• Keine Ergebnisse gefunden

They can be found, as w e l l as a l o t o f f o u n d a t i o n a l m a t e r i a l , i n the paper [DK I I

N/A
N/A
Protected

Academic year: 2022

Aktie "They can be found, as w e l l as a l o t o f f o u n d a t i o n a l m a t e r i a l , i n the paper [DK I I"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contemporary Mathematics Volume 8,1982

SEMIALGEBRA'IC TOPOLOGY OVER A REAL CLOSED- FIELD Hans D e l f s and Manfred Knebusch

We f i x a r e a l c l o s e d f i e l d R. By a v a r i e t y over R we always mean a scheme o f f i n i t e type over R. T h i s paper g i v e s a s h o r t survey about our theory o f s e m i a l g e b r a i c spaces over R. S e m i a l g e b r a i c spaces seem t o be the adequate g e n e r a l i z a t i o n o f the c l a s s i c a l n o t i o n o f s e m i a l g e b r a i c s e t s over R. Copying the c l a s s i c a l d e f i n i - t i o n we can c o n s i d e r a l s o s e m i a l g e b r a i c subsets o f a r b i t r a r y

v a r i e t i e s over R. I n t r o d u c i n g the category o f s e m i a l g e b r a i c spaces we g e t r i d o f the inconvenience t h a t every s e m i a l g e b r a i c s e t i s embedded i n a v a r i e t y . The b a s i c d e f i n i t i o n s a r e g i v e n i n §1. They can be found, as w e l l as a l o t o f f o u n d a t i o n a l m a t e r i a l , i n the paper [DK I I ] . The a p p l i c a t i o n t o the theory o f W i t t r i n g s o u t l i n e d i n §3 i s c o n t a i n e d i n [DK I ] . The r e s u l t s on t r i a n g u l a t i o n and cohomology o f a f f i n e s e m i a l g e b r a i c spaces a r e c o n t a i n e d i n the t h e s i s o f the f i r s t author ( [ D ] ) . We omit here n e a r l y a l l p r o o f s and r e f e r the reader to these papers. But we emphasize t h a t i n a l l these p r o o f s T a r s k i ' s p r i n c i p l e i s never used t o t r a n s f e r s t a t e - ments from the f i e l d IR t o o t h e r r e a l c l o s e d base f i e l d s .

Contents

§1 B a s i c d e f i n i t i o n s

§2 Some r e s u l t s i n the theory o f s e m i a l g e b r a i c spaces

§3 An a p p l i c a t i o n t o W i t t r i n g s

§4 T r i a n g u l a t i o n o f a f f i n e s e m i a l g e b r a i c spaces

§5 Cohomological dimension

§6 The homotopy axiom i n s e m i a l g e b r a i c cohomology

§7 The d u a l i t y theorems

(2)

§ 1 B a s i c d e f i n i t i o n s

For any v a r i e t y V over R we denote by V(R) the s e t o f R - r a t i o n a l p o i n t s o f V.

D e f i n i t i o n 1; L e t V = Spec(A) be an a f f i n e v a r i e t y over R. A subset M o f V(R) i s c a l l e d a s e m i a l g e b r a i c subset o f V, i f M i s a f i n i t e union o f s e t s

{x € V(R) | f ( x ) = 0, g j ( x ) > 0, j = 1,...,r}

w i t h elements f , g.. € A.

The o r d e r i n g o f R induces a topology on the s e t V(R) o f r e a l p o i n t s of every a f f i n e R - v a r i e t y V, hence on every s e m i a l g e b r a i c subset M of V. We c a l l t h i s topology the s t r o n g topology.

D e f i n i t i o n 2: L e t V, W be a f f i n e v a r i e t i e s over R and M, N be semi- a l g e b r a i c subsets o f V r e s p . W.

A map f : M -> N i s c a l l e d s e m i a l g e b r a i c w i t h r e s p e c t t o V and W, i f f i s continuous i n s t r o n g topology and i f the graph G(f) o f f i s a s e m i a l g e b r a i c subset o f V xD W. The s e m i a l g e b r a i c maps from M t o R

1

w i t h r e s p e c t to V and A_ = Spec R[X] a r e c a l l e d the s e m i a l g e b r a i c f u n c t i o n s on M w i t h r e s p e c t to V.

D e f i n i t i o n 3: A r e s t r i c t e d t o p o l o g i c a l space M i s a s e t M together with a f a m i l y 6(M) o f subsets o f M, c a l l e d the open subsets o f M, such t h a t the f o l l o w i n g c o n d i t i o n s a r e s a t i s f i e d :

i ) 0 € #(M) , M C £(M)

i i ) U1 e e( M ) , U2 € 6(M) => U1 U U2 € 6(M).

N o t i c e the e s s e n t i a l d i f f e r e n c e t o the u s u a l t o p o l o g i c a l spaces:

I n f i n i t e unions o f open subsets a r e i n g e n e r a l not open.

We c o n s i d e r every r e s t r i c t e d t o p o l o g i c a l space M as a s i t e i n the f o l l o w i n g sense:

The category o f the s i t e has as o b j e c t s the open subsets U £ 6(M) of M and as morphisms the i n c l u s i o n maps between such s u b s e t s .

(3)

The c o v e r i n g s (IL | i G I) of an open subset U of M are the f i n i t e systems o f open subsets o f M w i t h U = U Ü..

i € I 1

Example: L e t V be an a f f i n e R - v a r i e t y and M be a s e m i a l g e b r a i c sub- s e t o f V. L e t 6(M) be the f a m i l y o f a l l subsets o f M which are open i n M i n the s t r o n g topology and which a r e i n a d d i t i o n s e m i a l g e b r a i c i n V. (M, 6(M)) i s a r e s t r i c t e d t o p o l o g i c a l space. We c a l l £his topology of M the s e m i a l g e b r a i c topology (with r e s p e c t t o V) and denote t h i s s i t e by Mp .

sa

D e f i n i t i o n 4: A r i n g e d space over R i s a p a i r (M,0M) c o n s i s t i n g o f a r e s t r i c t e d t o p o l o g i c a l space M and a sheaf 0M of R-algebras on M.

A morphism (f,£) : (M,0M) -* (N^N> between r i n g e d spaces c o n s i s t s o f a continuous map f : M -+ N ( i . e . the preimages of a l l open sub- s e t s o f N are open) and a f a m i l y ($v) o f R-algebra-homomor-

1 V € 6(N)

phisms which are compatible w i t h r e s t r i c t i o n .

Example: L e t M be a s e m i a l g e b r a i c subset o f an a f f i n e R - v a r i e t y V equipped with i t s s e m i a l g e b r a i c t o p o l o g y . F o r every open semialge- b r a i c subset U o f M l e t O^(XJ) be the R-algebra o f s e m i a l g e b r a i c f u n c t i o n s on U w i t h r e s p e c t to V. Then (M,0^) i s a r i n g e d space over R. I t i s c a l l e d a s e m i a l g e b r a i c subspace o f V.

D e f i n i t i o n 5:

i ) An a f f i n e s e m i a l g e b r a i c space over R i s a r i n g e d space (M,(?M) which i s isomorphic t o a s e m i a l g e b r a i c subspace of an a f f i n e R - v a r i e t y V.

i i ) A s e m i a l g e b r a i c space over R i s a r i n g e d space (K,0^) which has a ( f i n i t e ) c o v e r i n g (M^Ji € I) by open subsets such t h a t (Mj/tfjyjMi)is for a11 i € I an a f f i n e s e m i a l g e b r a i c

space.

i i i ) A morphism between s e m i a l g e b r a i c spaces i s a morphism i n the c a t e g o r y o f r i n g e d spaces.

As i s shown i n [DK I I , § 7 ] , a morphism (f,#) : (M,0^) -» (N,0^) b e t - ween s e m i a l g e b r a i c spaces i s completely determined by f :

For V € <§(N) and g € 0 (V) we have t5 (g) = g ° f . Hence we w r i t e

(4)

simply f i n s t e a d o f {£,&). These morphisms are a l s o c a l l e d s e m i a l - g e b r a i c maps. The morphisms f : M -> N between s e m i a l g e b r a i c sub- spaces M,N o f a f f i n e v a r i e t i e s V,W are j u s t the s e m i a l g e b r a i c maps from M to N with r e s p e c t t o V and W ([DK I I , § 7 ] ) .

L e t M be a s e m i a l g e b r a i c space. We denote by 6(M) the s m a l l e s t f a m i l y o f subsets o f M which f u l f i l l s the f o l l o w i n g c o n d i t i o n s : i ) 6(M) c <*(M)

i i ) A € 6(M) => M - A € 6(M) i i ) A,B e 6(M) => A U B € 6(M) .

The elements of 6(M) are c a l l e d the s e m i a l g e b r a i c subsets o f M. In the s p e c i a l case M = V(R) t h i s d e f i n i t i o n c o i n c i d e s with D e f i n i - t i o n 1 .

Tne s t r o n g topology on M i s the topology i n the u s u a l sense which has 6(M) as a b a s i s o f open s e t s . Thus the open s e t s i n the strong topology are the unions o f a r b i t r a r y f a m i l i e s i n 6(M). In the s p e c i a l case t h a t M i s a s e m i a l g e b r a i c subspace o f v a r i e t y V t h i s topology i s o f course the same as the s t r o n g topology i n the pre- v i o u s sense.

Since now n o t i o n s l i k e "open", " c l o s e d " , "dense", ... always r e f e r to the s t r o n g topology. In t h i s terminology the s e t s U € 6(M) are the open s e m i a l g e b r a i c subsets o f M and t h e i r complements M-U are the c l o s e d s e m i a l g e b r a i c subsets of M.

I t i s easy t o show t h a t f o r any two s e m i a l g e b r a i c maps f : M -* N and g : L -» N the f i b r e product M xN L e x i s t s i n the category of s e m i a l g e b r a i c spaces. I f N i s the one p o i n t space we w r i t e simply M x L f o r t h i s product.

Every s e m i a l g e b r a i c subset A G 6(M) o f a s e m i a l g e b r a i c space M i s i n a n a t u r a l way equipped with the s t r u c t u r e o f a s e m i a l g e b r a i c space:

The elements U € &(A) are those subsets o f A which are open i n A ( i n s t r o n g topology) and which are s e m i a l g e b r a i c i n M. A semialge- b r a i c f u n c t i o n f on U 6 6(A) i s a f u n c t i o n f : U -> R, which i s continuous i n s t r o n g topology and whose graph i s a s e m i a l g e b r a i c subset o f M x R.

A i s then a subobject o f M i n the category o f s e m i a l g e b r a i c spaces.

(5)

SEMIALGEBRAIC TOPOLOGY

§ 2 Some r e s u l t s i n the theory o f s e m i a l g e b r a i c spaces

D e f i n i t i o n 1; A s e m i a l g e b r a i c space M over R i s separated, i f i t f u l f i l l s the usual Hausdorff c o n d i t i o n : Any two d i f f e r e n t p o i n t s x and y o f M can be separated by open d i s j o i n t s e m i a l g e b r a i c neigh- bourhoods .

D e f i n i t i o n 2: A s e m i a l g e b r a i c space M over R i s c a l l e d complete, i f M i s separated and i f f o r a l l s e m i a l g e b r a i c spaces N over R the p r o j e c t i o n

M x N -* N

i s c l o s e d , i . e . , every c l o s e d s e m i a l g e b r a i c subset A o f M x N i s mapped onto a c l o s e d s e m i a l g e b r a i c subset o f N.

Since the c l o s e d s e m i a l g e b r a i c subsets o f the p r o j e c t i v e l i n e 1

PR(R) = R U {°°} which do not c o n t a i n the p o i n t 0 0 a r e f i n i t e unions of c l o s e d bounded i n t e r v a l s o f R, we o b t a i n immediately

P r o p o s i t i o n 2.1. L e t M be a complete s e m i a l g e b r a i c space over R.

Then every s e m i a l g e b r a i c f u n c t i o n f : M -> R a t t a i n s a minimum and a maximum on M.

Complete s e m i a l g e b r a i c spaces are the s u b s t i t u t e f o r compact spaces i n u s u a l topology.

Theorem 2.2 ([DK I I , 9.4]).

L e t M be a s e m i a l g e b r a i c space over the f i e l d 3 R o f r e a l numbers.

Then M i s complete i f and o n l y i f M i s a compact t o p o l o g i c a l space.

Theorem 2.3 ([DK I I , 9.6]).

L e t V be a complete R - v a r i e t y . Then the s e m i a l g e b r a i c space V(R) i s a l s o complete.

We c o n s i d e r every s e m i a l g e b r a i c subset M c Rn o f

AR = Spec R[X^,...,Xn] as a s e m i a l g e b r a i c subspace o f AR.

(6)

Theorem 2.4 ([DK I I , 9.4])

A c l o s e d and bounded s e m i a l g e b r a i c subset o f Rn i s a complete semi a l g e b r a i c space.

I f R i s not the f i e l d of r e a l numbers, the spaces Rn and hence a l l spaces V(R), where V i s an a f f i n e R - v a r i e t y , are t o t a l l y d i s - connected. To get reasonable connected components, one must f i n d another n o t i o n of connectedness.

D e f i n i t i o n 3: L e t M be a s e m i a l g e b r a i c space. A (semialgebraic) path i n M i s a s e m i a l g e b r a i c map a : [0,1] -* M from the u n i t i n t e r v a l i n R to M. Two p o i n t s P,Q of M are connectable, i f there i s a path a i n M with a(0) = P and a(1) = Q.

Every s e m i a l g e b r a i c space M s p l i t s under the equivalence r e l a t i o n

"connectable" i n t o path components.

Theorem 2.5 ([DK I I , 11.2]):

L e t M be a s e m i a l g e b r a i c space. Then M has a f i n i t e number of path components. Each of these components i s a s e m i a l g e b r a i c subset o f M.

I t f o l l o w s from a w e l l known theorem of T a r s k i t h a t the c l o s u r e N of a s e m i a l g e b r a i c subset N of a s e m i a l g e b r a i c space M i n s t r o n g topology i s again a s e m i a l g e b r a i c subset of M.

Theorem 2.6 (Curve S e l e c t i o n Lemma; [DK I I , 12.1]):

L e t N be a s e m i a l g e b r a i c subset of a s e m i a l g e b r a i c space M and l e t P be a p o i n t i n the c l o s u r e N of N i n M ( i n the s t r o n g t o p o l o g y ) . Then there e x i s t s a path a : [0,1] -> M with a(0) = P and

a(]0,1]) c N.

An immediate consequence of the l a s t two theorems i s

C o r o l l a r y 2.7 The f i n i t e l y many path components of a semialge- b r a i c space M are c l o s e d and hence open s e m i a l g e b r a i c subsets of M

(7)

Theorems 2.5 and 2.6 can be e a s i l y d e r i v e d from the t r i a n g u l a t i o n theorem (4.1), but i t i s not necessary t o use such a s t r o n g r e s u l t . The p r o o f s i n [DK I I ] are r a t h e r easy and elementary.

D e f i n i t i o n 4 ( [ B ] , p.249): A s e m i a l g e b r a i c space M i s c a l l e d connected i f i t i s not the union o f two non empty open semialge- b r a i c subsets.

The images o f (path-)connected s e m i a l g e b r a i c spaces are o b v i o u s l y again (path-)connected. Since the u n i t i n t e r v a l i n R i s connected, we see t h a t any path connected space i s connected. C o r o l l a r y 2.7

i m p l i e s t h a t a l s o the converse i s t r u e .

C o r o l l a r y 2.8: A s e m i a l g e b r a i c space i s connected i f and o n l y i f i t i s path connected.

From now on we say simply "component" i n s t e a d o f "path component".

The number o f components i s i n the f o l l o w i n g sense a b i r a t i o n a l i n v a r i a n t .

Theorem 2.9 ([DK I I , 13.3]):

L e t V and W be b i r a t i o n a l l y e q u i v a l e n t smooth complete v a r i e t i e s over R. Then V(R) and W(R) have the same number o f components.

The proof o f Theorem 2.9 i n [DK I I ] i s a s t r a i g h t f o r w a r d a d a p t i o n o f c l a s s i c a l arguments and i l l u s t r a t e s t h a t i t i s p o s s i b l e by our theory to t r a n s f e r q u i t e a l o t o f geometric i d e a s , f a m i l i a r i n the case R =3R, to a r b i t r a r y r e a l c l o s e d base f i e l d s . A q u i t e d i f f e r e n t proof o f Theorem 2.9 has been given by M.F. Coste-Roy ( [ C ] ) .

§ 3 An a p p l i c a t i o n to W i t t r i n g s

L e t X be a d i v i s o r i a l v a r i e t y over an a r b i t r a r y ( n o t n e c e s s a r i l y r e a l closed) f i e l d k. (Notice t h a t a l l r e g u l a r and a l l q u a s i p r o j e c t i v e v a r i e t i e s over k are d i v i s o r i a l ) . We c o n s i d e r the s i g n a t u r e s o f X, i . e . the r i n g homomorphisms from the W i t t r i n g W(X) o f b i l i n e a r spaces over X t o the r i n g o f i n t e g e r s 2Z ( c f . [K] f o r the g e n e r a l theory and meaning o f s i g n a t u r e s ) .

(8)

I t i s shown i n [K, V.1] t h a t any s i g n a t u r e f a c t o r s through some p o i n t x of X, i . e . , there e x i s t s a commutative diagram

W(X)

W ( K ( X ) )

with W (X) -» W ( K ( X ) ) the n a t u r a l map from W (X) to the Witt r i n g of the r e s i d u e c l a s s f i e l d K ( X ) . Using our theory we are able to prove

Theorem 3.1 ([DK I ,5.1]):

Every s i g n a t u r e a of X f a c t o r s through a c l o s e d p o i n t x of X.

Theorem 3.1 i s f i r s t proved i n the case t h a t k = R i s a r e a l c l o s e d f i e l d . The proof runs e s s e n t i a l l y along the same l i n e s as the proof i n the s p e c i a l case t h a t R =3R [ K, Chap V ] . I t i s based on

Theorem 2.5 which s t a t e s t h a t X(R) has o n l y a f i n i t e number of components. Using the theory o f r e a l c l o s u r e s of schemes ( [ K ^ ] ) , i t i s p o s s i b l e to extend Theorem 3.1 to a r b i t r a r y base f i e l d s .

§ 4 T r i a n g u l a t i o n of a f f i n e s e m i a l g e b r a i c spaces

To avoid c o n f u s i o n what i s meant by a t r i a n g u l a t i o n we f i r s t give two d e f i n i t i o n s .

D e f i n i t i o n 1; An open non degenerate n-simplex S over R i s the i n t e r i o r ( i n s t r o n g topology) of the convex c l o s u r e of n + 1 a f f i n e independent p o i n t s e0,...,e i n some space Rm, c a l l e d the v e r t i c e s of S, i . e .

r n n 1

S = < I t . e. I t . € R, t . > 0, I t . = 1>.

li=0 1 1 1 i=0 1 J

r D e f i n i t i o n 2. A s i m p l i c i a l complex over R i s a p a i r (X, X = U S. )

k=1 K

c o n s i s t i n g of a s e m i a l g e b r a i c subset X of some a f f i n e space

(9)

R and a decomposition X = U S of X i n t o d i s j o i n t open nonde-

k=1 K

generate s i m p l i c e s S^., such t h a t the f o l l o w i n g c o n d i t i o n i s f u l - f i l l e d :

The i n t e r s e c t i o n S^ fl S^ of the c l o s u r e s of any two s i m p l i c e s

Sk ' S lis e itn er e mP t y or is a f a c e ( d e f i n e d as usual) of S^ as w e l l as o f S^.

We can now s t a t e the t r i a n g u l a t i o n theorem which says t h a t f i n i t e l y many s e m i a l g e b r a i c subsets of an a f f i n e s e m i a l g e b r a i c space can be

t r i a n g u l a t e d s i m u l t a n e o u s l y .

Theorem 4.1 ([D, 2.2]):

L e t " fMj } j ^ j be a f i n i t e f a m i l y of s e m i a l g e b r a i c subsets o f an a f f i n e s e m i a l g e b r a i c space M. Then t h e r e e x i s t s a s e m i a l g e b r a i c

isomorphism r

<f> : X = U S, U M. , k=1 K j € J 3

such t h a t each s e t M. i s a union of c e r t a i n images (J>(S,) of s i m p l i -

3 K ces S^ of X.

In the proof of Theorem 3 one e a s i l y r e t r e a t s to the case t h a t the s e t s Mj are bounded s e m i a l g e b r a i c subsets o f some Rn. Then i n d u c - t i o n on n i s used, the case n = 1 being t r i v i a l . The main problem i s to f i n d a s u b s t i t u t e f o r the a n a l y t i c t o o l s used i n the

c l a s s i c a l p r o o f s f o r R = 3R ( c f . [ H ] ) .

§ 5 Cohomological dimension

The f o l l o w i n g " i n e q u a l i t y of L o j a s c i e w i c z " can be proved with h e l p of Theorem 2.4.

Lemma 5.1 ([D, 3.2]): L e t M be a c l o s e d and bounded s e m i a l g e b r a i c subset o f Rn and f , g be s e m i a l g e b r a i c f u n c t i o n s on M. Assume t h a t f o r a l l x € M f ( x ) = 0 i m p l i e s g(x) = 0 . Then there i s a c o n s t a n t C > 0, C € R, and a n a t u r a l number m, such t h a t f o r a l l x € M

| f ( x ) | > C | g ( x ) |

(10)

From Lemma 4.1 one can d e r i v e i n a s i m i l a r way as i t i s done i n a s p e c i a l case f o r R = 1R i n [BE]

Theorem 5.2 ([D, 3.3]):

L e t M be a s e m i a l g e b r a i c subset o f an a f f i n e R - v a r i e t y V = Spec A and l e t U be an open s e m i a l g e b r a i c subset o f M. Then U i s a f i n i t e union o f s e t s

{x € M | f.(x) > 0, i = 1,...,r}

with f . € A , i = 1 , . . . , r .

Other p r o o f s o f t h i s f a c t have been g i v e n by D e l z e l l [ D e , Chap.II]and M.F. Coste-Roy ([C]).

A sheaf F on a s e m i a l g e b r a i c space M a s s i g n s t o every open s e m i a l - g e b r a i c subset U o f M an a b e l i a n group F(U) such t h a t the u s u a l c o m p a t i b i l i t i e s with r e s p e c t t o r e s t r i c t i o n and the sheaf c o n d i - t i o n are f u l f i l l e d . Since we admit o n l y f i n i t e c o v e r i n g s i n the s e m i a l g e b r a i c topology M o f M ( c f . § 1 ) , the sheaf c o n d i t i o n

sa

must hold o n l y f o r f i n i t e c o v e r i n g s .

I t i s c l e a r from G r o t h e n d i e c k1s d e f i n i t i o n what the cohomology groups Hq(M,F) o f M with c o e f f i c i e n t s i n an a b e l i a n sheaf F on M are ( [ G ] , [ A ] ) :

Choose a r e s o l u t i o n

0 F -+ J° -* J1 -» J 2 ->

o f F by i n j e c t i v e sheaves J , apply the g l o b a l s e c t i o n f u n c t o r and take the cohomology groups o f the a r i s i n g complex:

Hq(M,F) = K e r ( Jq( M ) - Jq+1 (M) ) / I m ( Jq~1 (M) - Jq( M ) ) . I t f o l l o w s from Theorem 5.2 t h a t an a f f i n e s e m i a l g e b r a i c space has s i m i l a r s e p a r a t i n g p r o p e r t i e s as a u s u a l paracompact t o p o l o g i c a l space. Using t h i s f a c t we can prove

Theorem 5.3 ([D, 5.2]):

L e t M be an a f f i n e s e m i a l g e b r a i c space and F be an a b e l i a n sheaf on M. Then the c a n o n i c a l homomorphism

HP(M,F) HP(M,F)

(11)

from Cech- t o Grothendieck cohomology i s f o r a l l p > O an i s o - morphism.

Every s e m i a l g e b r a i c space M has a c e r t a i n w e l l d e f i n e d dimension ([DK I I , § 8 ] ) . I f M i s a s e m i a l g e b r a i c subset o f an R - v a r i e t y V, dim M i s simply the dimension o f the Z a r i s k i - c l o s u r e o f M i n V.

Since every a f f i n e s e m i a l g e b r a i c space can be t r i a n g u l a t e d (Theorem 4.1) and Grothendieck-cohomology c o i n c i d e s w i t h Cech- cohomology,similar arguments as i n [Go, 1 1 . 5 , 1 2 ] show t h a t the cohomological dimension does not exceed the t o p o l o g i c a l dimension.

Theorem 5.4 ([D, 5.9]):

L e t M be an a f f i n e s e m i a l g e b r a i c space o f dimension n. Then f o r a l l a b e l i a n sheaves F on M

Hq(M,F) = 0 f o r a l l q > n.

§ 6 The hojtiotopy axiom i n s e m i a l g e b r a i c cohomology

L e t M be a s e m i a l g e b r a i c space and G be an a b e l i a n group. G y i e l d s

the c o n s t a n t sheaf GM on M: F o r an open s e m i a l g e b r a i c subset U o f M

G (U) = TT G ,

•nO(U>

where n 0( U ) i s the f i n i t e s e t o f components o f U.

We denote by [0,1] the u n i t i n t e r v a l i n R.

In the c l a s s i c a l theory homo t o p i c maps induce the same homomorphisms i n cohomology. T h i s i s a l s o t r u e i n s e m i a l g e b r a i c topology over an a r b i t r a r y r e a l c l o s e d f i e l d , a t l e a s t i n the a f f i n e case.

Theorem 6.1 ([D, 7.1]): L e t fQ, f^ : M 4 N be homotopic semialge- b r a i c maps between a f f i n e s e m i a l g e b r a i c spaces, i . e . there e x i s t s a s e m i a l g e b r a i c map H : M x [0,1] -> N, such t h a t H(-,0) = f ,

(12)

H(-,1) = f . Then f and induce the same homomorphisms i n coho- mology:

f * = f * : Hq(N,GN) -> Hq(M,GM) .

We proof Theorem 6.1 by use of Alexander-Spanier-cohomology which i s d e f i n e d i n a s i m i l a r manner as i n the c l a s s i c a l case ( c f . [ S ] ) . The sheaves of A l e x a n d e r - S p a n i e r - c o c h a i n s y i e l d a r e s o l u t i o n of GM

by f l a s k sheaves (defined as i n the t o p o l o g i c a l c a s e ) . F l a s k r e s o l u t i o n s can be used to determine cohomology. Thus Alexander- Spanier-cohomology i s the same as Grothendieck-cohomology. The e x i s t e n c e of i n f i n i t e l y small elements i n a non archimedian f i e l d r i s e s many d i f f i c u l t i e s i n the proof of Theorem 6.1, compared with the c l a s s i c a l case. For example, we cannot make i n t e r v a l s and t r i a n g l e s " a r b i t r a r i l y s m a l l " by b a r y c e n t r i c or even " l i n e a r " sub- d i v i s i o n . Our proof i s based on a c a r e f u l i n v e s t i g a t i o n of the r o o t s of a system of p o l y n o m i a l s .

We use Theorem 6.1 to i d e n t i f y the s e m i a l g e b r a i c cohomology groups Hq(M,GM) with c e r t a i n s i m p l i c i a l cohomology groups. For the r e s t of t h i s s e c t i o n l e t M be an a f f i n e s e m i a l g e b r a i c space and G be a f i x e d a b e l i a n group. Consider a t r i a n g u l a t i o n

r

4> : X = U S. M i=1 1

of M (§4) . For t e c h n i c a l reasons we have to assume t h a t (j) i s a b a r y c e n t r i c s u b d i v i s i o n of another t r i a n g u l a t i o n o f M.

We then a s s o c i a t e to <j) the f o l l o w i n g a b s t r a c t s i m p l i c i a l complex K:

The s e t V(K) of v e r t i c e s o f K c o n s i s t s o f a l l v e r t i c e s of X l y i n g i n X. (Notice t h a t X i s not n e c e s s a r i l y c l o s e d ) .

A subset e~,...,e of V(K) i s a simplex of K, i f e_,...,e are

u q L O q

the v e r t i c e s of a simplex S ^ i G {1,...,r}.

In the u s u a l way we form the s i m p l i c i a l cohomology groups Hq(K,G).

P r o p o s i t i o n 6.2 ([D,8.4]):

Hq(M,GM) = Hq(K,G) f o r a l l q > 0.

In p a r t i c u l a r , the s i m p l i c i a l cohomology groups Hq(K,G) do not depend on the chosen t r i a n g u l a t i o n of M.

(13)

The proof of P r o p o s i t i o n 6.2 uses the d e s c r i p t i o n of H4(M,GM) as Cech-cohomology and Theorem 6.1 which i m p l i e s t h a t the c o v e r i n g

{ S t ( e ) }e evo f M, c o n s i s t i n g of the s t a r neighbourhoods of the v e r t i c e s of M w i t h r e s p e c t to c|), i s a L e r a y - c o v e r i n g f o r the sheaf

I t i s now p o s s i b l e to d e f i n e a l s o homology groups.

D e f i n i t i o n 1: H (M,G) := H (K,G) i s c a l l e d the q-th homology group q q

of M w i t h c o e f f i c i e n t s i n G.

T h i s d e f i n i t i o n does not depend on the chosen t r i a n g u l a t i o n of M as f o l l o w s from the corresponding f a c t f o r cohomology ( P r o p o s i t i o n 6.2).

The homology groups H (M,G) are f u n c t o r i a l i n M s i n c e , a c c o r d i n g to Theorem 4.1, every s e m i a l g e b r a i c map between a f f i n e s e m i a l g e b r a i c spaces can be "approximated" by a s i m p l i c i a l map ( c f . [D, §8]).

P r o p o s i t i o n 6.2 i m p l i e s a l s o t h a t f o r R = 1R the s e m i a l g e b r a i c coho- mology groups c o i n c i d e w i t h the usual ( s i n g u l a r ) cohomology groups determined w i t h r e s p e c t to s t r o n g topology. For homology t h i s i s t r u e by d e f i n i t i o n .

Another immediate consequence of the s i m p l i c i a l i n t e r p r e t a t i o n of homology and cohomology i s t h a t the groups are i n v a r i a n t under change of the base f i e l d . We w i l l i l l u s t r a t e t h i s i n a s p e c i a l case.

L e t L be a r e a l c l o s e d f i e l d c o n t a i n i n g R. Assume, M i s a s e m i a l - g e b r a i c subset of Rn. We choose a d e s c r i p t i o n of M by f i n i t e l y many polynomial i n e q u a l i t i e s and e q u a l i t i e s . L e t denote the s e m i a l g e b r a i c subset of Ln d e f i n e d by the same i n e q u a l i t i e s and e q u a l i t i e s . By use of T a r s k i!s p r i n c i p l e - here c l e a r l y l e g i t i m a t e and unavoidable - we see t h a t the s e t i s independent of the c h o i c e of the d e s c r i p t i o n of M.

I t a l s o f o l l o w s from T a r s k i ' s p r i n c i p l e t h a t the t r i a n g u l a t i o n r

cj> : X = U S . M

i=1 1

y i e l d s a t r i a n g u l a t i o n

*L = XL = Si L — ML

(14)

of MT . The a s s o c i a t e d a b s t r a c t complex of <j>T i s a l s o K and we get with Prop. 6.2 and Def. 1:

Hq(M,G) = Hq(ML,G), HfM,G) = H (M_,G).

q q L

Example: The n-sphere s£ = {(x.,...,x ) E RN | X x. = 1} has the i=0 1

same homology and cohomology as the n-sphere S^ over IR, s i n c e SR and S^ both can be obtained from SR by base e x t e n s i o n , w i t h RQ the r e a l c l o s u r e of Thus °

HQ(SR,G) 2 H n(SR ' G ) S H°(SR,G) Hn( SR, G ) a* G, Hq( SR, G ) = 0, Hq( SR, G ) = 0 f o r q ^ 0,n.

§ 7 The d u a l i t y theorems

As an example o f our theory we want to e x p l a i n t h a t i n a c e r t a i n sense the c l a s s i c a l d u a l i t y theorems f o r manifolds remain t r u e over an a r b i t r a r y r e a l c l o s e d f i e l d . We c o n s i d e r a s e m i a l g e b r a i c space M over R.

D e f i n i t i o n 1. M i s an n-dimensional s e m i a l g e b r a i c m a n i f o l d i f every p o i n t x € M has an open s e m i a l g e b r a i c neighbourhood which i s isomorphic to an open s e m i a l g e b r a i c subset of Rn.

Example 1: I t f o l l o w s from the i m p l i c i t f u n c t i o n theorem f o r p o l y - nomials ( c f . [DK I I , 6.9]) t h a t every open s e m i a l g e b r a i c subset U of the s e t V(R) of r e a l p o i n t s of an n-dimensional smooth R - v a r i e t y V i s an n-dimensional s e m i a l g e b r a i c m a n i f o l d ([DK I I , §13]).

From now on we assume t h a t M i s a f f i n e and complete.

We choose a t r i a n g u l a t i o n

r

<j) : X = U S. M i=1 1

and a s s o c i a t e to (f> an a b s t r a c t s i m p l i c i a l complex K as i n §6.

Since M i s complete, X i s c l o s e d and bounded i n i t s embedding m

space R .

(15)

We f o l l o w i n our n o t a t i o n the book of Maunder on a l g e b r a i c t o p o l o - gy ([M]). F o r any p o i n t x € M we denote by N^Cx) the union

U ^(S^) o f a l l c l o s e d " s i m p l i c e s " of M w i t h r e s p e c t to (J)

* "1( x ) € S i .

c o n t a i n i n g x. The union Lk. (x) := N. (x) ^ ( U <j>(S.)) o f those

* (x)€ S±

" s i m p l i c e s " o f N.(x) which do not c o n t a i n x i s c a l l e d the l i n k o f x.

D e f i n i t i o n 2: M i s c a l l e d a homology-n-manifold i f f o r a l l x € M , 7Z q = 0,n

Hg( L ^ ( x ) , B ) = { 0 G ^ 0 / N

D e f i n i t i o n 2 does not depend on the chosen t r i a n g u l a t i o n cj>

( c f . [ M ] ) .

Example 2: Every a f f i n e complete n-dimensional s e m i a l g e b r a i c mani- f o l d i s a homology-n-manifold ([D, §10]).

Subexample 2 a. The Z a r i s k i - o p e n subset U o f the m-dimensional p r o - j e c t i v e space IP1? over R, o b t a i n e d by removing the hyper s u r f ace

2 2 2 m

X^ + X. + ... + X = 0 fromlP^, i s a f f i n e and has the same r e a l o 1 m R

p o i n t s as 3PR. Hence the space V(R) o f r e a l p o i n t s o f a p r o j e c t i v e R - v a r i e t y V i s a f f i n e . I t i s a l s o complete by Theorem 2.3. Thus i f V i s p r o j e c t i v e , smooth and has dimension n the space V(R) i s a homology-n-manifold.

We r e t u r n t o our a f f i n e and complete s e m i a l g e b r a i c space M and assume i n a d d i t i o n t h a t M i s a homology-n-manifold.

D e f i n i t i o n 3: I f M i s connected, we c a l l M o r i e n t a b l e i f

Hn(M, ffi) =ZZ. In g e n e r a l M i s c a l l e d o r i e n t a b l e , i f each component of M i s o r i e n t a b l e .

Example: The n-sphere SR over R i s an o r i e n t a b l e homology-n-mani- f o l d Cef. §6) .

Theorem 7.1 ( P o i n c a r e - d u a l i t y ) :

Assume M i s o r i e n t a b l e . Then t h e r e are c a n o n i c a l isomorphisms Hq(M,2Z) H (M,ffi ) -

n-q

(16)

I f M i s not o r i e n t a b l e , there a r e s t i l l isomorphisms Hq(M,2Z/2) ^> H (M,ZZ/2) .

n-q

The proof i s very easy: Consider a r e a l i z a t i o n I K^ of the a b s t r a c t complex K over JR, i . e . , a c l o s e d s i m p l i c i a l complex over M w i t h a s s o c i a t e d a b s t r a c t complex K. Then I K L i s an ( o r i e n t a b l e ) homo- logy-n-manifold over ]R and the c l a s s i c a l Poincare'-Duality a p p l i e s to I K L. But s e m i a l g e b r a i c (co-)homology of M and s i n g u l a r (co-)

JK

homology o f IKI c o i n c i d e both with the (co-)homology o f the ab-

IK

s t r a c t complex K.

In a s i m i l a r way other d u a l i t y theorems can a l s o be t r a n s f e r r e d to an a r b i t r a r y r e a l c l o s e d f i e l d .

Using r e l a t i v e homology- and cohomology groups, one d e r i v e s from P o i n c a r e - d u a l i t y

Theorem 6 . ( A l e x a n d e r - d u a l i t y )

Let A be a s e m i a l g e b r a i c subset o f the n-sphere S^. Then there a r e isomorphisms

where Hq( r e s p . H ) denotes the reduced cohomology (resp.homology) group.

As an a p p l i c a t i o n we get the g e n e r a l i z e d Jordan curve theorem over any r e a l c l o s e d f i e l d .

C o r o l l a r y 7. L e t M be a s e m i a l g e b r a i c subset o f SR (n > 1 ) . Assume M i s a homology-n-manifold w i t h k components.

Then S^+^ -M has k+1 connected components. In p a r t i c u l a r : I f M

n4* 1

i s s e m i a l g e b r a i c a l l y isomorphic to sj? then S_ - M has 2 compo-

R K

nents. In t h i s case M i s the common boundary o f these two compo- nents .

Proof: From A l e x a n d e r - d u a l i t y we o b t a i n

H ( S £+ 1 -M,ZZ) ^ ffn(M,ZZ) ^ Hn(M,2Z)

(17)

and by P o i n c a r e - d u a l i t y

HN( M, 2 Z / 2 ) HQ( M, 2Z/ 2 ) £ TT 7Z/2.

The statement c o n c e r n i n g the boundary i s proved by s i m i l a r arguments.

References

[A]

[B]

[BE]

[Cl

[D]

[DK I ]

[DK I I ]

[De]

M. A r t i n , "Grothendieck t o p o l o g i e s " , Harvard U n i v e r s i t y , 1962.

G. W. B r u m f i e l , " P a r t i a l l y ordered r i n g s and s e m i a l g e b r a i c geometry", Cambridge U n i v e r s i t y Press (1979).

J . Bochnak, G. Efroymson, Real a l g e b r a i c geometry and the 1 7t h H i l b e r t Problem, Math. Ann. 251, 213-241 (1980).

M.F. Coste-Roy, Spectre r e e l d'un anneau e t topos e t a l e r e e l , These, U n i v e r s i t e P a r i s Nord (1980).

H. P e l f s , Kohomologie a f f i n e r s e m i a l g e b r a i s c h e r Räume, T h e s i s , Regensburg (1980).

H. P e l f s , M. Knebusch, S e m i a l g e b r a i c topology over a r e a l c l o s e d f i e l d I : Paths and components i n the set o f r a t i o n a l p o i n t s o f an a l g e b r a i c v a r i e t y , t o appear i n Math. Z .

H. P e l f s , M. Knebusch, S e m i a l g e b r a i c topology over a r e a l c l o s e d f i e l d I I : B a s i c theory o f semialge- b r a i c spaces, p r e p r i n t , Regensburg (1980).

C.N. P e l z e l l , A c o n s t r u c t i v e , continuous s o l u t i o n th

to H i l b e r t1s 17 Problem, and o t h e r r e s u l t s i n semi- a l g e b r a i c geometry, T h e s i s , S t a n f o r d U n i v e r s i t y , 1 9 8 0 .

(18)

[ GQ] R. Godement, "Theorie des faisceaux", Hermann, P a r i s (1958).

[G] A. Grothendieck, Sur quelques p o i n t s d'algebre homologique, Tohoku Math. Journ. A. IX (1957),

119-221.

[H] H. Hironaka, T r i a n g u l a t i o n o f a l g e b r a i c s e t s ,

Proc. Amer. Math. Soc., Symp. i n Pure Math. 29 (1975), 165-185.

[K] M. Knebusch, "Symmetrie b i l i n e a r forms over a l g e b r a i c v a r i e t i e s " . In: Conference on q u a d r a t i c forms

(Kingston 1976), 103-283. Queen's papers i n Pure A p p l . Math. 46 (1977).

[K^] M. Knebusch, Real c l o s u r e s o f a l g e b r a i c v a r i e t i e s , i b i d . , 548-568.

[M] C.R.F. Maunder, " A l g e b r a i c topology", Van Nostrand Reinhold Company, London (1970).

[S] E.H. Spanier, " A l g e b r a i c topology", McGraw H i l l Book Company, New York (1966).

FACHBEREICH MATHEMATIK DER UNIVERSITÄT REGENSBURG

WEST GERMANY

Referenzen

ÄHNLICHE DOKUMENTE

Schmitter and Gerhard Lehmbruch (Schmitter and Lehm- bruch, 1979; Lehmbruch and Schmitter, 1980).. While the

[r]

- Mitglied der Berufungskommission für die Besetzung des Lehrstuhls für Liturgiewissenschaft (W3) an der Theologischen Fakultät Trier, 2020-2021.. - Mitglied des

Unsere Weine finden Sie auch in unseren Vinotecas in Zürich-Wipkingen, Bern und Montagnola TI.. Oder jederzeit

Dies gilt auch für die für Anfang Dezember angesetzte Generalversammlung und die ge- plante Weihnachtsfeier im Concordia Club.. Es ist daher dringend notwendig, sich sowohl

4 Despite the important scholarly interventions surrounding available numerical data, quantitative information continues to converge with a set of structuring, essentialist,

backdrop to highlighting the security implications of these patterns and underscores the need to mainstream climate change adaptation into the rural development process Policies

[r]