• Keine Ergebnisse gefunden

We rst review dependeny pairs for ordinary term rewriting in Set

N/A
N/A
Protected

Academic year: 2021

Aktie "We rst review dependeny pairs for ordinary term rewriting in Set"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Dependeny Pairs for Equational Rewriting

JurgenGiesl 1

andDeepakKapur 2

1

LuFGInformatikII,RWTHAahen,Ahornstr.55,52074Aahen,Germany,

gieslinformatik.rwth- aa h en .d e

2

ComputerSieneDept.,UniversityofNew Mexio,Albuquerque,NM87131,USA

kapurs.unm.edu

Abstrat. The dependenypairtehnique ofArtsand Giesl [1{3℄for

terminationproofsoftermrewritesystems(TRSs)isextendedtorewrit-

ingmoduloequations.Uptonow,suhanextensionwasonlyknownin

the speial ase of AC-rewriting [15,17℄. Inontrastto that, the pro-

posedtehniqueworksforarbitrarynon-ollapsingequations(satisfying

aertainlinearityondition).Withtheproposedapproah,itisnowpos-

sibletoperformautomatedterminationproofsformanysystemswhere

this was not possible before.Inotherwords, the powerof dependeny

pairsannowalsobeusedforrewritingmoduloequations.

1 Introdution

Termination of term rewriting (e.g., [1{3,9,22℄) and termination of rewriting

modulo assoiativityand ommutativity equations(e.g., [8,13,14,20,21℄)have

beenextensivelystudied. For equationsother than AC-axioms, however, there

areonlyafewtehniques availabletoprovetermination (e.g.,[6,10,16,18℄).

Thispaperpresents anextension ofthe dependeny pairapproah [1{3℄ to

rewriting modulo equations. In the speial ase of AC-axioms, our tehnique

orresponds to the methods of [15,17℄, but in ontrast to these methods, our

tehniqueanalsobeusediftheequationsarenotAC-axioms.Thisallowsmuh

more automatedtermination proofs for equational rewritesystems than those

possiblewith diretlyapplying simpliationorderingsforequationalrewriting

(likeequationalpolynomialorderingsorAC-versionsofpathorderings).

We rst review dependeny pairs for ordinary term rewriting in Set. 2.

In Set. 3, we show why a straightforward extension of dependeny pairs to

rewritingmodulo equationsisnotpossible.Therefore,wefollowanideasimilar

to the one of [17℄ for AC-axioms: Weonsider a restrited form of equational

rewriting,whihismoresuitableforterminationproofswithdependenypairs.

InSet.4,weshowhowto ensurethat termination of thisrestrited equa-

tionalrewriterelationisequivalenttoterminationoffullrewritingmoduloequa-

tions.UnderertainonditionsontheequationsE,weshowhowtoomputean

?

Proeedingsof the12thInternationalConfereneonRewritingTehniquesand Ap-

pliations, RTA-2001, Utreht, The Netherlands,Leture Notes in Computer Si-

ene, Springer-Verlag. Supported by the Deutshe Forshungsgemeinshaft Grant

GI274/4-1andtheNationalSieneFoundationGrantsnos.CCR-9996150,CDA-

9503064,CCR-9712396.

(2)

E

rewriterelationofExt

E

(R)moduloEisterminatingiRisterminatingmodulo

E. Thisisprovedfor(almost)arbitraryE-rewriting,thusgeneralizinga related

resultforAC-rewriting.Thisgeneralresultmaybeofindependentinterest,and

may also beuseful in investigating other properties of E-rewriting. Finally, in

Set.5,weextendthedependenypairapproahtorewritingmoduloequations.

2 Dependeny Pairs for Ordinary Rewriting

Thedependenypairapproah allowstheuseof standardmethods likesimpli-

ationorderings[9,22℄forautomatedterminationproofs wheretheywerenot

appliablebefore.Inthissetionwebrieysummarizethebasioneptsofthis

approah. All results in this setion aredue to Arts andGiesl and werefer to

[1{3℄forfurtherdetails,renements,andexplanations.

In ontrast to the standard tehniques for termination proofs, whih om-

pareleftandright-hand sidesofrules,inthisapproahone onentratesonthe

subtermsintheright-handsidesthathaveadened 1

rootsymbol,beausethese

aretheonlytermsresponsibleforstartingnewredutions.

Morepreisely,foreveryrulef(s

1

;:::;s

n

)!C[g(t

1

;:::;t

m

)℄(wherefandg

aredenedsymbols),weomparetheargumenttupless

1

;:::;s

n andt

1

;:::;t

m .

To avoid the handling of tuples, for every dened symbol f, we introdue a

freshtuple symbolF.Toeasereadability,weassumethattheoriginalsignature

onsists of lower ase funtion symbols only, whereas the tuple symbols are

denoted by the orresponding upper ase symbols. Now instead of the tuples

s

1

;:::;s

n andt

1

;:::;t

m

weomparetheterms F(s

1

;:::;s

n

)andG(t

1

;:::;t

m ).

Denition1 (Dependeny Pair [1{3℄). If f(s

1

;:::;s

n

)!C[g(t

1

;:::;t

m )℄

isaruleofaTRSRandgisadenedsymbol,thenhF(s

1

;:::;s

n );G(t

1

;:::;t

m )i

isadependenypairofR.

Example 2. As anexample, onsider the TRS fa+b! a+(b+)g, f. [17℄.

Terminationofthissystemannotbeshownbysimpliationorderings,sinethe

left-handsideoftheruleisembeddedintheright-handside.Inthissystem,the

denedsymbolis+andthus,weobtainthedependenypairshP(a;b);P(a;b+)i

andhP(a;b);P(b;)i(wherePisthetuplesymbolfortheplus-funtion\+").

Artsand Giesldevelopedthefollowingnewterminationriterion.As usual,

a quasi-ordering % is a reexive and transitive relation, and we say that an

ordering>isompatiblewith %ifwehave>Æ%>or%Æ>>.

Theorem 3 (Termination with Dependeny Pairs [1{3℄). A TRS R is

terminating i there exists a weakly monotoni quasi-ordering % and a well-

founded ordering > ompatible with %, where both % and > are losed under

substitution,suhthat

1

Rootsymbolsofleft-handsidesaredened andallotherfuntionsareonstrutors.

(3)

(2) l%r forallrules l!r of R.

Consider the TRS from Ex. 2 again. In order to prove its termination a-

ording toThm.3,wehavetonda suitablequasi-ordering%andordering>

suh thatP(a;b)>P(a;b+),P(a;b)>P(b;),anda+b%a+(b+).

Most standard orderings amenable to automation are strongly monotoni

(f. e.g. [9,22℄), whereas here we only need weak monotoniity. Hene, before

synthesizingasuitableordering,someoftheargumentsoffuntionsymbolsmay

be eliminated, f. [3℄. For example, in our inequalities, one may eliminate the

rstargumentof+.Theneveryterms+tintheinequalitiesisreplaedby+ 0

(t)

(where + 0

is a newunary funtionsymbol).Byomparing thetermsresulting

from this replaement instead of the original terms,wean takeadvantage of

the fat that + doesnot have to bestrongly monotoni in its rst argument.

Note that there are only nitely many possibilities to eliminate arguments of

funtionsymbols.Thereforeallthesepossibilitiesanbehekedautomatially.

Inthisway,weobtaintheinequalitiesP(a;b)>P(a;+ 0

()),P(a;b)>P(b;),

and + 0

(b) % + 0

(+

0

()). These inequalities are satised by the reursive path

ordering (rpo) [9℄ with the preedene a A b A A + 0

(i.e., we hoose % to

be %

rpo

and > to be

rpo

). So termination of this TRS an now be proved

automatially.Forimplementationsofthedependenypairapproahsee[4,7℄.

3 Rewriting Modulo Equations

For a set E of equations between terms, we write s !

E

t if there exist an

equationlrin E,a substitution, andaontext C suh thats=C[l℄and

t = C[r℄. The symmetrilosure of !

E

is denoted by `a

E

and thetransitive

reexivelosureof`a

E

isdenoted by

E

.Inthefollowing,werestritourselves

toequationsE where

E

isdeidable.

Denition4 (Rewriting ModuloEquations).LetRbeaTRSandletE be

aset of equations. Aterm s rewritestoa term t modulo E,denoteds!

R=E t,

ithereexist termss 0

andt 0

suhthats

E s

0

!

R t

0

E

t.TheTRSRisalled

terminatingmodulo E i theredoes notexist aninnite !

R=E

redution.

Example 5. AninterestingspeialaseareequationsE whih statethatertain

funtion symbols are assoiative and ommutative (AC).As an example,on-

sidertheTRSR=fa+b!a+(b+)gagainandletEonsistoftheassoiativity

andommutativityaxioms for+,i.e.,E=fx

1 +x

2 x

2 +x

1

;x

1 +(x

2 +x

3 )

(x

1 +x

2 )+x

3

g,f.[17℄.Risnotterminatingmodulo E,sinewehave

a+b!

R

a+(b+)

E

(a+b)+!

R

(a+(b+))+

E

((a+b)+)+!

R :::

Thereare,however,manyothersetsofequationsE apartfromassoiativity

andommutativity,whiharealsoimportantinpratie,f.[11℄.Hene,ouraim

istoextenddependenypairstorewritingmodulo(almost)arbitraryequations.

(4)

that whenever a termstarts aninnite redution,then one an also onstrut

an inniteredution where only terminating or minimal non-terminating sub-

terms are redued(i.e., one only appliesrules to redexeswithout proper non-

terminating subterms). The ontexts of minimal non-terminating redexes an

beompletelydisregarded.Ifa ruleisappliedattheroot positionofa minimal

non-terminating subterm s (i.e., s !

R

t where denotes the root position),

thensandeahminimalnon-terminatingsubtermt 0

oftorrespondtoadepen-

denypair. Hene,Thm.3 (1)implies s>t 0

.If a ruleisapplied at a non-root

position ofa minimal non-terminating subterm s(i.e., s!

>

R

t), then wehave

s %t by Thm. 3 (2). However, due to theminimality ofs, after nitely many

suh non-root rewrite steps,a rulemust beapplied at theroot positionof the

minimal non-terminating term. Thus, every innite redution of minimal non-

terminating subterms orresponds to an innite >-sequene. This ontradits

thewell-foundedness of>.

Soforordinary rewriting,anyinniteredution from aminimal non-termi-

natingsubterminvolvesanR-redutionattherootposition.Butasobservedin

[15℄, when extendingthedependenypairapproah to rewriting modulo equa-

tions, this is no longer true. For an illustration, onsider Ex. 5 again, where

a+(b+) is a minimal non-terminating term. However, in its innite R=E-

redutionnoR-stepiseverappliableattherootposition.(Insteadoneapplies

anE-stepattherootpositionandfurtherR-andE-stepsbelowtheroot.)

Intherestofthepaper,fromarewritesystemR,wegenerateanewrewrite

system R 0

with the following three properties: (i)the termination of a weaker

formofrewritingbyR 0

moduloE isequivalenttotheterminationofRmodulo

E,(ii)everyinniteredutionofaminimalnon-terminatingterminthisweaker

formofrewritingbyR 0

moduloEinvolvesaredutionstepattherootlevel,and

(iii) every suh minimal non-terminating termhas an inniteredution where

thevariablesoftheR 0

-rulesareinstantiatedwithterminatingtermsonly.

4 E-Extended Rewriting

Weshowedwhythedependenypairapproahannotbeextendedtorewriting

moduloequationsdiretly.Asasolutionforthisproblem,weproposetoonsider

arestritedformofrewritingmoduloequations,i.e.,theso-alledE-extendedR-

rewrite relation !

EnR

. (This approah was already takenin [17℄ for rewriting

moduloAC.)Therelation!

EnR

wasoriginallyintroduedin[19℄inordertoir-

umventtheproblemswithinniteorimpratiallylargeE-equivalenelasses.

2

Denition6 (E-extended R-rewriting [19℄). LetR beaTRS andletE be

aset ofequations.The E-extendedR-rewrite relationisdenedass!

EnR t i

sj

E

l andt =s[r℄

forsome rule l!r inR, someposition of s,and

somesubstitution .Wealso write!

EnR

instead of !

EnR .

2

In[12℄,therelation!

EnR

isdenoted\!

R;E

".

(5)

R=E EnR

again. We have already seen that !

R=E

is not terminating,sine a+b!

R=E

(a+b)+!

R=E

((a+b)+)+!

R=E

:::But!

EnR

isterminating,beause

a+b!

EnR

a+(b+),whih isanormalformw.r.t.!

EnR .

Theaboveexamplealsodemonstrates thatingeneral,terminationof!

EnR

is notsuÆient fortermination of!

R=E

. Inthissetion wewill showhow ter-

minationof!

R=E

anneverthelessbeensuredbyonlyregardinganE-extended

rewriterelationinduedbya largerR 0

R.

ForthespeialaseofAC-rewriting,thisproblemanbesolvedbyextending

Rasfollows:LetG bethesetofallAC-symbolsand

Ext

AC(G)

=R[ff(l;y)!f(r;y) j l!r2R;root(l)=f 2Gg;

where y is a newvariablenotourring in therespetiverule l!r.A similar

extension has also beenused in previous work onextending dependenypairs

toAC-rewriting[17℄.ThereasonisthatforAC-equationsE,theterminationof

!

R=E

isinfatequivalentto thetermination of!

EnExtAC(G)(R) .

For Ex. 5,weobtain Ext

AC(G)

(R) = fa+b! a+(b+);(a+b)+y !

(a+(b+))+yg.Thus,inordertoproveterminationof!

R=E

,itisnowsuÆient

toverifyterminationof!

EnExt

AC(G) (R)

.

Theaboveextensionof[19℄onlyworksforAC-axiomsE.A laterpaper[12℄

treatsarbitraryequations,butitdoesnotontainanydenition forextensions

Ext

E

(R),andterminationof!

R=E

isalwaysaprerequisitein [12℄.Thereason

is that [12℄ and also subsequent work on symmetrization and oherene were

devoted to the development of ompletion algorithms (i.e., here the goal was

to generateaonvergentrewritesystemand notto investigatethetermination

behaviorofpossiblynon-terminatingTRSs).Thus,thesepapersdidnotompare

theterminationbehavioroffullrewritingmoduloequationswiththetermination

ofrestritedversionsofrewritingmoduloequations.Infat,[12℄ fousesonthe

notionofoherene,whihisnotsuitableforourpurposesineohereneofEnR

moduloE doesnotimplythatterminationof!

R=E

isequivalenttotermination

of!

EnR .

3

To extend dependeny pairs to rewriting modulo non-AC-equations E, we

haveto omputeextensions Ext

E

(R) suh that termination of!

R=E

is equiv-

alentto terminationof !

EnExt

E (R)

.Theonlyrestritionwewill imposeonthe

equations in E is that theymust have idential unique variables. This require-

mentissatisedbymostpratialexampleswhereR=Eisterminating.Asusual,

a termt isalledlinear ifnovariableoursmore thanoneint.

Denition7 (EquationswithIdentialUniqueVariables[19℄).Anequa-

tion uv issaid to have idential uniquevariablesif u andv are both linear

andthe variablesinuarethesame asthe variablesinv.

3

In[12℄,EnRisoherentmoduloEiforalltermss;t;u,wehavethats

E t!

+

EnR u

implies s! +

EnR v

E w

EnR

uforsome v;w. ConsiderR=fa+b!a+(b+

); x+y!dgwithE beingtheAC-axiomsfor+.Theabovesystemisoherent,

sine s E t ! +

EnR

u implies s ! +

R d

R

u.However, !

EnR

is terminatingbut

!

R=E

isnotterminating.

(6)

E

usual,ÆisanE-unier ofsandtisÆ

E

tÆ andasetuni

E

(s;t)ofE-uniersis

omplete iforeveryE-unierÆ thereexistsa2uni

E

(s;t)anda substitution

suh that Æ

E

, f. [5℄. (\" is the omposition of and where is

appliedrstand\Æ

E

"meansthatforallvariablesxwehavexÆ

E x.)

To onstrutExt

E

(R),weonsideralloverlapsbetweenequationsuv or

vufromE andrulesl!rfrom R.Morepreisely,wehekwhethera non-

variable subterm vj

of v E-unies with l (where we alwaysassume that rules

in Rare variabledisjoint from equationsin E). Inthisaseone adds therules

(v[l℄

) ! (v[r℄

) for all 2 uni

E (vj

;l).

4

In Ex. 5,the subterm x

1 +x

2 of

theright-handsideofx

1 +(x

2 +x

3 )(x

1 +x

2 )+x

3

unieswiththeleft-hand

sideoftheonlyrulea+b!a+(b+).Thus, intheextensionofR,weobtain

therule(a+b)+y!(a+(b+))+y.

Ext

E

(R) is built via a kind of xpoint onstrution, i.e., we also have to

onsider overlaps between equations of E and the newly onstruted rules of

Ext

E

(R).Forexample,thesubtermx

1 +x

2

alsounies withtheleft-hand side

ofthenewrule(a+b)+y !(a+(b+))+y.Thus,onewouldnowonstrut

a newrule((a+b)+y)+z!((a+(b+))+y)+z.

Obviously,inthiswayoneobtainsaninnitenumberofrulesbysubsequently

overlapping equations with the newly onstruted rules. However, in order to

useExt

E

(R) forautomatedterminationproofs, ouraimisto restritourselves

to nitely many rules. It turns out that we do not have to inlude new rules

(v[l℄

)!(v[r℄

) in Ext

E

(R) ifu !

0

EnExtE(R) q

E (v[r℄

) alreadyholds

forsomeposition 0

ofuandsometermq(usingjusttheoldrulesofExt

E (R)).

Whenonstrutingtherule((a+b)+y)+z!((a+(b+))+y)+zabove,

theequationuv usedwas x

1 +(x

2 +x

3 )(x

1 +x

2 )+x

3

andtheunier

replaedx

1

by(a+b)andx

2

byy.Hene,hereuistheterm(a+b)+(y+x

3 ).

Butthistermredueswith! 1

EnExtE(R)

to(a+(b+))+(y+x

3

)whihisindeed

E

-equivalentto(v[r℄

),i.e.,to((a+(b+))+y)+x

3

.Thus,wedonothave

toinlude therule((a+b)+y)+z!((a+(b+))+y)+zin Ext

E (R).

Thefollowingdenition showshowsuitableextensionsan beomputedfor

arbitrary equations with idential unique variables. It will turn out that with

these extensions one an indeedsimulate !

R=E by !

EnExtE(R)

, i.e., s!

R=E t

implies s !

EnExtE(R) t

0

for some t 0

E

t. This onstitutes a ruial ontribu-

tion of the paper, sine it is the main requirement needed in order to extend

dependenypairstorewritingmoduloequations.

Denition8 (Extending R for Arbitrary Equations). Let R be a TRS

andletE beasetof equations.LetR 0

beasetontainingonlyrulesof theform

4

Obviously,uni

E (vj

;l)alwaysexists,butit anbe inniteingeneral.Sowhen au-

tomatingour approahforequational terminationproofs,we have to restritour-

selvestoequations E where uni

E (vj

;l)anbe hosento beniteforallsubterms

vj

ofequationsandleft-handsidesofrulesl.ThisinludesallsetsE ofnitaryuni-

ationtype,butourrestritionisweaker, sineweonlyneednitenessforertain

termsvj

andl.

(7)

C[l℄!C[r℄ (where C is aontext, isasubstitution, and l!r 2R). R

isan extensionofRfortheequationsE i

(a) RR 0

and

(b) for all l ! r 2 R 0

, u v 2 E and v u 2 E, all positions of v

and 2 uni

E (vj

;l), there is a position 0

in u and a q

E (v[r℄

) with

u!

0

EnR 0

q.

Inthefollowing,letExt

E

(R) alwaysdenote anarbitraryextensionofRforE.

InordertosatisfyCondition(b)ofDef.8,itisalwayssuÆienttoaddtherule

(v[l℄

)!(v[r℄

) to R 0

. Thereasonis thatthen wehaveu!

EnR 0

(v[r℄

).

But ifu !

0

EnR 0

q

E (v[r℄

) already holds with the otherrules of R 0

, then

therule(v[l℄

)!(v[r℄

) doesnothaveto beaddedtoR 0

.

Condition(b) ofDef. 8 also makessure that as long as the equationshave

idential unique variables, wedo nothave to onsider overlaps at variable po-

sitions.

5

The reason is that if vj

is a variable x 2 V, then we have u =

u[x℄

0

E u[l℄

0

!

R u[r℄

0

E v[r℄

=(v[r℄

),where 0

isthepositionof

xinu.Hene,suhrules(v[l℄

)!(v[r℄

) donothavetobeinludedinR 0

.

Overlapsat root positions donothaveto beonsideredeither.To see this,

assumethatisthetoppositionofv,i.e.,thatv

E

l.Inthisasewehave

u

E

v

E l!

R

randthus,u!

EnR

r=(v[r℄

).Soagain,suhrules

(v[l℄

)!(v[r℄

) donothavetobeinludedin R 0

.

Thefollowingproedureisusedtoomputeextensions.Here,weassumeboth

RandEtobenite,wheretheequationsEmusthaveidentialuniquevariables.

1.R 0

:=R

2.For alll!r 2R 0

,

alluv orvufrom E,

andallpositionsofv where6=and vj

62V do:

2.1.Let:=uni

E (vj

;l).

2.2.For all2do:

2.2.1.LetT :=fq j u!

0

EnR 0

qfora position 0

ofug:

2.2.2.Ifthereexistsa q2T with(v[r℄

)

E

q,then:=nfg.

2.3.R 0

:=R 0

[f(v[l℄

)!(v[r℄

) j 2g.

Thisalgorithmhasthefollowingproperties:

(a) Ifin Step 2.1, uni

E (vj

;l) isnite and omputable, thenevery stepin the

algorithmisomputable.

(b) Ifthealgorithmterminates, thenthenal valueofR 0

isan extensionofR

fortheequationsE.

5

Notethatonsideringoverlapsatvariablepositionsaswellwouldstillnotallowus

totreatequationswithnon-linearterms.AsanexampleregardE =ff(x)g(x;x)g

andR=fg(a;b)!f(a);a!bg.Here,!

EnExt

E (R)

iswellfoundedalthough Ris

notterminatingmoduloE.

(8)

E

(a+(b+))+yg.Ingeneral,ifE onlyonsistsofAC-axiomsforsomefuntion

symbolsG,thenDef.8\oinides"withthewell-knownextensionforAC-axioms,

i.e., R 0

= R[ff(l;y) ! f(r;y)jl ! r 2 R;root(l) = f 2 Gg satises the

onditions(a)and(b)ofDef.8.SoinaseofAC-equations,ourapproahindeed

orresponds tothe approahesof [15,17℄. However,Def.8 an also beused for

otherformsofequations.

Example 9. As anexample,onsiderthefollowingsystemfrom[18℄.

R=f x 0!x; E =f(uv)w (uw)vg

s(x) s(y)!x y;

0s(y)!0;

s(x)s(y)!s((x y)s(y))g

Byoverlappingthesubterm uw in theright-handside of theequation with

theleft-handsidesofthelasttwo rulesweobtain

Ext

E

(R)=R[ f (0s(y))z!0z;

(s(x)s(y))z!s((x y)s(y))zg:

Note that these are indeed all therules of Ext

E

(R). Overlapping thesub-

term uv of theequation's left-hand sidewith the third rule would resultin

(0s(y))z 0

! 0z 0

. But this new rule does not have to be inluded in

Ext

E

(R), sinethe orresponding other term of the equation, (0z 0

)s(y),

would !

EnExtE(R)

-redue with therule(0s(y))z !0z to 0z 0

.Over-

lappinguv withtheleft-handsideofthefourthruleisalsosuperuous.

Similarly, overlaps with the new rules (0s(y))z ! 0z or (s(x)

s(y))z ! s((x y)s(y))z also do not give rise to additional rules in

Ext

E

(R).To seethis, overlap thesubterm uwin the right-hand sideof the

equation with theleft-handside of (0s(y))z !0z.This gives therule

((0s(y))z)z 0

!(0z)z 0

.However,theorrespondingother termof

theequationis((0s(y))z 0

)z. Thisreduesatposition1 (orposition11)

to(0z 0

)z,whihisE-equivalentto(0z)z 0

.Overlapswiththeothernew

rule(s(x)s(y))z!s((x y)s(y))zarenotneededeither.

Nevertheless,theabovealgorithmforomputingextensionsdoesnotalways

terminate.Forexample,forR=fa(x)!(x)g,E =fa(b(a(x)))b(a(b(x)))g,

itan beshownthat allextensionsExt

E

(R)areinnite.

WeprovebelowthatExt

E

(R)(aordingtoDef.8)hasthedesiredproperty

neededto reduerewriting moduloequations toE-extendedrewriting. Thefol-

lowingimportantlemmastatesthatwheneversrewritestotwith!

R=E

modulo

E,then salsorewriteswith!

EnExt

E (R)

toatermwhih isE-equivalenttot.

6

6

Our extension Ext

E

has some similarities to the onstrutionof ontexts in [23℄.

However,inontrastto[23℄wealsoonsidertherulesofR 0

inCondition(b)ofDef.

8inorderto reduethenumberofrulesinExtE.Moreover, in[23℄equations may

alsobenon-linear(andthus,Lemma10doesnotholdthere).

(9)

R=E EnExt

E (R)

andletE beasetof equationswithidential uniquevariables.Ifs!

R=E t,then

thereexistsaterm t 0

E

tsuhthat s!

EnExt

E (R)

t 0

.

Proof. Let s!

R=E

t, i.e., there exist terms s

0

;:::;s

n

;p with n 0 suh that

s =s

n

`a

E s

n 1

`a

E ::: `a

E s

0

!

R p

E

t.For thelemma, it suÆes to show

that thereisat 0

E

psuhthats!

EnExtE(R) t

0

,sinet 0

E

pimpliest 0

E t.

We perform indution on n. If n = 0, we have s = s

n

= s

0

!

R

p. This

impliess!

EnExtE(R)

psineRExt

E

(R).Sowitht 0

=pthelaimisproved.

If n > 0,the indution hypothesis implies s =s

n

`a

E s

n 1

!

EnExt

E (R)

t 0

suh that t 0

E

p. So there exists an equation u v or v u from E and a

rulel!rfrom Ext

E

(R) suh that sj

=uÆ, s

n 1

=s[vÆ℄

, s

n 1 j

E

lÆ, and

t 0

=s

n 1 [rÆ℄

forpositions and anda substitution Æ.Wean usethesame

substitutionÆforinstantiatingtheequationuv(orvu)andtherulel!r,

sineequationsandrulesareassumedvariabledisjoint.Wenowperformaase

analysisdependingontherelationshipofthepositions and.

Case1:=forsome. Inthisase,wehavesj

=sj

[uÆ℄

`a

E sj

[vÆ℄

=

s

n 1 j

E

lÆ.This impliess!

EnExtE(R) s[rÆ℄

=s

n 1 [rÆ℄

=t 0

,as desired.

Case2:?. Nowwehavesj

=s

n 1 j

E

lÆandthus,s!

EnExt

E (R)

s[rÆ℄

=

s[rÆ℄

[uÆ℄

`a

E s[rÆ℄

[vÆ℄

=s[vÆ℄

[rÆ℄

=s

n 1 [rÆ℄

=t 0

.

Case3:=forsome. Thus,(vÆ)j

E

lÆ.Wedistinguishtwosub-ases.

Case3.1:uÆ!

EnExtE(R) q

E (v[r℄

)Æforsometermq. Thisimpliess=s[uÆ℄

!

EnExtE(R) s[q℄

E s[v[r℄

Æ℄

=(s[vÆ℄

)[rÆ℄

=s

n 1 [rÆ℄

=t 0

.

Case3.2:Otherwise. First assumethat =

1

2

where vj

1

is a variablex.

Hene,(vÆ)j

=Æ(x)j

2 . Let Æ

0

(y)=Æ(y) fory 6=x andletÆ 0

(x)=Æ(x)[rÆ℄

2 .

Sine u v (or v u) is an equation with idential unique variables, x also

ours inuat someposition 0

.This impliesuÆj

0

2

=Æ(x)j

2

E lÆ!

Ext

E (R)

rÆ. Hene, we obtain uÆ !

0

2

EnExtE(R) uÆ[rÆ℄

0

2

= uÆ 0

E vÆ

0

= (v[r℄

)Æ in

ontraditiontotheonditionofCase3.2.

Hene,isapositionofvandvj

isnotavariable.Thus,(vÆ)j

=vj

Æ

E lÆ.

Sinerulesandequationsareassumedvariabledisjoint,thesubtermvj

E-unies

withl.Thus,thereexists a2uni

E (vj

;l)suh thatÆ

E .

DuetotheCondition(b)ofDef.8,thereisatermq 0

suhthatu!

0

EnExt

E (R)

q 0

E (v[r℄

).Sine 0

isapositioninu,wehaveuj

0

E Æ!

Ext

E (R)

q 00

,where

q 0

=u[q 00

0. Thisalso impliesuj

E uj

0

E Æ!

ExtE(R) q

00

,and thus

uÆ!

0

EnExt

E (R)

uÆ[q 00

0

E u[q

00

0

=q 0

E (v[r℄

)

E (v[r℄

)Æ.Thisisa

ontraditiontotheonditionofCase3.2. ut

ThefollowingtheoremshowsthatExt

E

indeed hasthedesiredproperty.

Theorem 11 (TerminationofR=E byE-ExtendedRewriting). LetRbe

a TRS,let E be aset of equations with idential unique variables, and lett be

a term. Then t does not start an innite !

R=E

-redution i t does not start

(10)

EnExt

E (R)

(i.e., !

R=E

iswellfounded)i!

EnExt

E (R)

iswellfounded.

Proof. The \only if" diretion is straightforward beause !

Ext

E (R)

=!

R and

therefore,!

EnExt

E (R)

!

Ext

E (R)=E

=!

R=E .

Forthe\if"diretion, assumethattstartsaninnite!

R=E

-redution

t=t

0

!

R=E t

1

!

R=E t

2

!

R=E :::

Foreveryi2IN,letf

i+1

beafuntionfromtermsto termssuhthatforevery

t 0

i

E t

i ,f

i+1 (t

0

i

)isatermE-equivalenttot

i+1

suhthatt 0

i

!

EnExtE(R) f

i+1 (t

0

i ).

These funtions f

i+1

mustexist due to Lemma 10,sinet 0

i

E t

i and t

i

!

R=E

t

i+1

impliest 0

i

!

R=E t

i+1

.Hene,tstartsaninnite!

EnExt

E (R)

-redution:

t!

EnExt

E (R)

f

1 (t)!

EnExt

E (R)

f

2 (f

1 (t))!

EnExt

E (R)

f

3 (f

2 (f

1 (t)))!

EnExt

E (R)

::: ut

5 Dependeny Pairs for Rewriting Modulo Equations

In this setion we nally extend the dependeny pair approah to rewriting

modulo equations: To show that R modulo E terminates, one rst onstruts

the extension Ext

E

(R) of R. Subsequently, dependeny pairs an be used to

provewell-foundedness of!

EnExt

E (R)

(whihis equivalenttotermination ofR

moduloE).Theideafortheextensionofthedependenypairapproahissimply

tomodifyThm.3 asfollows.

1. Theequationsshouldbesatisedbytheequivaleneorrespondingtothe

quasi-ordering%,i.e.,wedemand uv forallequationsuv inE.

2. Asimilarrequirementisneededforequationsuv whentherootsymbols

of u and v are replaed by the orresponding tuple symbols. We denote

tuplesoftermss

1

;:::;s

n

bysandforanytermt=f(s)withadenedroot

symbolf,lett

bethetermF(s).Hene,wealsohaveto demandu

v

.

3. Thenotionof\denedsymbols"mustbehangedaordingly.Asbefore,all

root symbols of left-handsides of rules are regardedas being dened,but

ifthere is an equation f(u)=g(v) in E and f is dened,then g must be

onsidereddened as well, as otherwise we would notbeable to trae the

redexinaredution byonlyregardingsubtermswithdened rootsymbols.

Denition12 (DenedSymbolsforRewritingModuloEquations).Let

Rbe aTRSandletE beasetof equations.Thenthe set of dened symbolsD

of R=E isthe smallestsetsuhthat D=froot(l) j l!r 2Rg[froot(v)ju

v2E orvu2E; root(u)2Dg.

Theonstraintsofthedependenypairapproahas skethed abovearenot

yetsuÆientforterminationof!

EnR

as thefollowingexampleillustrates.

Example 13. Consider R=ff(x)!xgand E=ff(a)ag.Thereisnodepen-

deny pair in this exampleand thus, theonly onstraints would be f(x) %x,

f(a) a, and F(a) A. Obviously, these onstraints are satisable (by using

an equivalene relation where all terms are equal). However, !

EnR is not

terminating sinewehavea`a

E f(a)!

R a`a

E f(a)!

R a`a

E :::

(11)

3) relieson thefatthatan inniteredutionfrom a minimalnon-terminating

termanbeahievedbyapplyingonlynormalizedinstantiationsofR-rules.But

for E-extended rewriting (or full rewriting modulo equations), this is nottrue

anymore.Forinstane,theminimalnon-terminatingsubtermainEx.13isrst

modied by applying an E-equation (resulting in f(a)) and then an R-rule is

applied whosevariableis instantiated withthenon-terminating terma.Hene,

the problemis that thenew minimalnon-terminating subterm a whih results

from appliation ofthe R-ruledoesnotorrespond to theright-hand side ofa

dependenypair, beausethis minimal non-terminating subterm is ompletely

insidetheinstantiationofavariable oftheR-rule.Withordinaryrewriting,this

situation anneverour.

InEx.13, theprobleman beavoided by addinga suitableinstane ofthe

rulef(x)!x(viz.f(a)!a)to R,sinethisinstane isusedin theinnitere-

dution.NowtherewouldbeadependenypairhF(a);Aiandwiththeadditional

onstraintF(a)>Atheresultinginequalitiesarenolongersatisable.

The following denition shows how to add the right instantiations of the

rulesin Rinorderto allowa soundappliation ofdependenypairs.As usual,

a substitution is alled a variable renaming i the range of only ontains

variablesandif(x)6=(y)forx6=y.

Denition14 (Adding Instantiations). Given a TRS R, a set E of equa-

tions, let R 0

be a set ontaining only rules of the forml !r (where isa

substitution andl!r 2R). R 0

isan instantiation ofRfortheequationsE i

(a) RR 0

,

(b) foralll!r 2R,alluv 2Eandvu 2E,andall2uni

E

(v;l),there

existsarulel 0

!r 0

2R 0

andavariable renaming suhthatl

E l

0

and

r

E r

0

.

Inthefollowing,letIns

E

(R)alwaysdenoteaninstantiationofRforE.

Unlike extensions Ext

E

(R), instantiations Ins

E

(R) are never innite if R

andE areniteandifuni

E

(v;l)isalwaysnite(i.e., theyarenotdenedviaa

xpointonstrution).Infat,onemightevendemandthatforalll!r2R,all

equations,andallfromtheorrespondingompletesetofE-uniers,Ins

E (R)

should ontainl ! r. The ondition that it is enough ifsome E-equivalent

variable-renamedruleisalreadyontainedinIns

E

(R)isonlyaddedforeÆieny

onsiderationsinordertoreduethenumberofrulesinIns

E

(R).Evenwithout

thisondition,Ins

E

(R)wouldstillbeniteandallthefollowingtheoremswould

holdas well.

However, theabove instantiation tehniqueonly servesits purpose if there

arenoollapsingequations(i.e.,noequationsuv orvuwithv2V).

Example 15. ConsiderR=ff(x)!xgandE =ff(x)xg.NotethatIns

E (R)

=R.Although!

EnR

islearlynotterminating,thedependenypairapproah

would falselyproveterminationof!

EnR

,sinethere isnodependenypair.

Nowwean presentthemain resultofthepaper.

(12)

Pairs).LetRbeaTRSandletE beasetofnon-ollapsingequationswithiden-

tialuniquevariables.RisterminatingmoduloE (i.e.,!

R=E

iswellfounded)if

thereexistsaweaklymonotoniquasi-ordering%andawell-foundedordering>

ompatiblewith %whereboth%and>arelosedunder substitution,suhthat

(1) s>tforall dependeny pairshs;tiof Ins

E (Ext

E (R)),

(2) l%r forallrules l!r of R,

(3) uv forallequations uv ofE,and

(4) u

v

forall equationsuv ofE whereroot(u) androot(v) aredened.

Proof. Suppose that there is a termt with an innite !

R=E

-redution. Thm.

11 implies that t also has an innite !

EnExtE(R)

-redution. By a minimality

argument, t = C[t 0

℄, where t 0

is an minimal non-terminating term (i.e., t 0

is

non-terminating, but allits subterms only havenite !

EnExtE(R)

-redutions).

We will show that there exists a term t

1

with t ! +

EnExtE(R) t

1 , t

1

ontains a

minimalnon-terminatingsubtermt 0

1 ,andt

0

%Æ>t 0

1

.Byrepeatedappliation

ofthis onstrutionweobtainaninnitesequenet! +

EnExtE(R) t

1

! +

EnExtE(R)

t

2

! +

EnExtE(R)

:::suh that t 0

%Æ>t 0

1

%Æ>t 0

2

%Æ>:::. This,however,is

a ontraditiontothewell-foundedness of>.

Lett 0

havetheformf(u).Intheinnite!

EnExt

E (R)

-redutionoff(u),rst

some!

EnExt

E (R)

-stepsmaybeappliedtouwhihyieldsnewtermsv.Notethat

duetothedenitionofE-extendedrewriting,intheseredutions,noE-stepsan

beapplied outside of u. Due to the termination of u, after a nite number of

thosesteps,an!

EnExt

E (R)

-stepmustbeappliedontherootpositionoff(v).

Thus, thereexists arulel!r2Ext

E

(R)suh thatf(v)

E

landhene,

the redution yieldsr . Nowthe innite!

EnExtE(R)

-redution ontinues with

r ,i.e.,thetermrstartsaninnite!

EnExtE(R)

-redution,too.Souptonow

theredutionhasthefollowingform(where!

ExtE(R)

equals!

R ):

t=C[f(u)℄!

EnExt

E (R)

C[f(v)℄

E

C[l ℄!

ExtE(R) C[r ℄:

WeperformaaseanalysisdependingonthepositionsofE-stepsinf(v)

E l .

FirstonsidertheasewhereallE-steps inf(v)

E

ltakeplaebelowthe

root.Thenwehavel=f(w)andv

E

w .Lett

1

:=C[r ℄.Notethatvdonot

startinnite!

EnExtE(R)

-redutions andbyThm.11,theydonotstartinnite

!

R=E

-redutionseither.Butthenwalsoannotstartinnite!

R=E

-redutions

andthereforetheyalsodonotstartinnite!

EnExt

E (R)

-redutions.Thisimplies

thatforallvariablesxourringinf(w)theterms (x)areterminating.Thus,

sine r startsan innite redution,there ours a non-variable subterm s in

r, suh that t 0

1

:= s is a minimal non-terminating term. Sine hl

;s

i is a

dependenypair,weobtaint 0

=F(u)%F(v)l

>s

=t 0

1

.Here,F(u)%

F(v)holdssineu!

EnExt

E (R)

vandsinel%rforeveryrulel!r2Ext

E (R).

NowweonsidertheasewherethereareE-steps inf(v)

E

lattheroot

position. Thus wehavef(v)

E

f(q)`a

E p

E

l ,where f(q)`a

E

pistherst

(13)

in E suhthat f(q)isaninstantiationof v.

Notethatsinev

E

q,thetermsqonlyhavenite!

EnExt

E (R)

-redutions

(theargumentationissimilarasintherstase).LetÆbethesubstitutionwhih

operates likeon thevariablesof land whih yields vÆ =f(q).Thus, Æ isan

E-unieroflandv.SinelisE-uniablewithv,therealsoexistsaorresponding

omplete E-unier from uni

E

(l;v). Thus, there is also a substitution suh

that Æ

E

. As l is a left-hand side of a rule from Ext

E

(R),there is a rule

l 0

!r 0

in Ins

E (Ext

E

(R)) and a variablerenaming suh that l

E l

0

and

r

E r

0

.

Hene,v

E

vÆ=f(q),l 0

E

l

E

lÆ=l ,andr 0

E

r

E rÆ=

r . Soinsteadwenow onsider thefollowing redution (where!

InsE(ExtE(R))

equals!

R ):

t=C[f(u)℄!

EnExtE(R)

C[f(v)℄

E C[l

0

℄!

Ins

E (Ext

E (R))

C[r 0

℄=t

1 :

Sine all proper subterms of vÆ only have nite !

R=E

-redutions, for all

variablesxofl 0

,thetermxonlyhasnite !

R=E

-redutions andhene,also

onlynite!

EnExt

E (R)

-redutions.Toseethis,notethatsineallequationshave

idential uniquevariables,v

E

l

E l

0

impliesthat allvariablesofl 0

also

our in v. Thus, ifx is a variable from l 0

, then there exists a variable y in

v suh that xours in y. SineE doesnotontainollapsing equations,y is

a proper subterm of v and thus, yÆ is a proper subterm of vÆ. As all proper

subterms ofvÆonly havenite !

R=E

-redutions, this impliesthat yÆ onlyhas

nite!

R=E

-redutions, too.Butthen,sineyÆ

E

y,thetermyonlyhas

nite !

R=E

-redutions, too.Then this also holds for allsubterms of y, i.e.,

all!

R=E

-redutions ofxarealsonite.

Soforallvariablesxofl 0

,xonlyhasnite!

EnExtE(R)

-redutions.(Note

that this only holdsbeause is justa variablerenaming.) Siner startsan

innite!

EnExt

E (R)

-redution,r 0

E

rmuststartaninnite!

R=E

-redution

(and hene,aninnite!

EnExt

E (R)

-redution) as well. Asfor allvariables xof

r 0

, xis !

EnExt

E (R)

-terminating,there must be a non-variable subterm s of

r 0

, suh that t 0

1

:= s is a minimal non-terminating term. As hl 0

;s

i is a

dependeny pair, we obtain t 0

=F(u) % F(v)

E l

0

> s

=t 0

1

. Here,

F(v)

E l

0

isa onsequeneofCondition(4). ut

Now termination of the division-system (Ex. 9) an be proved by depen-

deny pairs.Here wehave Ins

E (Ext

E

(R)) =Ext

E

(R) and thus, theresulting

onstraintsare

M(s(x);s(y))>M(x;y) Q(0s(y);z)>Q(0;z)

Q(s(x);s(y))>M(x;y) Q(s(x)s(y);z)>M(x;y)

Q(s(x);s(y))>Q(x y;s(y)) Q(s(x)s(y);z)>Q(x y;s(y))

Q(s(x)s(y);z)>Q(s((x y)s(y));z)

as well as l % r for all rules l ! r, (uv)w (uw)v, and Q(u

v;w) Q(u w;v). (Here, M and Q are the tuple symbols for the minus-

symbol\ "and thequot-symbol\".) Asexplainedin Set.2 onemayagain

(14)

In this example we will eliminate the seond arguments of , , M, and Q

(i.e.,everyterms tisreplaedby 0

(s),et.).Thentheresultinginequalities

are satised by the rpo with the preedene 0

A s A 0

, Q 0

A M 0

. Thus,

with the method of the present paper,one an now verify termination of this

exampleautomatially forthe rsttime. This examplealso demonstrates that

by using dependeny pairs,termination of equational rewritingan sometimes

even beshown byordinary base orderings (e.g., theordinary rpo whih onits

ownannotbeusedforrewritingmoduloequations).

6 Conlusion

Wehaveextendedthedependenypairapproahtoequationalrewriting.Inthe

speialaseofAC-axioms,ourmethodissimilartotheonespreviouslypresented

in [15,17℄. Infat,as longas theequationsonlyonsistofAC-axioms, onean

showthatusingtheinstanesIns

E

inThm.16isnotneessary.

7

(Hene,suha

oneptannotbefoundin[17℄).However,eventhentheonlyadditionalinequal-

itiesresultingfrom Ins

E

areinstantiationsofotherinequalitiesalreadypresent

andinequalitieswhiharespeialasesofanAC-deletionproperty(whihissat-

ised byallknownAC-orderingsand similarto theone requiredin [15℄). This

indiates that in pratialexamples with AC-axioms, ourtehniqueis at least

aspowerfulastheonesof[15,17℄(atually,weonjeturethatforAC-examples,

thesethreetehniquesarevirtuallyequallypowerful).Butomparedtotheap-

proahesof[15,17℄,ourtehniquehasamoreeleganttreatmentoftuplesymbols.

(For example,iftheTRSontainsarulef(t

1

;t

2

)!g(f(s

1

;s

2 );s

3

)werefandg

aredened AC-symbols,thenwedonothavetoextendtheTRSbyruleswith

tuple symbols like f(t

1

;t

2

)!G(f(s

1

;s

2 );s

2

) in [17℄. Moreover,we donotneed

dependenypairs where tuple symbols our outsidetheroot position suh as

hF(F(t

1

;t

2

);y);:::iin[17℄and[15℄andhF(t

1

;t

2 );G(F(s

1

;s

2 );s

3

)iin[15℄.Finally,

we alsodo notneed the\AC-markedondition" F(f(x;y);z)F(F(x;y);z)of

[15℄.) But most signiantly, unlike [15,17℄ our tehnique works for arbitrary

non-ollapsing equations E with idential uniquevariableswhere E-uniation

is nitary (for subterms of equations and left-hand sides of rules). Obviously,

animplementationofourtehniquealsorequiresE-uniationalgorithms[5℄for

theonretesetsofequationsE under onsideration.

In[1{3℄,ArtsandGieslpresentedthedependeny graph renementwhihis

basedon theobservation that itis possibleto treatsubsets ofthedependeny

pairsseparately.Thisrenementarriesovertotheequationalaseinastraight-

forwardway(byusingE-uniationtoomputeanestimationofthisgraph).For

details on this renement and for further examples to demonstratethe power

andtheusefulness ofourtehnique,thereaderisreferredto [11℄.

Aknowledgments.WethankA.Middeldorp,T.Arts,andtherefereesforomments.

7

ThenintheproofofThm.16,insteadofaminimalnon-terminatingtermt 0

onere-

gardsatermt 0

whihisnon-terminatingandminimaluptosomeextraf-ourrenes

onthetop(wheref isanAC-symbol).

(15)

1. T. Arts and J. Giesl, Automatially Proving Termination where Simpliation

OrderingsFail,inPro.TAPSOFT'97,LNCS1214,261-272,1997.

2. T.ArtsandJ.Giesl,ModularityofTerminationUsingDependenyPairs,inPro.

RTA'98,LNCS1379,226-240,1998.

3. T. Arts and J. Giesl, Termination of Term Rewriting Using Dependeny Pairs,

TheoretialComputer Siene,236:133-178,2000.

4. T. Arts, SystemDesription: The Dependeny Pair Method,in Pro.RTA '00,

LNCS1833,261-264,2000.

5. F.BaaderandW.Snyder,UniationTheory,inHandbookofAutomatedReason-

ing,J.A.RobinsonandA.Voronkov(eds.),Elsevier.Toappear.

6. A.BenCherifaandP.Lesanne,TerminationofRewritingSystemsbyPolynomial

InterpretationsanditsImplementation,S.Comp.Prog.,9(2):137-159,1987.

7. CiME2.Pre-releaseavailableathttp://www.lri.fr/~demons/ime-2.0.html.

8. C.Delor andL.Puel,Extensionof theAssoiativePathOrdering toaChain of

AssoiativeCommutativeSymbols,inPro.RTA'93,LNCS690,389-404,1993.

9. N.Dershowitz,TerminationofRewriting,J.SymboliComputation,3:69-116,1987.

10. M.C.F.Ferreira,DummyEliminationinEquationalRewriting,inPro.RTA'96,

LNCS1103,78-92,1996.

11. J. Giesl and D. Kapur, Dependeny Pairs for Equational Rewriting, Tehnial

Report TR-CS-2000-53, University of New Mexio, USA, 2000. Available from

http://www.s.unm.edu /s oe / s/ te h reports

12. J.-P.Jouannaudand H.Kirhner,CompletionofaSetof RulesModuloaSet of

Equations,SIAMJournalonComputing,15(4):1155-1194,1986.

13. D. Kapurand G.Sivakumar,A Total GroundPathOrderingforProvingTermi-

nationofAC-RewriteSystems,inPro.RTA'97,LNCS1231,142-156,1997.

14. D.KapurandG.Sivakumar,ProvingAssoiative-CommutativeTerminationUsing

RPO-CompatibleOrderings,inPro.AutomatedDedution inClassialandNon-

ClassialLogis,LNAI1761,40-62,2000.

15. K. Kusakari and Y. Toyama, On Proving AC-Termination by AC-Dependeny

Pairs, Researh Report IS-RR-98-0026F, Shool of InformationSiene, JAIST,

Japan, 1998.Revisedversion inK.Kusakari, Termination,AC-Termination and

DependenyPairsofTermRewritingSystems,PhDThesis, JAIST,Japan,2000.

16. J.-P.Jouannaud and M.Mu~noz,Termination of aSet ofRules Modulo aSet of

Equations,inPro.7thCADE,LNCS170,175-193,1984.

17. C.MarheandX.Urbain,TerminationofAssoiative-CommutativeRewritingby

DependenyPairs,inPro.RTA'98,LNCS1379,241-255,1998.

18. H.Ohsaki,A.Middeldorp,andJ.Giesl,EquationalTerminationbySemantiLa-

belling,inPro.CSL '00,LNCS1862,457-471,2000.

19. G.E.PetersonandM.E.Stikel,CompleteSetsofRedutionsforSomeEquational

Theories,JournaloftheACM,28(2):233-264,1981.

20. A.Rubioand R.Nieuwenhuis,A TotalAC-CompatibleOrderingbasedonRPO,

TheoretialComputer Siene,142:209-227,1995.

21. A.Rubio,AFullySyntatiAC-RPO,Pro.RTA-99,LNCS1631,133-147,1999.

22. J.Steinbah,SimpliationOrderings:HistoryofResults,Fundamenta Informat-

iae,24:47-87,1995.

23. L.Vigneron,PositiveDedutionmoduloRegularTheories,inPro.CSL'95,LNCS

1092,468-485,1995.

Referenzen

ÄHNLICHE DOKUMENTE

7.2 Complexity of Combined Dependency Pairs and Size-Change Principle We have shown that the dependency pair approach is NP-complete while the size-change principle is

Thus, termination cannot be proved with dependency pairs in combination with classical orderings amenable to automation, whereas the proof is very easy with the size-change

a modular tehnique for innermost termination proofs using dependeny pairs.. in

pendeny graph there exists no innite innermost R-hain of dependeny.. pairs from

[11℄ and the argument ltering transformation [16℄, with the dependeny

In particular, there are numerous term rewriting systems where a direct termination proof with simplication orderings is not possible, but in combination with our technique,

u t Hence, in the quot example the constraints (22) and (23) are in fact sucient for innermost termination. A suitable quasi-ordering satisfying these weakened constraints can easily

In case you prove termination, explicitly state which order you used (including precedence and status if appropriate) and which checks you have to perform for the termination proof