s e d .

The a n a l y s i s s t a r t e d from a s i m p l i f i e d t r a n s p o r t e q u a t i o n f o r d e s c r i b i n g t h e temporal and v e r t i c a l changes of t h e average SS c o n c e n t r a t i o n f o r t h e b a s i n , n e g l e c t i n g inflow and outflow (Somlyddy, 1980).

Afterward t h e e q u a t i o n was i n t e g r a t e d a l o n g t h e depth l e a d i n g t o a n o r d i n a r y d i f f e r e n t i a l e q u a t i o n in- c o r p o r a t i n g the unknovn f l u e s of deposition, Qd, and resuspenswn, Qe, on t h e r i g h t hand s i d e . The objec-

t i v e is t o e s t i m a t e these f l u x e s from the o b s e r v a t i o n s . I n o r d e r t o do t h i s , hypotheses were made based on t h e l i t e r a t u r e : Qd i s p r o p o r t i o n a l t o t h e depth i n t e g r a t e d SS c o n c e n t r a t i o n

,

w h i l e Qe t o some power of t h e wind speed, Wn ( f o r d e t a i l s . s e e Somlyddy. 1980 and 1981b).

This procedure l e d t o t h e e q u a t i o n f o r SS c o n c e n t r a t i o n

(7)

h e r e K1 and K 2 comprise t h e unknovn c o e f f i c i e n t s , de- r i v e d from t h e hypotheses. Consequently, t h e s t r u c t u r e of t h e model should be i d e n t i f i e d and t h e parameter val- ues K 1 , K2, and n, e s t i m a t e d from measurements. The f e a s i b i l i t y of Equation ( 1 ) can be a p p r e c i a t e d from f i g u r e 3a. vhich c l e a r l y shovs t h e i n f l u e n c e of vind v e l o c i t y on t h e c o n c e n t r a t i o n .

F i r s t a non-recursive d e t e r m i n i s t i c e s t i m a t i o n technique v a s adopted t o d e r i v e t h e unknovn c o e f f i c i e n t s v h i c h r e s u l t e d i n r e a l i s t i c v a l u e s , b u t v i t h o u t proving

t h e c o r r e c t n e s s of t h e hypotheses ( a p o s t e r i o r i model s t r u c t u r e i d e n t i f i c a t i o n . s e e Beck. 1982).

For t h i s purpose, a s a second s t e p , t h e Extended Kalman F i l t e r ( E m ) method vas a p p l i e d (Beck and Somly- ddy, 1982). For t h e pover n a v a l u e near t o 1 vas de- r i v e d v h i c h corresponded t o the small Richardson number

(Somlyddy, 1981b). Subsequently n v a s f i x e d t o 1 s i n c e i n t h i s c a s e t h e p h y s i c a l i n t e r p r e t a t i o n of t h e r e s u l t s i s more obvious. The r e c u r s i v e e s t i m a t i o n s t a r t e d from t h e e s t i m a t e s of t h e d e t e r m i n i s t i c technique. The re- s u l t s a r e i l l u s t r a t e d i n f i g u r e 3a. A s is apparent.

the agreement between o b s e r v a t i o n s and model c a l c u l a - t i o n is reasonably good. and the parameters become ap- proximately c o n s t a n t a f t e r t h e f i r s t 40-50 days ( f i g . 3 b ) , proving t h a t t h e w d e l s t r u c t u r e is adequate and t h e d a t a do n o t c o n t a i n more information t h a n d e s c r i b e d by t h e model. Some s l i g h t parameter changes can be ob- s e r v e d a t t h e end of t h e p e r i o d ; t h i s may be caused.

e.g.. by t h e e x c l u s i o n of i n f l o r o u t f l o v p r o c e s s e s ( o r by o t h e r phenomena such a s a l g a l blooms). T h i s s u g g e s t s t h a t t h e i s o l a t i o n of subprocesses is g e n e r a l l y n o t c o p p l e t e . From t h e a n a l y s i s , a r e a l i s t i c o r d e r of magni- tudes follows f o r a l l t h e e s s e n t i a l p h y s i c a l q u a n t i t i e s ; i n t h i s connection s e e Somlyddy, 1981b.

A s can be observed i n f i g u r e 3, f o r one w n t h i n t h e middle of t h e t o t a l p e r i o d , no measurements v e r e a v a i l a b l e . so t h e model v a s used f o r p r e d i c t i o n . The a p p r o p r i a t e n e s s of t h e model is a l s o i l l u s t r a t e d by t h e f a c t t h a t a f t e r g e t t i n g nev d a t a , t h e parameter v a l u e s d i d n o t change. T h i s second period s e r v e d f o r v a l i d a - t i o n , f o l l o w i n g t h e i d e n t i f i c a t i o n and c a l i b r a t i o n pro- cedure.

The advantage of t h e simple i n t e r a c t i o n model a r - r i v e d a t i s t h a t i t can be e a s i l y i n c o r p o r a t e d i n t o t h e modeling approach ( f i g . 2). f o r ( i ) c h a r a c t e r i z i n g transparency c o n d i t i o n s i n t h e water and ( i i ) f o r de- s c r i b i n g t h e r e l e a s e of t h e sediment l a y e r a s t h e in- t e r n a l P s o u r c e . A s v a s shovn i n t h e r e p o r t by Gelenc- s & r e t a l , (1982) t h e d e s o r p t i o n of resuspended p a r t i - c l e s i s t h e primary cause of t h e sediment phosphorus

F i g u r e 3a .--1dentif i c a t i o n and parameter e s t i m a t i o n of a model f o r wind induced sediment-water i n t e r a c t i o n f o r Lake Balaton: r e c u r s i v e e s t i m a t e of t h e sus- pended s o l i d s c o n c e n t r a t i o n ; W

-

d a i l y average wind speed, c

-

suspended s o l i d s c o n c e n t r a t i o n .

* -

o b s e r v a t i o n s .

Figure 3b .-Recursive parameter e s t i m a t e s f o r t h e s e d i - ment-vater i n t e r a c t i o n model.

r e l e a s e ( d i f f u s i o n and convection of pore v a t e r c o n t r i - b u t e t o a l e s s e r e x t e n t ) ; thus, vind-induced i n t e r a c -

t i o n i s r e a l l y of importance.

A p p l i c a t i o n of Hydrodynamic Models (Stratum 4) The r e s u l t s gained from t h e t r a n s i e n t 3-D, 2-0 ( h o r i z o n t a l ) . and 1-D models (Shanahan e t a l . , 1981;

Somlyddy and Virtanen. 1982; and Somlyddy. 1982) shoved t h a t t h e models could be e q u a l l y c a l i b r a t e d a g a i n s t t h e dynamic water l e v e l d a t a . For a n example of t h e a p p l i - c a t i o n of t h e 1-D model, s e e f i g u r e 4. The model was a l r e a d y used i n t h e v a l i d a t i o n phase. The storm v a s c h a r a c t e r i z e d by a l o n g - l a s t i n g l o n g i t u d i n a l wind f o l - lowed by s m a l l e r shocks from d i f f e r e n t d i r e c t i o n s ( f i g . 4 a ) . The agreement between measured and simulated wa- t e r l e v e l s a t t h e tvo ends of t h e l a k e is e x c e l l e n t ( f i g . 4 b ) . The d i s c h a r g e a t t h e Tihany p e n i n s u l a shovs a s t r i k i n g o s c i l l a t i o n between -2000 and 3000 m3/s ( f i g . 4c) a s s o c i a t e d w i t h t h e s e i c h e phenomenon. T h i s back and f o r t h motion is higher by two o r d e r s of magnitude t h a n t h e h y d r o l o g i c t h r o u g h f l o v .

A s mentioned p r e v i o u s l y , t h e 1-D model alone does n o t g i v e s a t i s f a c t o r y i n f o r m a t i o n f o r a v a t e r q u a l i t y s t u d y a s i t s e r v e s t h e l o n g i t u d i n a l convection term o n l y , b u t n o t d i s p e r s i o n . S t i l l t h i s model ver- s i o n , t h e s i m p l e s t , is extremely u s e f u l . Two examples d i s c u s s e d subsequently i l l u s t r a t e t h i s statement:

( i ) To f i n d a more s a t i s f a c t o r y agreement between model s i m u l a t i o n and o b s e r v a t i o n t h a n t h a t given i n f i g u r e 4 i s o f t e n impossible. The r e a s o n i s q u i t e s i r p l e : a small e r r o r i n t h e vind d i r e c t i o n may cause a d r a s t i c change i n t h e vind f o r c e , i f t h e d i r e c t i o n i s f a r from t h e l o n g i t u d i n a l one. I n f a c t , t h e r e a r e many kinds of u n c e r t a i n t i e s i n t h e vind d i r e c t i o n , such a s random f l u c t u a t i o n ( t u r b u l e n c e ) , the i n f l u e n c e of h i l l s on t h e n o r t h e r n s i d e of the l a k e , which cause nonuni- f o r m i t i e s i n t h e vind f i e l d , measurement e r r o r s , e t c . F i g u r e 5 i l l u s t r a t e s t h e c a s e ( t r a n s v e r s a l vind condi-

t i o n s ) . A d e t e r m i n i s t i c s i m u l a t i o n d i d n o t prove ac- c e p t a b l e . Bearing i n mind t h e p o s s i b l e r o l e of uncer- t a i n t i e s , a random component v a s subsequently added to t h e wind d i r e c t i o n (Gaussian d i s t r i b u t i o n , zero mean,

(8)

f o r a two-dimensional model, Somlyddy 1982)

.

F i g u r e 4.-Simulation of a h i s t o r i c a l event: l o n g i t r r d i n a l wind c o n d i t i o n s . ( a ) wind r e c o r d (Muszka- l a y , 1979), W speed, ALFA a n g l e (North s o O ) ; (b) comparison of s i m u l a t e d and observed water l e v e l s (T

-

0 corresponds t o 16/11/1966, 8 a.m.).

Dots i n d i c a t e measurements (Muszkalay, 1979);

(c) computed streamflow r a t e a t Tihany.

Figure 5.-The i n f l u e n c e of wind d a t a u n c e r t a i n t y on t h e d i s c h a r g e a t t h e Tihany p e n i n s u l a (T = 0 cor- responds to 8/7/1963. 8 a.m.);

d i s c h a r g e d e r i v e d from measurements (Muszkalay, 1979).

17' s t a n d a r d d e v i a t i o n : a modest v a l u e ) and a Monte Carlo simulation was performed ( f o r d e t a i l s , s e e Somly- ddy, 1982). F i g u r e 5, which smnuarizes t h e r e s u l t s of 100 r u n s , does not r e q u i r e d e t a i l e d d i s c u s s i o n : i t s t r e s s e s t h e eztreme s a s t i v i t y to input data uncer- t a i n t y (compared t o t h i s , t h e parameter s e n s i t i v i t y is n e g l i g i b l e ) and i l l u s t r a t e s how d i f f i c u l t i t i s t o v a l i - d a t e a d e t e r m i n i s t i c model ( t h e s t i u a t i o n is s i m i l a r

( i i ) A t a given l o c a t i o n i n t h e l a k e t h e i n t e n - s i v e back and f o r t h motion causes an o s c i l l a t i o n of v a r i o u s c o n s t i t u e n t s w i t h i n a day, which a l s o s t r o n g l y depends on t h e l o n g i t u d i n a l g r a d i e n t . T h i s may r e s u l t i n q u i t e a l a r g e e r r o r i n t h e c o n c e n t r a t i o n determined through i n s t a n t a n e o u s sampling. For such a s h o r t time s c a l e a s a . d a y , b i o l o g i c a l r e a c t i o n s can be n e g l e c t e d and t h e c o n c e n t r a t i o n f l u c t u a t i o n can be analysed through a coupled 1-D hydrodynamic-transport model as- suming c o n s e r v a t i v e meter i a l

.

Through t h i s model a n u n c e r t a i n t y range of h i s t o r i c a l o b s e r v a t i o n s can be s p e c i f i e d . S i m u l a t i o n s showed t h a t f o r t h i s p a r t i c u l a r l a k e t h e sampling s t r a t e g y f o r Basin I1 ( f i g . 1 ) is of major importance; t h e e r r o r range of a s i n g l e sample a t a f i x e d l o c a t i o n can r e a c h f30%, depending on t h e a c t u a l g r a d i e n t and streamflow p a t t e r n .

The c a l i b r a t i o n of t h e rwo-dimensional hydrodynamic model (Shanahan, 1981) r e s u l t e d i n t h e same wind d r a g c o e f f i c i e n t and bottom f r i c t i o n parameter a s t h e 1-D model v e r s i o n . The s i m u l a t i o n s showed a pronounced c i r - c u l a t i o n p a t t e r n observed a l s o on some s a t e l l i t e photo- graphs and a p h y s i c a l model (GyBrke. 1975)

.

It i s noted t h a t the t r a n s i e n t 3-D model (Shanahan e t a l . . 1981) and a l s o o t h e r s t e a d y s t a t e models t e s t e d . (van S t r a t e n and Somlyddy, 1980) r e f l e c t e d m c h l e s s c i r c u l a t i o n i n t h e l a k e , c l e a r l y showing t h a t o u r understanding o f t h e three-dimensional water notion i n shallow lakes (and w i t h i n t h i s , of t h e v e r t i c a l eddy v i s c o s i t y ) i s far f r o m complete.

I n o r d e r t o couple t h e h o r i z o n t a l l y 2-D hydrodynam- i c model t o a uhosphorus c y c l e model through a s e t of l o n g i t u d i n a l d i s p e r s i o n e q u a t i o n s ( s e e "The Approach"

and "The Lake E u t r o p h i c a t i o n Model (Stratum 3)"), Shana- han (1981) computed t h e d i s p e r s i o n c o e f f i c i e n t ( a s a f u n c t i o n of time and space) from t h e v e l o c i t y f i e l d through extending t h e method of F i s c h e r (1979). D i s - p e r s i o n i s t h e h i g h e s t near t h e two ends of t h e l a k e and a t t h e v i c i n i t y of t h e p e n i n s u l a , due t o s t r o n g changes i n geometry and t h e a s s o c i a t e d secondary cur- r e n t s and g y r e s . The l a r g e d i s p e r s i o n c o e f f i c i e n t (up

to 40 m2/s) is due t o s t r o n g winds. A s a temporal and s p a t i a l average, 1 m2/s was found by Shanahan t o be a p p r o p r i a t e enough f o r water q u a l i t y s i m u l a t i o n s .

The c r o s s s e c t i o n a l l y averaged streamflow ( o r ve- l o c i t y ) f o r t h e 1-D d i s p e r s i o n model was d e r i v e d from t h e 2-D hydrodynamic model a f t e r i n t e g r a t i o n . The same p a t t e r n and magnitudes were a r r i v e d a t a s suggested i n f i g u r e s 4 and 5. The f a s t dynamics l e a d t o a small s e i c h e e x c u r s i o n ( l e s s than 1-2 h). This means t h a t t h e r e is an o s c i l l a t o r y t r a n s l a t i o n of water p a r t i c l e s of a s h o r t time s c a l e , w i t h i n which biochemical reac- t i o n s can be p r a c t i c a l l y n e g l e c t e d and thus t h e concen- t r a t i o n averaged over a s e i c h e type event is unchanged ( s e e item ( i i ) ) . From t h i s f e a t u r e i t follows (Shana- han, 1981) t h a t convection w i t h i t s u n c e r t a i n t i e s ( s e e item ( i ) ) can be neglected and only d i s p e r s i o n and hy- d r o l o g i c throughflow should be accounted f o r i n t h e coupled l a k e e u t r o p h i c a t i o n model ( S e c t i o n 4.4).

The N u t r i e n t Load under U n c e r t a i n t y and S t o c h a s t i c i t y (Stratum 3)

The d e t e r m i n i s t i c load e s t i m a t e and t h e s p a t i a l d i s t r i b u t i o n f o r a s p e c i f i c h i s t o r i c a l y e a r (1975-79) i s d e r i v e d on the b a s i s of t h e d a i l y o b s e r v a t i o n s on t h e Zala R i v e r ' s d r a i n i n g 50% of t h e t o t a l watershed, t h e survey on d a t a f o r o t h e r r i v e r s and sewage treatment p l a n t s , on p i l o t zone s t u d i e s , watershed c h a r a c t e r i s - t i c s , e t c . (JolAnkai and Somlyddy, 1 9 8 1 ) . The temporal

(9)

p a t t e r n i s derived from t h e dynamics of t h e Zala River l o a d , o b s e r v a t i o n s made i n t r e a t m e n t p l a n t s d u r i n g t h e off-season and s m e r p e r i o d , r e s p e c t i v e l y , and popula- t i o n f l u c t u a t i o n r e l a t e d t o tourism. Such a load es- t i m a t e i s a c c e p t a b l e f o r t h e d e s c r i p t i v e use of t h e l a k e model, LEH, but c e r t a i n l y n o t f o r planning purposes.

For management of t h e system, t h e s t o c h a s t i c char- a c t e r of t h e load and o t h e r e x i s t i n g u n c e r t a i n t i e s should be accounted f o r . I n o r d e r t o develop a load scenario generator, f i r s t t h e a l l o w a b l e i n t e g r a t i o n period of t h e load i n p u t was t e s t e d through t h e dynamic l a k e model. The a n a l y s i s showed t h a t monthly averages f o r a l l t h e fozeing ftmctwns can be s a t i s f a c t o r i l y used; an important f i n d i n g , a s i t a l l w s g e n e r a t i o n of t h e load on a monthly b a s i s . T h i s can be r e a s o n a b l y d e r i v e d from t h e d a t a a v a i l a b l e , w h i l e t h e procedure f o r a s h o r t e r time s c a l e m u l d be u n r e a l i s t i c .

With t h i s c o n c l u s i o n , t h e Zala River d a t a were a p r i o r i aggregated t o monthly averages and a simple re- g r e s s i o n a n a l y s i s was done between phosphorus l o a d s

(TP and P04-P) and streamflow r a t e . Acceptable ex- p r e s s i o n s were a r r i v e d a t (of c o u r s e , with e r r o r t e r m s ) . D e r i v i n g t h e s t a t i s t i c s of t h e monthly a v e r a g e s t r e a u r flow from long-term o b s e r v a t i o n s (Baranyi. 1979). t h e load can be c a l c u l a t e d i n a s t o c h a s t i c f a s h i o n . F i g u r e 6 shows t h e c h a r a c t e r i s t i c s of t h e load p a t t e r n f o r 1976-79 (from o b s e r v a t i o n s ) and t h e 90% c o n f i d e n c e lev- e l s d e r i v e d f o r t h e long-term l o a d . For i l l u s t r a t i n g t h e i n f l u e n c e of t h e h y d r o l o g i c regime a n e v e n t of l w p r o b a b i l i t y i n J u l y . 1975, is l i k e w i s e i n d i c a t e d . The s t o c h a s t i c i n f l u e n c e of t h e h y d r o l o g i c regime f o r o t h e r subwatersheds was d e r i v e d from t h e a n a l y s i s o u t l i n e d and a v a i l a b l e d a t a f o r t h e s e catchments. The d a i l y ob- s e r v a t i o n s a t t h e mouth s e c t i o n of t h e Zala River were a l s o used t o s t u d y t h e implication o f infrequent obser- vations t y p i c a l f o r most of t h e t r i b u t a r i e s (one o r two samples per month). Due t o s c a r c i t y of d a t a , t h e con- t r i b u t i o n of f l o o d s t o t h e l o a d a r e p a r t i a l l y unob- s e r v e d . A s t h e " a c c u r a t e load" f o r a c e r t a i n p e r i o d (e.g., long-term monthly o r y e a r l y a v e r a g e s ) f o r t h e Zala River c a n be gained from t h e o r i g i n a l d a t a , i t allows one t o s t u d y t h e e r r o r caused by s c a n t y obser- v a t i o n s . The procedure is a s t r a i g h t f o r w a r d M n t e Carlo type technique which s t a r t s v i t h a random s e l e c -

t i o n on t h e d e t a i l e d d a t a s e t f o l l o w i n g t h e sampling s t r a t e g y of t h e o t h e r t r i b u t a r i e s and c a l c u l a t e s t h e

F i g u r e 6.--Influence of t h e h y d r o l o g i c regime on t h e monthly average load. Zala River: 3

-

average load

(1976-79). 4 and 2

-

minimum and maximum v a l u e s ( o b s e r v e d ) , 5 and 1

-

90% confidence l e v e l s .

load of t h e period i n q u e s t i o n . A f t e r making a s u f f i - c i e n t number o f random s e l e c t i o n s t h e s t a t i s t i c a l para- meters of t h e load can be determined. The r e s u l t s f o r

t h e long-term monthly a v e r a g e load (on t h e b a s i s of a four y e a r long o b s e r v a t i o n p e r i o d ) a r e i l l u s t r a t e d i n f i g u r e 7 . A s can be s e e n from f i g u r e 7, which shows t h e mean and extreme v a l u e s , a s w e l l a s the domain of 2 s t a n d a r d d e v i a t i o n , t h e e r r o r i s q u i t e high and i t s f l u c t u a t i o n f o l l o w s t h e change i n t h e mean v a l u e . On t h e b a s i s of t h i s study. a random component was added t o t h e monthly average load component (Somlyddy and E l o r a n t a . 1982)

.

From f i g u r e 7, t h e q u e s t i o n a u t o m a t i c a l l y a r i s e s : how can t h e u n c e r t a i n t y domain be reduced? I n a d i f - f e r e n t way, what scmrpling strategy should be followed?

This i s s u e was a l s o s t u d i e d . Besides, f i r s t o r d e r a n a l y s i s (Cochran. 1963). d i f f e r e n t sampling s t r a t e g i e s ( r e g u l a r , random, s t r a t i f i e d , e t c .)

,

were r e a l i z e d i n a Monte Carlo type f a s h i o n . Also, v a r i o u s kinds of e s t i m a t e s (simple, r a t i o , e t c . . s e e e.g., Dolan e t a1

..

1981) were t e s t e d i n o r d e r t o reduce b i a s and v a r i a n c e of t h e load e s t i m a t e . Without going i n t o d e t a i l , ( t h e r e a d e r i s r e f e r r e d t o Somlyddy and van S t r a t e n , f o r t h - coming), i t should be noted t h a t , w i t h proper s t r a t i - f i e d sampling ( f e v samples when t h e v a r i a n c e is small-- l o r f l o w conditions-and f r e q u e n t sampling f o r f l o o d s c h a r a c t e r i z e d by l a r g e v a r i a n c e (Cochran. 1965)). t h e t o t a l amount of samples can be reduced t o one f o u r t h o r one f i f t h . An important c o n c l u s i o n of t h e s t u d y is t h a t t h e v a r i a n c e of t h e l o a d can be r e p l a c e d by t h a t of t h e d i s c h a r g e , Q. A s Q is a n e a s i l y measureable q u a n t i t y , a r e a l i s t i c s t r a t i f i e d sampling s t r a t e g y can be vorked o u t i n p r a c t i c e , on t h i s b a s i s .

Returning t o t h e development of t h e load genera- t o r , f o r sevage l o a d , t h e same p a t t e r n i s used as i n t h e d e s c r i p t i v e f a s h i o n , but i n a d d i t i o n , an u n c e r t a i n - t y component i s i n t r o d u c e d , which e x p r e s s e s t h e over- load i n t h e t r e a t m e n t p l a n t s due t o t h e p o p u l a t i o n in- c r e a s e i n t h e main t o u r i e t season.

A s a f i n a l o u t p u t of t h e r e s e a r c h o u t l i n e d i n t h i s s e c t i o n , a l o a d s c e n a r i o g e n e r a t o r was developed f o r t h e v h o l e l a k e , which accounted f o r both u n c e r t a i n t y and s t o c h a s t i c i t y . d i s c u s s e d above. For f u r t h e r de- t a i l s s e e Somlyddy and E l o r a n t a (1982).

It i e noted h e r e t h a t u s i n g h i s t o r i c a l d a t a , a s i m i l a r a n a l y s i s was made on c l i m a t i c ( u n c o n t r o l l a b l e ) f a c t o r s , which allowed t h e water temperature and s o h radiation t o be generated i n harmony w i t h each o t h e r .

i n a random fashion. Thus, f u t u r e s c e n a r i o s can be generated f o r a l l t h e e s s e n t i a l f o r c i n g f u n c t i o n s of t h e l a k e model--an e s s e n t i a l t o o l f o r planning purposes ( s e e "The Lake E u t r o p h i c a t i o n Model (Stratum 3)" and

"Water Q u a l i t y Management Model (Stratum 2)") T P b d

.

lWdl

I . .

* J C Y A Y . I J . S O N O

-

Finure 7.--Monthlv

-

averaRe TP load: u n c e r t a i n t y caused by infrecpen; o b s e r v a t i o n s ( Z a l a River, 1976-79) : 3

-

mean value. 4 and 2

-

f s t a n d a r d d e v i a t i o n . 5 and 1

-

extreme v a l u e s .

(10)

The Lake E u t r o p h i c a t i o n Model ( S t r a t u m 3) R e s u l t s g a i n e d w i t h t h e s i m p l e s t model, SIMBAL ( v a n S t r a t e n . 1980). d e v e l o p e d f o r Lake B a l a t o n . a r e g i v e n below. The model i s a phosphorus c y c l e model.

t h a t i s , a l l t h e s t a t e v a r i a b l e s ( t h e e s s e n t i a l s a r e two a l g a l g r o u p s , d e t r i t u s , and d i s s o l v e d i n o r g a n i c p h o s p h o r u s ) a r e e x p r e s s e d i n t e r m s o f p h o s p h o r u s , f o r t h e f o u r b a s i n s i n d i c a t e d i n F i g u r e 1. A Monte C a r l o s i m u l a t i o n i s i n c o r p o r a t e d i n t o t h e model t o f i n d a r c a s i n p a r a m e t e r s p a c e where t h e model p r o d u c e s r e s u l t s f u l l y w i t h i n s p e c i f i e d b o u n d a r i e s drawn around t h e d a t a t o a c c o u n t f o r d a t a u n c e r t a i n t y and t h u s , i s e a s i l y ap- p l i c a b l e f o r t e s t i n g v a r i o u s h y p o t h e s e s ( v a n S t r a t e n . 1980; F e d r a e t a l . . 1981; H o r n b e r g e r and S p e a r . 1 9 8 0 ) .

Among t h e c a l i b r a t i o n r u n s , r e s u l t s f o r t h e phyto- p l a n k t o n phosphorus, PPP, f o r t h e f o u r b a s i n s , a r e g i v - e n i n f i g u r e 8 ( a s 1977 f o r c i n g s d a t a was u s e d ) t o g e t h - e r w i t h t h e c o r r e s p o n d i n g o b s e r v a t i o n v a r i a b l e , Chloro- p h y l l - a ( b a s i n a v e r a g e v a l u e s ) . It i s p o i n t e d o u t t h a t C h l o r o p h y l l - a and PPP c a n n o t b e d i r e c t l y compared t o e a c h o t h e r ; however, s i n c e a more o r l e s s l i n e a r measure- ment e q u a t i o n i s e x p e c t e d among them, PPP s h o u l d f o l l o w t h e p a t t e r n o f C h l o r o p h y l l - a : a t r e n d which c a n b e gen- e r a l l y o b s e r v e d . F o r i l l u s t r a t i o n , t h e s t a n d a r d d e v i a - t i o n a r o u n d t h e t r a j e c t o r y f o r B a s i n 2 e s t i m a t e d t h r o u g h t h e Monte C a r l o s i m u l a t i o n i s a l s o i n d i c a t e d ( p a r a m e t e r u n c e r t a i n t y ) . F u r t h e r d i s c u s s i o n o n t h e c a l i b r a t i o n and model improvement r e q u i r e d c a n b e found i n v a n S t r a t e n

( 1 9 8 0 ) .

The r e s u l t s p r e s e n t e d h e r e w e r e from t h e f o u r box model ( f i g . 1 and "The Approach"). Whether t h e c o n c e p t o f t h e f o u r box model c a n b e p r e s e r v e d o r n o t , was t e s t - ed t h r o u g h t h e coupled hydrodynamic-dispersion-P c y c l e m d e l ( s e e " A p p l i c a t i o n o f Hydrodynamic Models ( S t r a t u m 4 ) " ) . I n t h e l i n k e d model, t h e p a r a m e t e r v a l u e s of t h e o r i g i n a l model w e r e m a i n t a i n e d . From t h e c o m p a r i s o n o f t h e s i m u l a t i o n r e s u l t s o f t h e " c o n t i n u o u s " and f o u r box model ( s e e Shanahan, 1981 and Shanahan and Harleman i n t h e s e p r o c e e d i n g s ) , we may c o n c l u d e a s f o l l o w s :

( i ) t h e c o u p l e d t r a n s p o r t - w a t e r q u a l i t y model o b v i o u s l y b e t t e r r e f l e c t s t h e s p a t i a l d e t a i l s and l o c a l i n f l u e n c e s ;

( i i ) t h e f o u r box model u n d e r e s t i m a t e s t h e v a r i - o u s phosphorus c o n c e n t r a t i o n s f o r o n e o f t h e b a s i n s . w h i l e t h e b a s i n wide a v e r a g e s a r e s a t i s f a c t o r y f o r t h e r e s t o f t h e l a k e ;

( i i i ) t h e r e t u r n f l o w v e l o c i t y c a n n o t b e u s e d s i n c e t h e f o u r box f o r m u l a t i o n i n t r o d u c e s a p r i o r i a r t i f i c i a l d i s p e r s i o n , which i s h i g h e r t h a n t h e wind i n d u c e d d i s p e r s i o n .

- '-

T 1 4 1 .1 -v -1 1 4 1 w

nm vm

F i g u r e 8.--Results from SIMBAL. Comparison of f i e l d d a t a f o r f o u r b a s i n s ( l e f t ) and a v e r a g e model f o r r u n s s a t i s f y i n g t h e b e h a v i o r d e f i n i t i o n ( r i g h t ) , ( 1 ) .

. .

( 4 ) . B a s i n s 1 . . . 4 . Adopted from v a n S t r a t e n ( 1 9 8 0 ) .

( i v ) t h e four boz model w i t h i t s ODE s t r u c t u r e and a l l t h e a d v a n t a g e s a s s o c i a t e d w i t h t h i s can be rea- sonably maintained for practical purposes and s u b s e q u e n t a n a l y s i s .

For management p u r p o s e s t h e s i m u l a t i o n of h i s t o r i c - a l e v e n t s c a n n o t be u s e d . E i t h e r some c r i t i c a l . unfa- v o r a b l e e n v i r o n m e n t a l c o n d i t i o n s s h o u l d be i n t r o d u c e d o r t h e model s h o u l d b e c o n s i d e r e d s t o c h a s t i c t h r o u g h i n p u t d a t a . Here t h e l a t t e r a p p r o a c h was a d o p t e d and t h e g e n e r a t o r s o u t l i n e d i n t h e p r e v i o u s s e c t i o n c o u p l e d t o t h e l a k e model. Tvo e s s e n t i a l r e s u l t s f o r B a s i n I a r e p r e s e n t e d i n f i g u r e s 9 and 1 0 .

I n t h e f i r s t c a s e , u n c e r t a i n t i e s c a u s e d by natural factors were c o n s i d e r e d and t h e 1977 l o a d was m a i n t a i n e d . The summary o f 100 Monte C a r l o r u n s (mean,

+

s t a n d a r d d e v i a t i o n , and t h e e x t r e m e s o f PPP) s u g g e s t s t h e r e l a - t i v e l y l a r g e s e n s i t i v i t y o f t h e l a k e ' s w a t e r q u a l i t y t o m e t e o r o l o g i c a l f a c t o r s and e x p l a i n s t h e e s s e n t i a l y e a r t o y e a r changes o b s e r v e d i n t h e b e h a v i o r o f t h e l a k e e v e n when t h e l o a d remained u n a f f e c t e d . The s e c o n d c a s e ( f i g . 1 0 ) i n v o l v e d t h e random generation o f both natural and c o n t r o l l a b l e f a c t o r s . While f o r t h e p r e v i - ous example t h e s p e c i f i c 1977 l o a d was a d o p t e d , h e r e t h e mean l o a d of t h e i n p u t g e n e r a t o r was d e r i v e d from d a t a f o r t h e p e r i o d 1975-1979 ("The N u t r i e n t Load u n d e r

F i g u r e 9.--The i n f l u e n c e of m e t e o r o l o g i c f a c t o r s o n t h e w a t e r q u a l i t y . B a s i n 1: 3

-

mean v a l u e , 4 and 2 -

+

s t a n d a r d d e v i a t i o n s , 5 and 1

-

extreme v a l u e s .

F i g u r e 10.--The combined i n f l u e n c e of u n c e r t a i n t y and s t o c h a s t i c i t y i n t h e m e t e o r o l o g y and l o a d i n g , r e - s p e c t i v e l y , o n t h e w a t e r q u a l i t y . B a s i n 1 : 3

-

mean v a l u e . 4 and 2

- +

s t a n d a r d d e v i a t i o n s , 5 and 1

-

e x t r e m e v a l u e s .

Referenzen

ÄHNLICHE DOKUMENTE

According to this conceptual framework and the previous study ( ~ $ v i d , - - et al., 1979), the purpose of this paper is to present a multiregional and multicriteria

LAKE EUTROPHICATION MANAGEMENT OPTIMIZATION MODELING - APPROACHES WITH APPLICATION TO LAKE BALATON.

Then, the results are used in Sections 5 and 6 to point out feasible and efficient operating rules of the double objective management problem.. Finally, Section 7 deals with

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein

Comparison of fieid data for the four basins (left) and average of model simulations for the behavior producing parameter sets (right).. For illustration the estimated

The outlined multiregional and multicriteria dynamic watershed development approach can be considered as an essential element of the decision analysis in the long-range control

Jaquet, 1976). This fact causes differences in modelling of the interaction process. Suggestions for modelling are as follo~is. This method does not give.. an insight concerning

The description and specification of economic acti- vity in each of the three regions was one of the most important aspects of the scenario-writing pcocedure. In analogy to the