• Keine Ergebnisse gefunden

A Min-Max Approach to Reservoir Management

N/A
N/A
Protected

Academic year: 2022

Aktie "A Min-Max Approach to Reservoir Management"

Copied!
43
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

A MIN-MAX APPROACH TO RESERVOIR MANAGEMENT

S . O r l o v s k y S . R i n a l d i

R. S o n c i n i - S e s s a

November 1 9 8 2 CP-82-78

CoZlaborative Papers r e p o r t work w h i c h h a s n o t b e e n p e r f o r m e d s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s a n d w h i c h h a s r e c e i v e d o n l y

l i m i t e d r e v i e w . V i e w s o r o p i n i o n s e x p r e s s e d h e r e i n d o n o t n e c e s s a r i l y r e p r e s e n t t h o s e o f t h e I n s t i t u t e , i t s N a t i o n a l Member O r g a n i z a t i o n s , o r o t h e r o r g a n i - z a t i o n s s u p p o r t i n g t h e w o r k .

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 L a x e n b u r g , A u s t r i a

(2)

THE AUTHORS

SERGE1 ORLOVSKY i s w i t h t h e R e s o u r c e s and E n v i r o n n e n t Area o f t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s , Laxenburg, A u s t r i a ( o n l e a v e from t h e Computing C e n t e r o f t h e USSR Academy o f S c i e n c e s )

.

SERGIO RINALDI and RODOLFO SONCINI-SESSA a r e from t h e C e n t r o T e o r i a d e i S i s t e m i , C N R , P o l i t e c n i c o d i M i l a n o , M i l a n o , I t a l y .

T h i s r e s e a r c h was c a r r i e d o u t a t IIASA when t h e a u t h o r s p a r t i c i p a t e d i n t h e summer s t u d y "Real-Time F o r e c a s t v e r s u s Real-Time Management o f H y d r o s y s t e m s " o r g a n i z e d by t h e R e s o u r c e s a n d Environment Area i n 1 9 8 1 .

(3)

PREFACE

A n a l y s i s c o n c e r n e d w i t h p r o b l e m s of t h e r a t i o n a l u s e o f

n a t u r a l r e s o u r c e s a l m o s t i n v a r i a b l y d e a l s w i t h u n c e r t a i n t i e s w i t h r e g a r d t o t h e f u t u r e b e h a v i o r o f t h e s y s t e m I n q u e s t i o n and w i t h m u l t i p l e o b j e c t i v e s r e f l e c t i n g c o n f l i c t i n g g o a l s o f t h e u s e r s o f t h e r e s o u r c e s . U n c e r t a i n t y means t h a t t h e i n f o r m a t i o n a v a i l a b l e i s n o t s u f f i c i e n t t o unambiguously p r e d i c t t h e f u t u r e o f t h e s y s - t e m , and t h e m u l t i p l i c i t y o f t h e o b j e c t i v e s , o n t h e o t h e r h a n d , c a l l s f o r e s t a b l i s h i n g r a t i o n a l t r a d e - o f f s among them. The r a - t i o n a l i t y o f t h e t r a d e - o f f s i s q u i t e o f t e n of s u b j e c t i v e n a t u r e and c a n n o t b e f o r m a l l y i n c o r p o r a t e d i n t o m a t h e m a t i c a l m o d e l s sup- p o r t i n g t h e a n a l y s i s , and t h e i n f o r m a t i o n w i t h r e g a r d t o t h e f u - t u r e may v a r y w i t h t i m e . Then t h e c h a l l e n g e t o t h e a n a l y s t i s t o e l a b o r a t e a m a t h e m a t i c a l a n d c o m p u t e r implemented s y s t e m t h a t c a n b e u s e d t o p e r f o r m t h e a n a l y s i s r e c o g n i z i n g b o t h t h e a b o v e a s p e c t s o f r e a l w o r l d p r o b l e m s .

T h e s e were t h e i s s u e s a d d r e s s e d d u r i n g t h e summer s t u d y

"Real-Time F o r e c a s t v e r s u s Real-Time Management o f H y d r o s y s t e m s , "

o r g a n i z e d by t h e R e s o u r c e s and Environment Area of IIASA i n 1 9 8 1 . The g e n e r a l l i n e o f r e s e a r c h was t h e e l a b o r a t i o n o f new a p p r o a c h e s t o a n a l y z i n g r e s e r v o i r r e g u l a t i o n p r o b l e m s a n d t o e s t i m a t i n g t h e v a l u e o f t h e i n f o r m a t i o n r e d u c i n g t h e u n c e r t a i n t i e s . Computation- a l l y , t h e r e s e a r c h was b a s e d o n t h e h y d r o s y s t e m o f Lake Como,

N o r t h e r n I t a l y .

T h i s p a p e r d e s c r i b e s t h e a p p l i c a t i o n o f a n i n n o v a t i v e ap- p r o a c h t o p r o b l e m s o f r e s e r v o i r management. T h i s a p p r o a c h , which f o c u s e s on a r i s k - a d v e r s e r e g u l a t i o n o f a h y d r o s y s t e m , t a k e s i n t o a c c o u n t b o t h m a j o r a s p e c t s o f t h i s t y p e o f problem: u n c e r t a i n t y

(4)

w i t h r e g a r d t o i n f l o w s of w a t e r i n t o t h e s y s t e m , and a l s o m u l t i p l e o b j e c t i v e s which a r e f a c e d by t h e manager. The t h e o r e t i c a l b a s i s o f t h e a p p r o a c h h a s been d e s c r i b e d i n a n o t h e r p a p e r o f t h i s s e r i e s of p u b l i c a t i o n s . T h i s p a p e r i s more a p p l i c a t i o n - o r i e n t e d , and c o n t a i n s a l s o c o m p u t a t i o n a l r e s u l t s f o r t h e r e g u l a t i o n problem o f Lake Como i n N o r t h e r n I t a l y .

J a n u s z K i n d l e r Chairman

Resources & Environment Area

-

i v -

(5)

CONTENTS

1. INTRODUCTION

2. PROBLEM STATEMENT 3. DEMAND SATISFACTION 4. FLOOD PROTECTION

5. FEASIBLE SOLUTIONS TO THE TWO OBJECTIVE PROBLEPl 6. EFFICIENT SOLUTIONS

7. THE LINEAR CASE

8. EXAMPLE OF APPLICATION 9. CONCLUDING REMARKS REFERENCES

(6)
(7)

A MIN-MAX APPROACH TO RESERVOIR MANAGEMENT S. Orlovsky, S. Rinaldi, and R. Soncini-Sessa

1 . INTRODUCTION

The problem considered in this paper is the one of real-time management of a multipurpose reservoir. For didactic reasons,

it will be assumed that there are only two management goals, namely satisfaction of the water demand of the downstream users and attenuation of the storage peaks in the reservoir. Since these goals are conflicting and incommensurable, the solution of the problem will be a set of efficient operating rules (see Cohon and Marks 1 9 75)

.

Yany different methods for determining such operating rules have been developed so far. They differ in the formal descrip- tion of the objectives and constraints, in the way they deal with uncertainties, and in the solution algorithms (linear

programming, dynamic programning, discrete dynamic programming, optimal control, etc.). One common feature of these methods is the explicit or implicit use of the notion of probability to

(8)

d e s c r i b e f u t u r e i n f l o w s a n d e v a l u a t e s y s t e m s p e r f o r m a n c e . F o r t h i s r e a s o n , a l l t h e s e m e t h o d s c o u l d b e c o n s i d e r e d a s d i f f e r e n t f o r m a l e ~ p r ~ a s s i o n s o f t h e s t o c h a s t i c a p p r o a c h t o r e s e r v o i r

management

.

Very f r e q u e n t l y , m a n a g e r s r e a c t i n a n u n f a v o r a b l e way t o t h e a b o v e o p t i m i z a t i o n m e t h o d s (see Helweg e t a l . 1 9 8 2 ) . R e a s o n s f o r t h i s may b e t h e i n a d e q u a t e d e s c r i p t i o n o f t h e p h y s i c a l c h a r a c t e r i s t i c s o f t h e s y s t e m , t h e c o m p l e x i t y o f t h e p r o p o s e d a l g o r i t h m s , a n d t h e n e e d f o r o n - l i n e o p t i m i z a t i o n . O t h e r r e a s o n s may b e t h e l a c k o f c o n f i d e n c e i n s o p h i s t i c a t e d s t o c h a s t i c t e c h - n i q u e s a n d t h e f e e l i n g t h a t s i n g l e - v a l u e o p e r a t i n g r u l e s a r e t o o l s t o o r i g i d f o r s o l v i n g complex b u t s o f t d e c i s i o n - m a k i n g p r o c e s s e s . F i n a l l y , d e t a i l e d a n a l y s e s made i n o t h e r f i e l d s o f management s c i e n c e h a v e p r o v e d t h a t d e c i s i o n m a k e r s v e r y s e l d o m c o n s i d e r l o n g - t e r m e x p e c t e d v a l u e s o f p h y s i c a l a n d / o r e c o n o m i c i n d i c a t o r s a s r e p r e s e n t a t i v e m e a s u r e s o f s y s t e m p e r f o r m a n c e . I n d e e d , v e r y o f t e n , a manager f o c u s e s h i s a t t e n t i o n a n d e f f o r t o n a v o i d i n g d r a m a t i c f a i l u r e s when t h e s y s t e m i s u n d e r s t r e s s . I n o t h e r w o r d s , i n m o s t c a s e s , d e c i s i o n m a k e r s a r e r i s k - a d v e r s e , e v e n i f

t h i s e n t a i l s a w o r s e a v e r a g e p e r f o r m a n c e o f t h e s y s t e m .

R e s e r v o i r m a n a g e r s a r e n o e x c e p t i o n . F o r e x a m p l e , when

t h e r e s u l t s o f a d e t a i l e d o p t i m i z a t i o n s t u d y o n Lake Como, I t a l y , ( s e e G u a r i s o e t a l . 1 9 8 2 a ) w e r e p r e s e n t e d t o t h e m a n a g e r , h e

r e c o g n i z e d t h a t h e w a s n o t c o m p l e t e l y s a t i s f i e d by t h e k i n d o f o b j e c t i v e s s e l e c t e d i n t h a t s t u d y (mean y e a r l y water d e f i c i t , a v e r a g e number o f d a y s o f f l o o d p e r y e a r , a n d mean y e a r l y h y d r o - power p r o d u c t i o n ) . B e i n g r i s k - a d v e r s e , t h e manager i n s t e a d showed a p r o n o u n c e d i n t e r e s t t o w a r d t h e p o s s i b i l i t y o f a v o i d i n g

(9)

s e v e r e f a i l u r e s o f t h e s y s t e m d u r i n g e x t r e m e h y d r o l o g i c a l e p i s o d e s , l i k e t h o s e h e h a d p e r s o n a l l y e x p e r i e n c e d i n t h e p a s t .

F o r a l l t h e s e r e a s o n s , w e u s e i n t h i s p a p e r a d e t e r m i n i s t i c (min-max) a p p r o a c h t o t h e management p r o b l e m , w h i c h o v e r c o m e s

many o f t h e a b o v e c r i t i c i s m s . The t h e o r e t i c a l b a s i s o f t h e a p p r o a c h i n a more g e n e r a l c o n t e x t o f s t o r a g e c o n t r o l p r o b l e m s i s d e s c r i b e d i n O r l o v s k y e t a l . , 1 9 8 2 . I n t h i s a p p r o a c h , t h e p e r f o r m a n c e o f t h e s y s t e m i s e v a l u a t e d w i t h r e f e r e n c e t o a few s p e c i f i c i n f l o w

s e q u e n c e s s u g g e s t e d by t h e manager. T h e s e i n f l o w s e q u e n c e s may b e some r e a l o r s y n t h e t i c i n f l o w r e c o r d s o r some h y p o t h e t i c a l

s e q u e n c e s o f i n f l o w s which t h e manager c o n s i d e r s a s p a r t i c u l a r l y w e l l - s u i t e d f o r t e s t i n g t h e r e a l i a b i l i t y o f a n y o p e r a t i n g r u l e . Of c o u r s e , t h e s o l u t i o n s s u g g e s t e d by t h i s a p p r o a c h w i l l b e d e p e n d e n t upon t h e i n p u t d a t a , namely t h e r e f e r e n c e i n f l o w s e q u e n c e s . F o r t h i s r e a s o n , o n e m u s t b e p a r t i c u l a r l y c a r e f u l when s e l e c t i n g t h e s e s e q u e n c e s . F o r e x a m p l e , i f t h e r e a r e d i f -

f e r e n t s e a s o n s o f p o t e n t i a l d r o u g h t s a n d f l o o d s , o n e s h o u l d con- s i d e r i n f l o w s e q u e n c e s c h a r a c t e r i z e d by e x t r e m e v a l u e s i n a l l t h e s e p e r i o d s .

The e f f i c i e n t s o l u t i o n s s u g g e s t e d by t h e min-max a p p r o a c h w i l l b e shown t o h a v e some d e f i n i t e a d v a n t a g e w i t h r e s p e c t t o t h o s e o b t a i n e d by means o f t h e s t o c h a s t i c m e t h o d s . I n f a c t , t h e y d o n o t r e q u i r e complex a l g o r i t h m s and o n - l i n e o p t i m i z a t i o n ; t h e y c a n b e v i s u a l i z e d i n t e r m s o f c l a s s i c a l s t o r a g e a l l o c a t i o n z o n e s ; t h e y make r e a s o n a b l e u s e o f t h e real-time f o r e c a s t of t h e i n f l o w s ; a n d t h e y s u g g e s t a whole i n t e r v a l o f p o s s i b l e r e l e a s e s i n s t e a d o f a s i n g l e v a l u e . The l a s t s u c h p r o p e r t y i s p a r t i c u l a r l y

(10)

important, since it introduces some flexibility into the decision- making process. For example, the manager might use this freedom

to heuristically accommodate for secondary objectives which were not taken into account in the description of the problem. He might as well satisfy unexpected water demands or other unpre- dictable needs. Finally, one might even use this freedom to optimize the average long-term performance of the system, thus putting risk-adverse and mean profit-maximizing attitudes in a precise lexicographic order.

The paper is organized in the following way. In the next section, the two objective management problem is formulated,

and feasible and efficient operating rules are defined. Sections 3 and 4 show how the problems of satisfaction of demand of down- stream users and attenuation of storage peaks in the reservoir can be solved with the min-max approach. Then, the results are used in Sections 5 and 6 to point out feasible and efficient operating rules of the double objective management problem.

Finally, Section 7 deals with the so-called "linear case" for which explicit solutions are presented and applied in the next

section to solve a lake management problem.

2. PROBLEM STATEYENT

Let us consider a reservoir described on a daily basis by the continuity (mass balance) equation

S t+l = S t + at

-

r t f (1

where s is the storage at the beginning of day t, and at and t

r are inflow and release during the same day. The problem we t

consider is focused on the determination of operating rules of

(11)

t h e form

which c a n b e c o n s i d e r e d " e f f i c i e n t " i n t h e s e n s e s p e c i f i e d b e l o w . T h e s e o p e r a t i n g r u l e s m u s t s a t i s f y t h e f o l l o w i n g p h y s i c a l c o n s t r a i n t

where N ( s ) i s t h e maximum amount o f water t h a t c a n b e r e l e a s e d t

i n o n e d a y when t h e s t o r a g e i s e q u a l t o s a t t h e b e g i n n i n g o f t

t h a t d a y . I n t h e c a s e w h e r e t h e r e s e r v o i r i s a r e g u l a t e d l a k e , t h e f u n c t i o n N i s t h e o p e n - g a t e s t a g e - d i s c h a r g e f u n c t i o n a s s o c i a t e d w i t h t h e r e g u l a t i o n dam.

L e t u s assume t h a t t h e d a i l y water demands o f t h e downstream u s e r s a r e g i v e n , s o t h a t t h e c o r r e s p o n d i n g r e f e r e n c e r e l e a s e

r

*

t = 0 , 1 ,

...,

364, i s known. I f t h e r e l e a s e r t i s g r e a t e r t '

t h a n r t ,

*

t h e r e i s no b e n e f i t s u r p l u s . I f , o n t h e o t h e r h a n d , t h e r e i s a d e f i c i t , i . e . , i f r t i s smaller t h a n r t , ,

*

t h e n t h e r e

a r e d e t e c t a b l e downstream damages. The minimum y e a r l y v a l u e a o f t h e r a t i o b e t w e e n a c t u a l and r e f e r e n c e r e l e a s e , i . e . ,

r

3 = min

OSt1364

[<] '

i s c o n s i d e r e d as a m e a n i n g f u l i n d i c a t o r of y e a r l y damages s u f f e r e d by t h e downstream u s e r s . The m a x i m i z a t i o n o f t h i s i n d i c a t o r i s t h e r e f o r e o n e o f t h e g o a l s o f t h e management.

The s e c o n d g o a l , o b v i o u s l y c o n f l i c t i n g w i t h t h e f i r s t o n e , i s t h e a t t e n u a t i o n of t h e s t o r a g e p e a k s . To d e s c r i b e t h i s g o a l i n q u a n t i t a t i v e terms, assume t h a t t h e maximum s t o r a g e s

*

t '

t = 0,1,

...,

364, a t w h i c h t h e r e a r e no d a m a g e s , i s known. T h i s

(12)

r e f e r e n c e s t o r a g e s

*

may c o r r e s p o n d , f o r e x a m p l e , t o t h e l e v e l o f t

t h e l o w e s t p o p u l a t e d o r c u l t i v a t e d a r e a a r o u n d t h e l a k e . The maximum y e a r l y v a l u e B o f t h e r a t i o between a c t u a l and r e f e r e n c e s t o r a g e , i . e . ,

w i l l b e u s e d i n t h e f o l l o w i n g a s t h e i n d i c a t o r o f f l o o d damages.

The s e c o n d g o a l of t h e manager i s t h e r e f o r e t h e m i n i m i z a t i o n of t h i s i n d i c a t o r .

I n o r d e r t o compare t h e p e r f o r m a n c e of d i f f e r e n t o p e r a t i n g r u l e s , r e f e r e n c e i s made t o a s e t I o f n o n e y e a r - l o n g d a i l y i n f l o w s e q u e n c e s { a t } , i . e . , i

I n t h e f o l l o w i n g , t h i s s e t i s c a l l e d t h e r e f e r e n c e s e t . I n g e n e r a l , i t c o n t a i n s r e c o r d e d o r s y n t h e t i c s e q u e n c e s of i n f l o w s

t h a t t h e manager c o n s i d e r s a s p o s s i b l e i n t h e f u t u r e a n d p a r - t i c u l a r l y t r o u b l e s o m e . The o p e r a t i n g r u l e s which t h e method

w i l l s e l e c t a r e t h o s e which g u a r a n t e e s a t i s f a c t o r y p e r f o r m a n c e o f t h e s y s t e m f o r s u c h r e f e r e n c e h y d r o l o g i c y e a r s . For t h i s r e a s o n , t h e y l o o k a p p e a l i n g t o t h e manager b e c a u s e t h e y a r e p a r t i c u l a r l y r o b u s t when t h e s y s t e m i s u n d e r s t r e s s . I n t h e c a s e when t h e

r e s e r v o i r i s a l r e a d y i n o p e r a t i o n , o n e m i g h t c o n s i d e r a s s e q u e n c e s o f t h e r e f e r e n c e s e t a s e l e c t i o n of t h e m o s t w e t and d r y y e a r s e x p e r i e n c e d by t h e manager. I n s o d o i n g , t h e p r o p o s e d o p e r a t i n g r u l e s may a l s o b e compared w i t h t h e p e r f o r m a n c e t h e manager was a b l e t o a c h i e v e i n p r a c t i c e .

(13)

O p e r a t i n g r u l e s which m i n i m i z e f l o o d damages and w a t e r s h o r t a g e s i n t h e w o r s t p o s s i b l e c a s e o u t of t h e r e f e r e n c e s e t a r e l o o k e d f o r . I n d o i n g t h a t , o n e must p r o p e r l y c o n s t r a i n t h e r e s e r v o i r s t o r a g e a t t h e end of t h e y e a r ( o t h e r w i s e , i n r e a l o p e r a t i o n , good p e r f o r m a n c e s i n o n e y e a r c o u l d i m p l y v e r y p o o r p e r f o r m a n c e s d u r i n g t h e n e x t y e a r ) . F o r c h o o s i n g t h i s c o n s t r a i n t it was assumed t h a t t h e same o p e r a t i n g r u l e when a p p l i e d d u r i n g t h e n e x t y e a r must a l s o g u a r a n t e e s a t i s f a c t o r y v a l u e s o f t h e

d e f i c i t and f l o o d i n d i c a t o r s f o r a n y o f t h e y e a r l y i n f l o w s e q u e n c e s o u t o f t h e r e f e r e n c e s e t I . I n o r d e r t o q u a n t i t a t i v e l y e x p r e s s t h e s e c o n s t r a i n t s o n t h e t e r m i n a l c o n d i t i o n s , l e t u s i n d i c a t e w i t h s t ( s o , r ) i t h e s t o r a g e o b t a i n e d a t t i m e t by a p p l y i n g t h e o p e r a t i n g r u l e r t o a r e s e r v o i r w i t h i n i t i a l s t o r a g e s and i n -

0

i i i

f l o w s a o , a l , . . . , a t - l , w h e r e i = 1 ,

...,

n i s t h e i n d e x o f a

s e q u e n c e f r o m t h e s e t I . S i m i l a r l y , l e t u s i n d i c a t e by a i ( s o , r ) and D i ( s o , r ) t h e c o r r e s p o n d i n g v a l u e s of t h e d e f i c i t and f l o o d

i n d i c a t o r s . ( I n t h e f o l l o w i n g , t h e a b b r e v i a t e d n o t a t i o n s s t , i

i i

a

,

f3 a r e a l s o u s e d ) . Thus, t h e t e r m i n a l c o n s t r a i n t s c a n b e g i v e n i n t h e f o l l o w i n g form

j k i A

a ( s ~ ~r ) ~

,

r ) ( 2 s min ~ ~[ a ( s o ,

r ) 1

= a ( s O , r )

,

( 4 a ) 1 l i l n

j k i

B ( ~ 3 6 5 r ) r ) 5 max [ D s o r

1 6

B ( s o , r ) , ( 4 b ) 1 l i l n

I t i s now p o s s i b l e t o c l e a r l y d e f i n e f e a s i b l e a n d e f f i c i e n t s o l u t i o n s o f t h e d o u b l e o b j e c t i v e management problem ( s e e , f o r i n s t a n c e , Cohon and Marks 1 9 7 5 ) . A f e a s i b l e s o l u t i o n i s a

(14)

p a i r s o r ) o f a n i n i t i a l s t o r a g e and a n o p e r a t i n g r u l e which i s s u c h t h a t t h e s t o r a g e s and r e l e a s e s computed by means of E q u a t i o n s ( 1 ) and ( 2 ) i n c o r r e s p o n d e n c e t o any r e f e r e n c e i n f l o w s e q u e n c e s a t i s f y t h e p h y s i c a l c o n s t r a i n t ( 3 ) and t h e t e r m i n a l c o n s t r a i n t s ( 4 )

.

Moreover, a f e a s i b l e s o l u t i o n ( s o

,

r ) i s s a i d t o b e e f f i c i e n t i f t h e r e a r e no o t h e r f e a s i b l e s o l u t i o n s ( s o , r ) which c a n improve o n e of t h e two i n d i c a t o r s w i t h o u t w o r s e n i n g t h e o t h e r one ( s e e l i n e BC of F i g u r e 1 ) . On t h e o t h e r hand, a f e a s i b l e s o l u t i o n i s c a l l e d dominated i f t h e r e a r e o t h e r

f e a s i b l e s o l u t i o n s w i t h b e t t e r v a l u e s of b o t h i n d i c a t o r s ( i n t e r n a l p o i n t s of t h e shadowed r e g i o n of F i g u r e 1 ) . The f e a s i b l e s o l u - t i o n s which a r e n e i t h e r e f f i c i e n t n o r dominated ( s e e segments AB and CD of F i g u r e 1 ) w i l l b e c a l l e d s e m i - e f f i c i e n t . These s o l u - t i o n s c a n o b v i o u s l y b e improved by improving one of t h e two

o b j e c t i v e s w i t h o u t p e r t u r b i n g t h e o t h e r one. F i g u r e 1 shows a l l t h e s e s o l u t i o n s i n t h e s p a c e ( a , B ) of t h e i n d i c a t o r s and p o i n t s o u t t h e a b s o l u t e maximum v a l u e a

max and t h e a b s o l u t e minimum v a l u e Bmin of t h e i n d i c a t o r s f o r which f e a s i b l e s o l u t i o n s c a n

b e found. The p o i n t U w i t h c o o r d i n a t e s (amax, Bmin) i s i n f e a s i b l e b e c a u s e t h e g o a l s a r e c o n f l i c t i n g and i s t h e r e f o r e c a l l e d t h e

utopia.

I n o r d e r t o f i n d e f f i c i e n t and s e m i - e f f i c i e n t s o l u t i o n s t o t h e problem, we w i l l f i r s t c o n s i d e r two s i m p l e problems. The f i r s t one ( s e e n e x t s e c t i o n ) i s c a l l e d demand s a t i s f a c t i o n and c o n s i s t s o f d e t e r m i n i n g s o l u t i o n s ( s r ) which s a t i s f y t h e

o r

p h y s i c a l c o n s t r a i n t ( 3 ) and t h e t e r m i n a l c o n s t r a i n t ( 4 a ) f o r a g i v e n v a l u e , s a y a , of t h e i n d i c a t o r a ( s r ) . S i m i l a r l y , t h e

o f

s e c o n d problem ( s e e S e c t i o n 4 ) , c a l l e d f l o o d p r o t e c t i o n , c o n s i s t s

(15)

\ \

.

\

\

. .

\

.

dominated

. .

solutions

\

I I

Semiefficient

01; OL6 a;

solutions OLmax

Demand Satisfaction

F i g u r e 1 . E f f i c i e n t , s e m i - e f f i c i e n t , a n d d o m i n a t e d s o l u t i o n s i n t h e s p a c e ( a , B ) o f t h e i n d i c a t o r s .

(16)

o f d e t e r m i n i n g p a i r s ( s o , r ) which s a t i s f y c o n s t r a i n t ( 3 ) and t h e t e r m i n a l c o n s t r a i n t ( 4 b ) f o r 8 ( s o , r = 8 , w i t h 8 b e i n g a g i v e n v a l u e .

3 . DEMAND SATISFACTION

W e a r e now i n t e r e s t e d i n f i n d i n g i n i t i a l s t o r a g e s: and o p e r a t i n g r u l e s r a which c a n g u a r a n t e e t h a t t h e y e a r l y d e f i c i t i n d i c a t o r w i l l n o t b e s m a l l e r t h a n a p r e s c r i b e d v a l u e a f o r a l l i n f l o w s e q u e n c e s of t h e r e f e r e n c e s e t I . T h i s i s e q u i v a l e n t t o s a y i n g t h a t w e w i l l f i n d i n i t i a l s t o r a g e and o p e r a t i n g r u l e s which c a n g u a r a n t e e t h e s a t i s f a c t i o n of t h e r e d u c e d w a t e r demand

Of c o u r s e , a s o l u t i o n t o t h i s problem e x i s t s , p r o v i d e d t h e v a l u e a of t h e d e f i c i t i n d i c a t o r i s s u f f i c i e n t l y s m a l l . One

s u c h s o l u t i o n c o r r e s p o n d s t o t h e s o - c a l l e d minimum r e l e a s e p o l i c y r a g i v e n by

min

T h i s p o l i c y s a t i s f i e s , by d e f i n i t i o n , t h e p h y s i c a l c o n s t r a i n t ( 3 ) . T h e r e f o r e , a p a i r s , rmin) a i s a s o l u t i o n t o t h e problem,

p r o v i d e d t h e r e l e a s e

n e v e r d r o p s below t h e r e d u c e d demand a r t and t h e t e r m i n a l con-

*

s t r a i n t ( 4 a ) i s s a t i s f i e d f o r a l l i n f l o w s e q u e n c e s from t h e r e f e r e n c e s e t . Y o r e o v e r , i f t h e p a i r ( s o , rmin a ) i s a s o l u t i o n t o t h e problem, t h e n any p a i r ( s a r ) w i t h g r e a t e r i n i t i a l

0 ' min

I

s t o r a g e (so

>

so) i s o b v i o u s l y a l s o a s o l u t i o n . T h e r e f o r e , we a r e a c t u a l l y i n t e r e s t e d i n f i n d i n g t h e minimum i n i t i a l s t o r a g e ,

(17)

s a y s a

o min

'

which t o g e t h e r w i t h t h e o p e r a t i n g r u l e

Pin

can

g u a r a n t e e t h e s a t i s f a c t i o n of t h e reduced w a t e r demand a r t .

*

The minimum s t o r a g e s a

o min c a n be o b t a i n e d by s o l v i n g t h e f o l l o w i n g s i m p l e m a t h e m a t i c a l programming problem, c a l l e d Problem 0 . I n

t h i s problem, t h e i

c o n s t r a i n t s~~~ - > s i s a s u r r o g a t e of t h e t e r m i n a l c o n s t r a i n t ( 4 a ) .

Problem 0 ( D e t e r m i n a t i o n of S: min 1 s a = min s

o min o ( 6 a )

r min a ( t ' ,

a i

*

r ( t , s ) = a r

t t i = 1 , .

. .

n t = 0 , .

. .

,364 ( 6 d )

min

Problem 0 c a n b e s o l v e d by s i m u l a t i n g t h e r e s e r v o i r b e h a v i o r w i t h i n i t i a l c o n d i t i o n so and o p e r a t i n g r u l e rmin a f o r a l l i n f l o w s e q u e n c e s { a i } of t h e r e f e r e n c e s e t I . I f c o n s t r a i n t s ( 6 d ) and

t

( 6 e ) a r e s a t i s f i e d , t h e n S: min 2 s o , o t h e r w i s e s o m i n > a s o . Thus, a v e r y s i m p l e o n e - d i m e n s i o n a l s e a r c h i n g p r o c e d u r e ( e . g . , b i -

s e c t i o n ) c a n b e u s e d t o d e t e r m i n e sz m i n . I n t h e c a s e where t h e s t a g e - d i s c h a r g e f u n c t i o n N i s l i n e a r , Problem 0 i s a c t u a l l y a l i n e a r programming problem. I n f a c t , i n E q u a t i o n ( 6 c ) , rmin a

i

*

( t , s ) c a n b e r e p l a c e d by a r t , ( s e e E q u a t i o n ( 6 d ) )

,

and E q u a t i o n t

( 6 d ) c a n be s u b s t i t u t e d by

which i s a l i n e a r c o n s t r a i n t i n t h e c a s e t h a t N i s s u c h .

(18)

The problem o f f i n d i n g t h e minimum s t o r a g e s : t h a t c a n ~ ~ ~ g u a r a n t e e t o g e t h e r w i t h t h e minimum r e l e a s e p o l i c y ( 5 ) t h e

s a t i s f a c t i o n of a l l t h e c o n s t r a i n t s t h r o u g h o u t t h e r e s t o f t h e y e a r ( a f t e r day r ) , c a n b e f o r m u l a t e d i n t h e f o l l o w i n g way.

Problem r ( D e t e r m i n a t i o n o f sYmin

,

r = 1 ,

...

, 3 6 4 ) a

'rmin = min s t ( 7 a )

i i i a i

s t + l = s t

+

a t

-

r min ( t , s t ) i = 1

,...,

n t = r

,...

,364 ( 7 c )

a i

*

r min ( t , s t ) = a r t i = 1 l t = T

,...,

364 ( 7 d )

A s i n t h e p r e c e d i n g c a s e , srmin a c a n b e o b t a i n e d by g u i d i n g s i m u l a - t i o n s w i t h a o n e - d i m e n s i o n a l s e a r c h i n g method, and a g a i n t h e prob- l e m r e d u c e s t o a l i n e a r programming problem when t h e s t a g e -

d i s c h a r g e f u n c t i o n i s l i n e a r . I t i s w o r t h w h i l e n o t i c i n g t h a t t h e s o l u t i o n t o Problem 0 , namely s o m i n a

,

i s u s e d i n E q u a t i o n

( 7 e ) i n o r d e r t o g u a r a n t e e t h e s a t i s f a c t i o n o f t h e t e r m i n a l con- s t r a i n t ( 4 a ) . T h i s i m p l i e s t h a t Problem 0 must b e s o l v e d f i r s t . On t h e o t h e r h a n d , t h e s o l u t i o n o f Problem r c a n b e c a r r i e d o u t i n d e p e n d e n t l y f o r e a c h v a l u e of r .

Now t h a t we have found a s o l u t i o n t o t h e p r o b l e m o f s a t i s -

a a

f a c t i o n of demand, namely ( s o m i n

,

r )

,

w e c a n i m m e d i a t e l y min

o b t a i n a l l o t h e r s o l u t i o n s s

,

r a )

.

I n f a c t , w e o n l y need t o

i a i

*

n o t i c e t h a t a volume of w a t e r r g r e a t e r t h a n r ( t , s t ) = a r

t min t

c a n b e r e l e a s e d w i t h o u t any c o n s e q u e n c e p r o v i d e d t h a t t h e reser- v o i r s t o r a g e a n d / o r t h e i n f l o w a r e s u f f i c i e n t l y h i g h . More p r e -

(19)

c i s e l y , i f ( i n some y e a r i )

i t i a

any r e l e a s e r t between a r t and t h e minimum between (sk + a t

-

S t + l m i n 1 and N ( s i ) (see s h a d e d a r e a i n F i g u r e 2 ) w i l l g i v e r i s e t o a

t

i a

s t o r a g e s

t + l g r e a t e r t h a n o r e q u a l t o which i s i n d e e d t h e minimum v a l u e o f t h e s t o r a g e t h a t c a n g u a r a n t e e t h e s a t i s - f a c t i o n o f a l l t h e c o n s t r a i n t s from t i m e t + l t o t h e end of t h e y e a r . I n c o n c l u s i o n , t h e s o l u t i o n s t o t h e problem a r e g i v e n by a l l p a i r s ( s o , a r a ) s a t i s f y i n g t h e f o l l o w i n g two i n e q u a l i t i e s

a a

min I

E q u a t i o n ( 8 b ) i s i n t e r p r e t e d i n F i g u r e 2 , which shows t h a t f o r s u f f i c i e n t l y h i g h v a l u e s o f t h e s t o r a g e s t a n d / o r t h e i n f l o w a t h e r e i s a whole i n t e r v a l of p o s s i b l e r e l e a s e s ( s h a d e d a r e a ) .

t t

The f i g u r e a l s o shows t h a t t h e s t o r a g e a x i s c a n b e d i v i d e d i n t o f o u r s t o r a g e a l l o c a t i o n z o n e s named I , 11, 111, and I V . The

1

f i r s t one d e p e n d s o n l y upon a s i n c e i t s u p p e r l i m i t s t i s g i v e n by t h e s t o r a g e a t which t h e s t a g e - d i s c h a r g e f u n c t i o n N e q u a l s t h e r e d u c e d demand a r

*

t ' The f i r s t zone i s n e v e r e n t e r e d i f t h e i n f l o w s e q u e n c e s { a i

1

a r e t h o s e o f t h e r e f e r e n c e s e t . I t i s

t

t h e r e f o r e a k i n d o f d e a d z o n e , which m i g h t n e v e r t h e l e s s b e r e a c h e d d u r i n g r e a l o p e r a t i o n i f a d r o u g h t more s e v e r e t h a n t h o s e con- s i d e r e d i n t h e r e f e r e n c e s e t o c c u r s . I n t h e s e c o n d z o n e , t h e r e l e a s e e q u a l s t h e r e d u c e d demand a r t , w h i l e i n t h e t h i r d a n d

*

f o u r t h z o n e s t h e r e l e a s e c a n b e g r e a t e r t h a n t h e r e d u c e d demand.

(20)

Reduced water lemand

Open aates

Open gate stagedischarge

uemand cur1'

1 111 t

I t

-

I t

k

- A

I I I r , _

.- -

1 1 1 IV

(Dead zone)

Storage s:

F i g u r e 2 . The s e t o f r e l e a s e s which c a n g u a r a n t e e t h e s a t i s f a c - t i o n o f w a t e r demand (see E q u a t i o n 8 b )

.

(21)

I n p a r t i c u l a r , i n t h e l a s t z o n e , t h e manager m i g h t e v e n c o m p l e t e l y o p e n t h e g a t e s o f t h e r e g u l a t i o n dam w i t h o u t w o r s e n i n g t h e p e r - f o r m a n c e o f t h e s y s t e m w i t h r e g a r d t o t h e demand s a t i s f a c t i o n .

I 1 111

I t i s w o r t h w h i l e n o t i c i n g t h a t t h e v a l u e s s a n d s t d i v i d i n g t

t h e s e z o n e s depend upon t h e i n f l o w a s i n c e t h e s t r a i g h t l i n e t '

r = s + a t - s a

t t t + l m i n s h i f t s t o t h e l e f t when a t i n c r e a s e s . T h i s means t h a t E q u a t i o n ( 8 b ) d e f i n e s a p r i o r i o n l y t h e d e a d z o n e , w h i l e t h e o t h e r s a r e a d a p t e d t o t h e c u r r e n t v a l u e of t h e i n f l o w . I n r e a l o p e r a t i o n , o n e m u s t t h e r e f o r e b e p a r t i c u l a r l y c a r e f u l i n f o r e c a s t i n g t h e d a i l y i n f l o w a t .

4 . FLOOD PROTECTION

U s i n g t h e p r e c e d i n g s e c t i o n a s a g u i d e l i n e , w e now d e a l w i t h t h e p r o b l e m o f f l o o d p r o t e c t i o n . W e a r e i n t e r e s t e d i n

f i n d i n g i n i t i a l s t o r a g e s s B a n d o p e r a t i n g r u l e s r B which c a n

0

g u a r a n t e e t h a t f o r e a c h y e a r i o u t of t h e r e f e r e n c e s e t , t h e

s t o r a g e s t w i l l n o t b e g r e a t e r t h a n t h e r e l a x e d r e f e r e n c e s t o r a g e i ast.

*

Of c o u r s e , s o l u t i o n s t o t h i s p r o b l e m e x i s t , p r o v i d e d t h e v a l u e o f B i s s u f f i c i e n t l y h i g h . !4oreover, i f a s o l u t i o n

B B

( s o , r ) e x i s t s , t h e n t h e maximum r e l e a s e p o l i c y rmax ( i n d e p e n - d e n t o f B ) g i v e n by

r t = r ( s t ) = N ( s t )

,

max

i s a l s o a s o l u t i o n f o r t h e same i n i t i a l s t o r a g e . F i n a l l y , a n y p a i r ( s o , B rmax) w i l l r e p r e s e n t a s o l u t i o n p r o v i d e d t h e s t o r a g e s B i s s m a l l e r t h a n o r e q u a l t o t h e m a x i m u m s o m a x B

0 ob-

t a i n e d by s o l v i n g t h e f o l l o w i n g m a t h e m a t i c a l programming problem.

(22)
(23)

s m a l l e r t h a n r m a X ( s t ) , p r o v i d e d t h e r e s e r v o i r i s s u f f i c i e n t l y empty a n d / o r t h e i n f l o w i s s u f f i c i e n t l y low. More p r e c i s e l y , i f ( i n a y e a r i )

i i i B i

t h e n a n y r e l e a s e r b e t w e e n maxI0, s + a -s

t t t t + l m a x 1 a n d N ( s t ) (see

s h a d e d a r e a i n F i g u r e 3 ) w i l l g i v e r i s e t o a s t o r a g e si

t + l s m a l l e r t h a n o r e q u a l t o s t c l r n a x , B w h i c h , by d e f i n i t i o n , i s t h e maximum v a l u e o f t h e s t o r a g e a t t i m e t + l t h a t c a n g u a r a n t e e t h e s a t i s - f a c t i o n o f t h e c o n s t r a i n t s from t h a t t i m e up t o t h e e n d o f t h e y e a r . I n c o n c l u s i o n , t h e s o l u t i o n s o f t h e p r o b l e m a r e g i v e n by t h e p a i r s ( s , r B ) s a t i s f y i n g t h e f o l l o w i n g i n e q u a l i t i e s

E q u a t i o n ( 1 2 b ) i s i n t e r p r e t e d i n F i g u r e 3. The s t o r a g e a x i s i s d i v i d e d i n t o t h r e e z o n e s , named I , 11, a n d 111. I n t h e f i r s t o n e , a n y d e c i s i o n i s p o s s i b l e : t h e manager m i g h t e v e n c l o s e t h e g a t e s of t h e dam, t h u s s t o r i n g a l l t h e i n f l o w , w i t h o u t w o r s e n i n g t h e f u t u r e p e r f o r m a n c e o f t h e s y s t e m . I n t h e s e c o n d z o n e , d i f - f e r e n t o p t i o n s a r e s t i l l p o s s i b l e , a l t h o u g h t h e manager i s

f o r c e d t o become more a n d more a w a r e o f t h e p o t e n t i a l f l o o d s when t h e s t o r a g e a n d / o r t h e i n f l o w i n c r e a s e . F i n a l l y , i n t h e t h i r d z o n e , which m i g h t b e p r o p e r l y c a l l e d t h e s p i l l i n g z o n e , t h e manager i s o b l i g e d t o r e l e a s e t h e maximum h e c a n by k e e p i n g t h e g a t e s o f t h e dam p e r m a n e n t l y open.

(24)

F i g u r e 3 . The s e t o f r e l e a s e s w h i c h c a n g u a r a n t e e f l o o d p r o t e c - t i o n (see E q u a t i o n 12b).

(25)

5. FEASIBLE SOLUTIONS TO THE TWO O B J E C T I V E PROBLEM a B

F e a s i b l e s o l u t i o n s (so

,

r a 8 ) t o t h e d o u b l e o b j e c t i v e p r o b - l e m f o r m u l a t e d i n S e c t i o n 2 c a n now b e f o u n d . I n f a c t , by t a k i n g t h e i n t e r s e c t i o n o f t h e i n t e r v a l s d e f i n e d by E q u a t i o n s ( 8 a ) , ( 1 2 a ) , a n d by E q u a t i o n s ( 8 b ) , ( 1 2 b ) , a n d by s u i t a b l y r e - a r r a n g i n g t h e

v a r i o u s terms, o n e c a n p r o v e t h a t a n y p a i r ( S E ~

,

r a B ) s u c h t h a t

a 5 so aB B

min max f

i s a f e a s i b l e s o l u t i o n o f t h e p r o b l e m d e s c r i b e d i n S e c t i o n 2.

E q u a t i o n ( 1 3 b ) c o n s t r a i n i n g t h e f e a s i b l e o p e r a t i n g r u l e s i s i n t e r p r e t e d i n F i g u r e 4 . The s t o r a g e a x i s i s d i v i d e d i n t o s i x p a r t s . The f i r s t ( I ) a n d t h e l a s t ( V I ) a r e t h e d e a d and s p i l l i n g z o n e s which h a v e a l r e a d y b e e n d i s c u s s e d . I n t h e s e c o n d zone--which m i g h t b e c a l l e d t h e b u f f e r zone--the manager h a s n o a l t e r n a t i v e e x c e p t t o r e l e a s e t h e r e d u c e d w a t e r demand a r t .

*

I 1 i v

Then, w e h a v e t h e c o n s e r v a t i o n zone ( s t 5 s t 5 s t ) , which i s i n t u r n s u b - d i v i d e d i n t o t h r e e s u b z o n e s (11, 111, and I V ) . I n t h e s e z o n e s , t h e r e i s a whole r a n g e of p o s s i b l e r e l e a s e s among w h i c h t h e manager c a n f r e e l y c h o o s e w i t h o u t any c o n s e q u e n c e on t h e s y s t e m p e r f o r m a n c e . N e v e r t h e l e s s , t h e t h r e e s u b z o n e s 111, I V , a n d V show t h e d e c l i n i n g i m p o r t a n c e o f o n e g o a l ( s a t i s f a c t i o n o f demand) v e r s u s t h e o t h e r ( f l o o d p r o t e c t i o n ) . I n f a c t , i n

zone 111, i t i s p o s s i b l e t o r e l e a s e t h e r e d u c e d water demand, t h u s s a v i n g w a t e r t o c o m p e n s a t e p o s s i b l e f u t u r e p e r i o d s o f low i n f l o w s , w h i l e i n z o n e V i t i s p o s s i b l e t o r e l e a s e water from

(26)

.- "

2 m

-

Q Q

a

L

-

1 r T - A

.

w

Dead zone Buffer Conservation Spilling zone

zone zone

Storage

si

F i g u r e 4 . The s e t o f r e l e a s e s which c a n g u a r a n t e e s a t i s f a c t i o n o f demand a n d f l o o d p r o t e c t i o n a t t h e same t i m e

(see E q u a t i o n 13b)

.

(27)

t h e r e s e r v o i r a t t h e maximum r a t e , t h u s a v o i d i n g f u t u r e f l o o d s . On t h e o t h e r hand, i n zone I V , none o f t h e s e l i m i t management p o l i c i e s i s a l l o w e d .

The shaded r e g i o n i n F i g u r e 4 i s more o r l e s s w i d e , d e p e n d i n g upon t h e t i m e o f t h e y e a r and upon t h e v a l u e s a and B of t h e two i n d i c a t o r s . A c t u a l l y , t h e f a c t t h a t a p a i r ( a , B ) c a n n o t b e

g u a r a n t e e d a t a l l i s s i m p l y r e v e a l e d by t h e v a n i s h i n g o f t h i s r e g i o n . T h i s o b v i o u s l y happens when

on some day t . On t h e o t h e r hand, i f

f e a s i b l e s o l u t i o n s t o t h e problem a l w a y s e x i s t . Moreover, i f a and B a r e s u c h t h a t

S a B

t m i n

<

'trnax t t = 0 , . . . , 3 6 4

w e c a n s a y t h a t t h e c o r r e s p o n d i n g f e a s i b l e s o l u t i o n s g i v e n by E q u a t i o n ( 1 3 ) a r e d o m i n a t e d , s i n c e w e c a n i n c r e a s e a and r e d u c e B u n t i l w e o b t a i n E q u a t i o n ( 1 4 ) w i t h t h e e q u a l i t y s i g n h o l d i n g i n a t l e a s t o n e c o n s t r a i n t . T h i s c o u l d a c t u a l l y b e a u s e f u l t e s t f o r f i n d i n g e f f i c i e n t o r s e m i - e f f i c i e n t o p e r a t i n g r u l e s . N e v e r t h e l e s s , a much more d i r e c t method c a n b e d e v i s e d , a s shown i n t h e n e x t s e c t i o n .

6 . EFFICIENT S O L U T I O N S

W e w i l l now d e s c r i b e a s i m p l e method f o r f i n d i n g e f f i c i e n t a n d s e m i - e f f i c i e n t s o l u t i o n s t o t h e d o u b l e o b j e c t i v e problem d e s c r i b e d i n S e c t i o n 2 . The method i n c l u d e s two s t e p s . F i r s t ,

(28)

g i v e n a v a l u e a

*

smaller t h a n o r e q u a l t o amax (see F i g u r e I ) ,

* *

t h e c o r r e s p o n d i n g minimum v a l u e B ( a ) o f t h e s e c o n d i n d i c a t o r

* * * * * *

a B ( a

,

r a B ( a 1 ) i s computed. S e c o n d , t h e f e a s i b l e s o l u t i o n s (so

a r e d e t e r m i n e d 5: a e a n s o f E y u a t i o n ( 1 3 ) . T h e s e s o l u t i o n s a r e e i t h e r e f f i c i e n t o r s e m i - e f f i c i e n t (see p o i n t s X a n d Y i n F i g u r e

1 )

An a n a l o g o u s p r o c e d u r e s t a r t i n g f r o m a g i v e n v a l u e B

*

o f

t h e f l o o d i n d i c a t o r c o u l d a l s o b e f o l l o w e d . I n t h i s case, t h e

* *

c o r r e s p o n d i n g maximum v a l u e a ( 6 ) of t h e f l o o d i n d i c a t o r i s

* * * * * *

a. ( B 1 6

,

f i r s t o b t a i n e d , a n d t h e n t h e s o l u t i o n s

(so a ( B ) B ) a r e d e t e r m i n e d by E q u a t i o n ( 1 3 ) . A g a i n , t h e s e s o l u t i o n s a r e e i t h e r e f f i c i e n t o r s e m i - e f f i c i e n t ( s e e p o i n t s X and Z o f F i g u r e 1 ) .

The two a b o v e p r o c e d u r e s c a n b e u s e d s e q u e n t i a l l y i n o r d e r t o d e t e c t i f a s o l u t i o n i s e f f i c i e n t o r s e m i - e f f i c i e n t . F o r e x a m p l e , s t a r t i n g f r o m t h e v a l u e a x , p o i n t

*

X i s o b t a i n e d , a n d

* *

t h e n t h e s e c o n d p r o c e d u r e a p p l i e d w i t h €3 =

BX

(see F i g u r e 1 ) w i l l a g a i n g i v e t h e same p o i n t X , t h u s c o n f i r m i n g t h a t ( a X ,

*

i s a n e f f i c i e n t s o l u t i o n . On t h e o t h e r h a n d , i f o n e s t a r t s from a Y f

*

p o i n t Y w i l l f i r s t b e o b t a i n e d , b u t t h e n t h e s e c o n d p r o c e d u r e

w i l l g e n e r a t e p o i n t B.

Now, o n l y t h e f i r s t s t e p o f t h e method i s d e s c r i b e d , s i n c e t h e s e c o n d o n e h a s a l r e a d y b e e n d i s c u s s e d i n S e c t i o n 5 . F o r t h i s , assume t h a t a v a l u e a

*

o f t h e f i r s t i n d i c a t o r i s g i v e n . E q u a t i o n ( 8 b ) c a n t h e r e f o r e p r o v i d e o p e r a t i n g r u l e s which c a n

* *

g u a r a n t e e t h e s a t i s f a c t i o n o f t h e r e d u c e d w a t e r demand a r

*

t '

I n p a r t i c u l a r , c o n s i d e r t h e o p e r a t i n g r u l e rmax a w h i c h c o r r e - s p o n d s t o t h e r i g h t - h a n d s i d e o f quat ti on ( 8 b )

,

i .e.

,

* *

a = m i n l s ( s t ) . m a x i s +a -s a

* *

r max ( t . s t , a t ) t t t + l m i n f a

r t i i

(1 5 )

(29)

Among a l l t h e o p e r a t i n g r u l e s which g u a r a n t e e t h e v a l u e a

*

f o r

t h e f i r s t i n d i c a t o r , t h i s i s o b v i o u s l y t h e o n e w h i c h m i n i m i z e s t h e f l o o d i n d i c a t o r B . T h u s , t h e f o l l o w i n g s i m p l e m a t h e m a t i c a l

* *

programming problem c a n b e s e t up f o r d e t e r m i n i n g B ( a )

.

* *

B ( a ) = min B

I n t h i s p a p e r , c o n s t r a i n t ( 1 6 c ) i s needed t o g u a r a n t e e E q u a t i o n ( 8 a ) , w h i l e c o n s t r a i n t ( 1 6 f ) e n s u r e s t h e s a t i s f a c t i o n o f t h e

t e r m i n a l c o n d i t i o n ( 4 b ) . The problem c a n b e s o l v e d by s i m u l a t i n g a

*

t h e r e s e r v o i r b e h a v i o r w i t h i n i t i a l s t o r a g e s

t s o m i n

0 and

a

*

o p e r a t i n g r u l e rmax f o r a l l i n f l o w s e q u e n c e s { a t } of t h e r e f e r e n c e i s e t . I f a l l c o n s t r a i n t s ( 1 6 f ) a r e s a t i s f i e d w i t h t h e s t r i c t

i n e q u a l i t y s i g n , t h e n

* *

B ( a )

<

max

l < i l n OIt1364

s i n c e o n e c a n o b v i o u s l y f i n d b e t t e r s o l u t i o n s by l o w e r i n g t h e

i n i t i a l s t o r a g e so ( a n d h e n c e t h e maximum f l o o d p e a k ) . T h e r e f o r e , one must s i m u l a t e t h e r e s e r v o i r b e h a v i o r a g a i n f o r a s m a l l e r

v a l u e o f t h e i n i t i a l s t o r a g e and r e p e a t t h i s o p e r a t i o n u n t i l a t l e a s t o n e of t h e n c o n s t r a i n t s ( 1 6 5 ) i s s a t i s f i e d w i t h t h e e q u a l i t y

(30)

s i g n . The c o r r e s p o n d i n g v a l u e of max m x [ % ] i s

* *

l S i 5 n OSt1364

o b v i o u s l y B ( a ) .

7 . THE LINEAR CASE

I n t h e c a s e where t h e s t a g e - d i s c h a r g e f u n c t i o n N i s l i n e a r ,

Problem 0 and Problem T o f S e c t i o n s 3 and 4 become l i n e a r p r o - gramming probl'ems a n d c a n b e s o l v e d e x p l i c i t l y .

L e t u s f i r s t c o n s i d e r t h e problem of demand s a t i s f a c t i o n a n d d e f i n e t h e c u m u l a t i v e w a t e r demand R : ~ i n t h e i n t e r v a l

l o r e o v e r , l e t u s d e n o t e by A: t h e l o w e s t c u m u l a t i v e i n f l o w of t h e r e f e r e n c e s e t i n t h e i n t e r v a l [ T , t ] , i . e . ,

L i

A:= min Z a s

l 5 i S n B=T

.

N o t i c e t h a t t h e s e d a t a (R*: and A T ) t c a n b e pre-computed. F i n a l l y , l e t u s i n d i c a t e by

2

( a ) t h e minimum s t o r a g e needed t o g u a r a n t e e

t

*

t h e r e d u c e d w a t e r demand a r , a t t i m e t , i . e . ,

Problem 0 of S e c t i o n 3 i s t h e r e f o r e e q u i v a l e n t t o t h e f o l l o w i n g problem:

(31)

s a = min s

o min o

From Equation ( 1 7 ~ ) we obtain

i t- 1

-

aR

*

t- 1

min [st] = s

0 + .A 0 I

15iIn

so that Equation (17e) can be substituted by

-

*t-1

So L St (a)

+

aRo

-

A:-7

Similarly, constraint (17f) is equivalent to

Thus, in conclusion, the solution of Problem 0 is given by a = max{io(a), max [St(a)+uRo *t-1 -Ao t-1

1 1

I

min 15t5364

provided a is sufficiently small, namely

One must remark that this is a well-known result of mass-curve analysis (see Rippl 1883)

.

In a similar way we can deal with Problem -r and prove that

(32)

a a

s ~ m i n = rnax{gT ( a ) , so min

+

aRT *364

-

A T 364 I max

T + l I t 1 3 6 4

E q u a t i o n s ( 1 8 ) and ( 1 9 ) a c t u a l l y a l s o h o l d i f t h e f u n c t i o n N i s n o n - l i n e a r . N e v e r t h e l e s s , i n t h e l i n e a r case, o n e c a n p r o v e t h a t

a C1

min and ' ~ m i n a r e piecewise l i n e a r , i n c r e a s i n g , a n d c o n v e x w i t h r e s p e c t t o a ( i n f a c t , a l l t h e t e r m s a p p e a r i n g i n E q u a t i o n s

( 1 8 ) and ( 1 9 ) a r e l i n e a r f u n c t i o n s o f a )

.

T h e s e p r o p e r t i e s c a n b e u s e d i n a n o b v i o u s way t o s a v e c o m p u t a t i o n t i m e when t h e o p e r a t i n g r u l e s ra m u s t b e f o u n d f o r d i f f e r e n t v a l u e s o f a .

L e t u s now c o n s i d e r Problem 0 o f S e c t i o n 4 . Such a p r o b l e m c a n b e r e - f o r m u l a t e d a s

S B = max s

o max o ( 2 3 a )

But from E q u a t i o n ( 2 0 c ) o n e o b t a i n s

w i t h

w h i c h a r e d a t a t h a t c a n b e pre-computed. T h u s , c o n s t r a i n t s ( 2 0 e )

(33)

and (20f) are equivalent to

From this, it follows that

*

t-1

13

*

max = mini Bso, min 1 St1364

if, and only if, the data satisfy the following condition

(Notice that this inequality holds if

B

is sufficiently high).

Problem T of Section 4 can be re-formulated and solved in a

'

can be given the similar way and the final result is that sTmax

following explicit expression

B

364

*

t- 1

S B = mint BsT,

*

max

-

CT

~ m a x 364-T min (22)

(1-y)

where C: are the following pre-computed data

Equations (21) and (22) can only be derived by making explicit use of the linearity of the stage-discharge function. Indeed, that property has been used to explicitly integrate the con-

i i

tinuing equation with r linearly related to st. Moreover, the t

linearity of N implies that somax B

'

are piecewise linear, and 'Tmax

increasing, and concave with respect to 6.

(34)

8 . EXANPLE O F A P P L I C A T I O N

The method d e s c r i b e d i n t h e p r e v i o u s s e c t i o n s h a s b e e n a p p l i e d t o t h e c a s e o f Lake Como (PJorthern I t a l y ) . T h i s l a k e h a s been

r e g u l a t e d on a d a i l y b a s i s s i n c e 1946. The main g o a l s o f t h e manager ( a c t u a l l y a c o m m i t t e e ) a r e t h e s a t i s f a c t i o n o f t h e w a t e r r e q u i r e m e n t s o f t h e downstream u s e r s and t h e p r o t e c t i o n of t h e l a k e s h o r e s from f l o o d s . The w a t e r demands of t h e v a r i o u s u s e r s

( s e v e n r u n - o f - r i v e r h y d r o - e l e c t r i c power p l a n t s w i t h a n i n s t a l l e d c a p a c i t y of 9 2 MW, a n d s i x a g r i c u l t u r a l d i s t r i c t s w i t h a t o t a l i r r i g a t e d s u r f a c e o f 114 0 0 0 h e c t a r e s ) h a v e been p r o p e r l y corn- b i n e d t o g e n e r a t e t h e d e s i r e d d a i l y r e f e r e n c e r e l e a s e r t

*

which

i s c o n s t a n t d u r i n g t h e w i n t e r and o b v i o u s l y a t t a i n s i t s peak i n summer (see F i g u r e 5 ) . The r e f e r e n c e s t o r a g e s t c o r r e s p o n d s

*

t o t h e l a k e l e v e l a t which t h e most sunken p a r t o f t h e town o f Como (namely t h e main s q u a r e ) i s f l o o d e d . Thus, s t

*

i s c o n s t a n t

t h r o u g h o u t t h e y e a r . The s t a g e - d i s c h a r g e f u n c t i o n h a s been a p p r o x i m a t e d by a l i n e a r f u n c t i o n w i t h a v e r y s a t i s f a c t o r y f i t t i n g ( 5 % maximum d e v i a t i o n i n t h e r a n g e o f i n t e r e s t ) . A s i n f l o w s e q u e n c e s of t h e r e f e r e n c e s e t I w e have s e l e c t e d t h e f i v e r e c o r d e d o n e y e a r - l o n g d a i l y i n f l o w s e q u e n c e s ( o v e r t h e l a s t 15 y e a r s ) which w e r e e s t i m a t e d a s t h e most c r i t i c a l o n e s by t h e manager. Among them, w e h a v e t h e i n f l o w s e q u e n c e o f 1976, which i s c h a r a c t e r i z e d by a v e r y d r y summer p e r i o d f o l l o w e d by q u i t e s e v e r e f l o o d s i n e a r l y autumn.

On t h e b a s i s of t h e s e d a t a , t h e e f f i c i e n t and s e m i - e f f i c i e n t s o l u t i o n s of t h e d o u b l e o b j e c t i v e management p r o b l e m h a v e been o b t a i n e d by u s i n g t h e p r o c e d u r e i n d i c a t e d i n S e c t i o n 6 , and t h e e x p l i c i t f o r m u l a e r e p o r t e d i n S e c t i o n 7 . The r e s u l t s a r e shown

(35)

I I

J F M A M J J A S O N D

Time t

Figure 5 . The r e f e r e n c e r e l e a s e r t

*

of Lake Como.

(36)

i n F i g u r e 6 i n t h e s p a c e ( a , B ) of t h e i n d i c a t o r s . I n t h i s f i g u r e , p o i n t H r e p r e s e n t s t h e h i s t o r i c a l s o l u t i o n , namely t h e r e a l p e r - formance of t h e manager d u r i n g t h e y e a r s of t h e r e f e r e n c e s e t . The v a l u e aH = 0.30 c o r r e s p o n d s t o t h e w a t e r s h o r t a g e of J u l y 1976, w h i l e t h e v a l u e

BH

= 1.5 c o r r e s p o n d s t o t h e f l o o d of O c t o b e r 1979 ( f l o o d peak of 1.36 m e t e r s above t h e main s q u a r e o f Como). The f i g u r e shows t h a t t h e h i s t o r i c a l s o l u t i o n i s

"dominated" and c a n t h e r e f o r e be improved. I n f a c t , a l l p o i n t s b e l o n g i n g t o t h e s h a d e d r e g i o n H P B Q a r e c h a r a c t e r i z e d by b e t t e r v a l u e s of t h e i n d i c a t o r s . I n p a r t i c u l a r , p o i n t P shows t h a t B c o u l d b e r e d u c e d t o 1.35 l e a v i n g a unchanged. T h i s would c o r r e s p o n d t o a n a t t e n u a t i o n of t h e maximum f l o o d peak of a b o u t 30 cm. S i m i l a r l y , p o i n t Q shows t h a t a s u b s t a n t i a l improvement i n demand s a t i s f a c t i o n c a n be o b t a i n e d w i t h o u t w o r s e n i n g t h e maximum f l o o d peak i n Como. O b v i o u s l y , s o l u t i o n s o f g r e a t e r

i n t e r e s t a r e t h e e f f i c i e n t o n e s b e l o n g i n g t o t h e l i n e BQ. Among them, p o i n t X h a s been s e l e c t e d and s u g g e s t e d t o t h e manager f o r i m p l e m e n t a t i o n . The f o r m u l a e f o r t h e d e t e r m i n a t i o n of t h e upper and lower l i m i t s o f t h e f e a s i b l e r e l e a s e s ( s e e E q u a t i o n ( 1 3 b ) ) have been programmed on a microcomputer which a l s o c o n t a i n s s o f t - ware f o r t h e r e a l - t i m e f o r e c a s t of t h e i n f l o w d u r i n g t h e c u r r e n t

day. T h i s computer i s now u s e d e v e r y d a y by t h e manager a s a t o o l f o r h i s f i n a l d e c i s i o n .

a

*

The v a l u e s s t min B

*

and max of t h e p r o p o s e d s o l u t i o n a r e

* *

B

a

shown i n F i g u r e 7. During t h e y e a r , s w i t h t h e t m a x >,'tmin

*

B a

e x c e p t i o n of one day (August 2 2 ) , on which s

t max = S t min ( a s shown i n S e c t i o n 6 , t h i s i n d i c a t e s t h a t t h e s o l u t i o n i s n o t

B *

*

d o m i n a t e d ) . The d i f f e r e n c e between s t m a x and satmin i s maximal

(37)

Eff icicnt solutions

I

Semieff icient Proposed

solutions solution

Demand satisfaction a

F i g u r e 6 . E f f i c i e n t a n d s e m i - e f f i c i e n t s o l u ' t i o n s f o r L a k e Como.

(38)

I

I

I

I I

I i

\ ..-.-. I

-.-.-

I .-.-.-

.-.-.t I

/

2

I I

I i

I ,i

0

"

2

i

I a 2 i

i

I 11

i

I

I I

I

I

0

I

0 0 0

0 0 0

*

C? CY

z

x e u i u ! u l

tds pue s sa6e~ois aqi $0 sanleA

* X )

Referenzen

ÄHNLICHE DOKUMENTE

• Whether the researcher critically examined their own role, potential bias and influence during analysis and selection of data for presentation Can’t

To tackle this issue, the SCOT (Smart Cyber Operating Theater) project started in 2014, and its state-of- the-art flagship model OR Hyper SCOT was introduced to Tokyo Women’s

In the case of lake Como, the min-max approach outlined in the previous section has been reduced to the following sequence of operations perfor- med

Increased federal funding for municipal wastewater treatment; required states to develop water-quality standards; established Federal Water Pollution Control

'This paper was written before the collapse of the Soviet Union. Consequently, numer- ous references refer to institutes, committees and organizations by their former All-Union

Unfortunately, the threats of mass unemployment in the scientific community and other sectors, increases in emigration of domestic experts, the uncertain path of conversion of

We propose a new approach t o the regulator design problem wich is based on the weak asymptotic stability theory for differential inclusions developed by Smirnov [3]..

Moreover if the set K is weakly convex then there exists a unique solution to (w,K,N~(*)). The first claim follows directly from the case c) of section 3 and Lemma 4.1. We