• Keine Ergebnisse gefunden

Übung zu Drahtlose Kommunikation

N/A
N/A
Protected

Academic year: 2022

Aktie "Übung zu Drahtlose Kommunikation"

Copied!
36
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Übung zu Drahtlose Kommunikation

1. Übung

06.11.2018

(2)

Dr. Jovan Radak

– Room: B 229

– Mail: radak@uni-koblenz.de

– Exercises in English

(3)

Exercise 1

(4)

Exercise 1

k=1 sin(1*t) k=3 sin(3*t) k=5 sin(5*t)

(5)

Exercise 1

Odd numbered multiplications of the base frequency 𝜔𝜔 = 2𝜋𝜋𝜋𝜋

k=1 sin(1*t) => 𝜋𝜋 = 1 � 2𝜋𝜋1 k=3 sin(3*t) => 𝜋𝜋 = 3 � 2𝜋𝜋1

k=5 sin(5*t) => 𝜋𝜋 = 5 � 2𝜋𝜋1

(6)

Exercise 1

We would need an infinite number of elements in the sum (which is practically impossible)

(7)

Exercise 1

Not perfect, edges are not steep and it is not completely flat

A bit smaller than the original (on average)

In theory bandwidth does not change, however we have attenuation which affects signal

Not changed

(8)

Exercise 2

(9)

Exercise 2

20𝑑𝑑𝑑𝑑 = 10 log

10

𝐺𝐺 ⇒ 𝐺𝐺 = 10

2010

= 100 ⇒ 1%

(10)

Exercise 2

𝑃𝑃

𝑅𝑅𝑅𝑅

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃

𝑇𝑇𝑅𝑅

𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐺𝐺

𝑇𝑇𝑅𝑅

𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑 + 𝐺𝐺

𝑅𝑅𝑅𝑅

𝑑𝑑𝑑𝑑

𝑃𝑃

𝑅𝑅𝑅𝑅

𝑑𝑑𝑑𝑑𝑑𝑑 = 10 + 20 − 60 = −30𝑑𝑑𝑑𝑑𝑑𝑑

(11)

Exercise 2

Yes!!!

Direct consequence of the result from the previous task.

Remember: Friis free space model also takes into

account antenna gain.

(12)

Exercise 2

dBm – refers to the real power (power is compared against reference power of 1mW)

dB – refers to the factor by which values differ from

each other (simple division of two values)

(13)

Exercise 3

(14)

Exercise 3

𝜆𝜆 = 𝑐𝑐

𝜋𝜋 = 3 � 108 𝑑𝑑 𝑠𝑠 868 � 106 1

𝑠𝑠

= 300

860 𝑑𝑑 = 34,6 𝑐𝑐𝑑𝑑

(15)

Exercise 3

𝜆𝜆 = 𝑐𝑐

𝜋𝜋 = 3 � 108 𝑑𝑑 𝑠𝑠 868 � 106 1

𝑠𝑠

= 300

860 𝑑𝑑 = 34,6 𝑐𝑐𝑑𝑑

𝜋𝜋 = 𝑐𝑐

𝜆𝜆 = 3 � 108 𝑑𝑑

6 � 10−2𝑠𝑠𝑑𝑑 = 5 � 1091

𝑠𝑠 𝑑𝑑 = 5 𝐺𝐺𝐺𝐺𝐺𝐺

(16)

Exercise 3

𝜆𝜆 = 𝑐𝑐

𝜋𝜋 = 3 � 108 𝑑𝑑 𝑠𝑠 868 � 106 1

𝑠𝑠

= 300

860 𝑑𝑑 = 34,6 𝑐𝑐𝑑𝑑

𝜋𝜋 = 𝑐𝑐

𝜆𝜆 = 3 � 108 𝑑𝑑

6 � 10−2𝑠𝑠𝑑𝑑 = 5 � 1091

𝑠𝑠 𝑑𝑑 = 5 𝐺𝐺𝐺𝐺𝐺𝐺

𝜋𝜋 = 𝑐𝑐

𝜆𝜆 ⇒ 𝜋𝜋 = 𝑐𝑐 4𝑥𝑥

(17)

Exercise 4

(18)

Exercise 4

𝐺𝐺 = 𝑒𝑒𝑎𝑎 � 𝜋𝜋 � 𝜋𝜋 � 𝑑𝑑 𝑐𝑐

2

= 0,6 � 𝜋𝜋 � 4 𝐺𝐺𝐺𝐺𝐺𝐺 � 0,6 𝑑𝑑 3 � 108 𝑑𝑑

𝑠𝑠

2 = 0,6 � 𝜋𝜋 � 24 3

2

= 379

⇒ 𝐺𝐺 𝑑𝑑𝑑𝑑𝑑𝑑 = 10 � log10𝐺𝐺 = 25,8 𝑑𝑑𝑑𝑑𝑑𝑑

(19)

Exercise 4

Diameter increased:

0,9 𝑑𝑑 = 1,5 � 0,6 𝑑𝑑 ⇒ 50% ⇒ 𝑑𝑑1 = 1,5 � 𝑑𝑑 That means:

⇒ 𝐺𝐺1 𝑑𝑑𝑑𝑑 = 10� log𝑒𝑒𝑎𝑎 � 𝜋𝜋 � 𝜋𝜋 � 𝑑𝑑1 𝑐𝑐

2

= 10 log𝑒𝑒𝑎𝑎 + 20 log𝜋𝜋 � 𝜋𝜋

𝑐𝑐 + 20 log 1,5 � 𝑑𝑑

𝐺𝐺1 𝑑𝑑𝑑𝑑 = 10 �log𝑒𝑒𝑎𝑎 � 𝜋𝜋 � 𝜋𝜋 � 𝑑𝑑1 𝑐𝑐

2

= 10 log𝑒𝑒𝑎𝑎 + 20 log𝜋𝜋 � 𝜋𝜋

𝑐𝑐 + 20 log𝑑𝑑 + 20 log 1,5 𝐺𝐺1 𝑑𝑑𝑑𝑑 = 𝐺𝐺 + 20 log 1,5 = 𝐺𝐺 + 3,52 𝑑𝑑𝑑𝑑

(20)

Exercise 5

(21)

Exercise 5

Wired transmission attenuates 3dB per km

⇒ We have linear attenuation that depends on the distance

⇒ attenuation = distance * attenuation (1km)

Wireless transmission is modeled according to Friis free space model

⇒ 𝑃𝑃𝑅𝑅𝑅𝑅

𝑃𝑃𝑇𝑇𝑅𝑅 = 𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟 𝜆𝜆 4𝜋𝜋𝜋𝜋

2

⇒ 10 log𝑃𝑃𝑅𝑅𝑅𝑅

𝑃𝑃𝑇𝑇𝑅𝑅 = 10 log𝐺𝐺𝑡𝑡 + 10 log𝐺𝐺𝑟𝑟 + 20 log 𝜆𝜆

4𝜋𝜋 − 20 log𝜋𝜋

⇒ The only part that changes is:

⇒ 20 log𝜋𝜋

⇒ And the distances are doubled

⇒ 20 log 2𝜋𝜋 = 20 log𝜋𝜋 + 20 log 2

⇒ 20 log𝜋𝜋 + 20 log 2

⇒ 20 log𝜋𝜋 + 20 log 4

⇒ 20 log𝜋𝜋 + 20 log 8

⇒ 20 log𝜋𝜋 + 20 log 16

(22)

Exercise 5

distance (km) wireless (dB) wired (dB)

1 -6 -3

2 -12 -6

4 -18 -12

8 -24 -24

16 -30 -48

(23)

Exercise 6

A base station (BS) is located at position (7,0). A mobile terminal (MT) is located at position (3,0). A wall is

located at y=3. The radio link between BS and MT consists of two paths, the line of sight (LOS) and the reflection at the wall.

The MT transmits to BS. The data is modulated on a carrier wave with a wavelength of 40 cm.

(24)

Exercise 6

(25)

Exercise 6

Inverted, we have a phase shift of 180°

Distances:

𝑑𝑑1 = 4𝑑𝑑

𝑑𝑑2 = 2 � 22 + 32 = 2� 3,61 = 7,22 𝑑𝑑 Phases:

𝑃𝑃1 = 4

0,4 = 10 ⇒ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒 𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛𝑒𝑒𝑛𝑛 ⇒ 0° 𝑝𝑝𝑤𝑝𝑝𝑠𝑠𝑒𝑒 𝑤𝑤𝜋𝜋𝜋𝜋𝑠𝑠𝑒𝑒𝑜𝑜 𝑃𝑃2 = 7,22

0,4 = 18,025 ⇒ 0,025 �360° + 180° = 9° + 180° = 189°

𝑃𝑃2 − 𝑃𝑃1 = 189°

(26)

Exercise 6

𝑃𝑃2 − 𝑃𝑃1 = 189°

Destructive interference! Because the phase is bigger than 180 degrees

(27)

Exercise 6

Received power for Friis free space model:

𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑇𝑇𝑅𝑅 � 𝐺𝐺𝑇𝑇𝑅𝑅 � 𝐺𝐺𝑅𝑅𝑅𝑅 � 𝜆𝜆 4𝜋𝜋𝑑𝑑𝑃𝑃

2

𝑃𝑃𝑇𝑇𝑅𝑅

𝑃𝑃𝑅𝑅𝑅𝑅 = 1

𝐺𝐺𝑇𝑇𝑅𝑅 � 𝐺𝐺𝑅𝑅𝑅𝑅 � 4𝜋𝜋𝑑𝑑𝑃𝑃 𝜆𝜆

2

Attenuation for the direct path: 4𝜋𝜋𝑑𝑑𝜆𝜆1𝐿𝐿 2= 15971 ⇒ 41,98 𝑑𝑑𝑑𝑑

Attenuation for the reflected path: 4𝜋𝜋𝑑𝑑𝜆𝜆2𝐿𝐿 2 = 51306 ⇒ 47,1 + 10 = 57,1𝑑𝑑𝑑𝑑

(28)

Exercise 6

New point P(1,0):

𝑑𝑑1 = 6 𝑑𝑑

𝑑𝑑2 = 2 � 32 + 32 = 8,48 𝑑𝑑

For P(3,0): ∆𝑑𝑑 = 7,22 − 4 = 3,22 𝑑𝑑 For P(1,0): ∆𝑑𝑑 = 8,48 − 6 = 2,48 𝑑𝑑

⇒ Destructive maximum: 3,2m ; 2,8m ; 2,4m

⇒ Constructive maximum: 3m ; 2,6m

(29)

Exercise 7

(30)

Exercise 7

𝜆𝜆 = 𝑐𝑐

𝜋𝜋 = 3 � 108

900 � 106 = 0,333 𝑑𝑑 = 33,33 𝑐𝑐𝑑𝑑

𝜆𝜆4 = 8,33 𝑐𝑐𝑑𝑑

(31)

Exercise 7

𝜆𝜆 = 𝑐𝑐

𝜋𝜋 = 3 � 108

900 � 106 = 0,333 𝑑𝑑 = 33,33 𝑐𝑐𝑑𝑑

𝜆𝜆4 = 8,33 𝑐𝑐𝑑𝑑

𝐺𝐺 = 4 � 𝜋𝜋 � 𝐴𝐴

𝜆𝜆2 ⇒ 𝐴𝐴 = 𝜆𝜆2 � 𝐺𝐺

4 � 𝜋𝜋 = 10103 � 0,3332

4 � 𝜋𝜋 = 0,0176 𝑑𝑑2

(32)

Exercise 7

𝜆𝜆 = 𝑐𝑐

𝜋𝜋 = 3 � 108

900 � 106 = 0,333 𝑑𝑑 = 33,33 𝑐𝑐𝑑𝑑

𝜆𝜆4 = 8,33 𝑐𝑐𝑑𝑑

𝐺𝐺 = 4 � 𝜋𝜋 � 𝐴𝐴

𝜆𝜆2 ⇒ 𝐴𝐴 = 𝜆𝜆2 � 𝐺𝐺

4 � 𝜋𝜋 = 10103 � 0,3332

4 � 𝜋𝜋 = 0,0176 𝑑𝑑2

𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑇𝑇𝑅𝑅 � 𝐺𝐺𝑇𝑇𝑅𝑅 � 𝐺𝐺𝑅𝑅𝑅𝑅 � 𝜆𝜆 4𝜋𝜋𝑑𝑑𝑃𝑃

2

= 10𝑊𝑊 � 10103 � 10103 � 0,333

4 � 𝜋𝜋 � 1 �2 � 103

2

= 7,0 � 10−9𝑊𝑊

⇒ 𝑃𝑃𝑅𝑅𝑅𝑅 𝑑𝑑𝑑𝑑 = −81,5𝑑𝑑𝑑𝑑

(33)

Exercise 8

(34)

Exercise 8

(35)

Exercise 8

𝑃𝑃𝑃𝑃 = 𝑃𝑃

𝑇𝑇𝑅𝑅

𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑃𝑃

𝑅𝑅𝑅𝑅

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑃𝑃

0

+ 10 � 𝛾𝛾 � log 𝑑𝑑

𝑑𝑑

0

+ 𝑋𝑋

𝛿𝛿

𝑋𝑋

𝛿𝛿 – Gaussian (normal) random variable expressing attenuation (in dB) caused by fading

(36)

Exercise sheet 2

• Will be published until soon

• Next tutorial:

Tuesday, 20.11.2018, B016 16:00 – 18:00

Referenzen

ÄHNLICHE DOKUMENTE

– Bei einer Empfangsantenne wird einer sich im Raum ausbreitenden elektromagnetischen Welle Energie entzogen und in einer Leitungswelle weitergeführt... Übung – Drahtlose

1) Erläutern Sie mit wenigen Worten was mit Fresnelzonen bei einer Funkübertragung bezeichnet wird. • Bei einer Fresnelzone handelt es sich um einen gedachten Rotationsellipsoiden

• Bestimmte Time-Slots werden dann jeweils exklusiv einem Sender zugeordnet.. • Frequenzkanal kann periodisch abwechselnd mehreren

Richtiger Faltungscode: 11 10 10 01 00 11 Falscher Faltungscode: 11 10 00 01 01 11.. 1) Zeichnen Sie eine Register Implementation. 2) Zeichnen Sie ein Zustandsdiagramm für

In einem Netzwerk arbeiten 1000 Teilnehmer und greifen unabhängig voneinander mit einer Wahrscheinlichkeit von p = 0,01 zu einem bestimmten Zeitpunkt auf das Netzwerk zu..

Faltungscodes (Wiederholung).. 1) Zeichnen Sie eine Register Implementation. 2) Zeichnen Sie ein Zustandsdiagramm für diesen Encoder.. 1) Zeichnen Sie eine Register Implementation..

1) Identify the interfaces (and components) that provide access to the radio and allow us to manipulate the message_t type. 2) Update the module block in the BlinkToRadioC.nc by

• Tasks dürfen eine willkürliche lange Rechenzeit benötigen. – Unterliegen ebenfalls dem run-to-completion Prinzip, da kein kooperatives Multi-tasking implementiert ist. –