• Keine Ergebnisse gefunden

1. Gessard, C. Sur les colorations bleue et verte des lignes à pansements.

Compt Rend Acad. Sci. 1882; 94: 536-538

2. Migula W. Über ein neues System der Bakterien. Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe 1894; 1:

235-238

3. Stover CK. , Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ et al.

Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406: 959-964

4. http://www.pseudomonas.com/GenomeSearchU.asp (Stand: Dezember 2004) 5. Costerton JW. Cystic fibrosis pathogenesis and the role of biofilms in

persistent infection. Trends in Microbiology 2001; 9 (2): 50-52

6. Govan JRW, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiological reviews 1996; 60: 539-574

7. Costerton JW. Bacterial Biofilms: A common cause of persistent infection.

Science 1999; 284: 1318-1322

8. Fergie JE, Shema SJ, Lott L, Crawford R, Patrick CC. Pseudomonas aeruginosa bacteriemia in immunocompromised children: analysis of factors asociated with a poor outcome. Clin Infectious Diseases 1994; 18: 390-394

9. Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ. Recent experience with Pseudomonas aeruginosa bacteriemia in patients with cancer:

Retrospective analysis of 245 episodes. Archieves of Internal Medicine 2000;

160 (4): 501-509

10. Vidal F, Mensa J, Martinez JA, Almela M, Marco F, Gatell JM. Pseudomonas aeruginosa bacteriemia in patients infected with human iummunodeficiency virus type 1. European Journal of Clinical Microbiological Infectous Diseases 1999 18 (7): 473-477

11. Mendelson MH, Gurtmann A, Szabo S, Neibart E, Meyers BR, Policar M, et al.

Pseudomonas aeruginosa bacteriemia in patients with AIDS. Clinical Infectious Diseases 1994; 18: 886-895

12. Brewer SC, Wunderink RG, Jones CB, Leeper KVJ. Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest 1996; 109: 1019-1029 13. Dunn M, Wunderink RG. Ventilator-associated pneumonia caused by

Pseudomonas infection. Clinics of Chest Medicine 1995; 16: 95-109

14. Burns JL, Gibson RL, McNamara S, Yim D, Emerson J, Rosenfeld M, et al.

Longitudinal assesment of Pseudomonas aeruginosa in young children with cystic fibrosis. Journal of Infectious Diseases 2002; 183 (3): 444-452

15. http://www.cff.org/about_cf/what_is_cf/ (Stand: Februar 2005)

16. Nasr SZ. Cystic fibrosis in adolescents and young adults. Adolescent Medicine 2000; 11: 589-603

17. Riordan JR et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNS. Science 1989; 245: 1066-1073

18. Kopito RR. Biosynthesis and degradation of CFTR. Physiological Reviews 1999; 79 (Suppl. 1): S167-S173

19. Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. European Respiratory Journal 2004; 23 (1): 146-158

20. Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice.

Nature Medicine 2004; 10 (5): 452-454

21. Knowles MR et al. Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and and disease-control subjects.

Journal of Clinical Investigation 1997; 100: 2588-2595

22. Joo NS, Krouse ME, Wu JV, Saenz Y, Jayaraman S, Verkman AS, et al.

HCO3- transport in relation to mucus secretion from submucosal glands.

Journal of the Pancreas 2001; 2 Suppl. 4: 280-284

23. Khan TZ, Wagener JS, Boat T, Martinez J, Accurso FJ, Riches DHW. Early pulmonary inflammation in infants with cystic fibrosis. American Journal of Respiratory Critical Care Medicine 1995; 151: 1075-1081

24. Bonfield TL, Panuska JR, Konstan MW. Inflammatory cytokines in cystic fibrosis lungs. American Journal of Respiratory Critical Care Medicine 1995;

152: 2111-2118

25. Zahm JM et al. Early alterations in airway mucociliar clearance and inflammation of the lamina propria in CF mice. American Journal of Physiology 1997; 272: C853-C859

26. Poschet J, Perkett E, Deretic V. Hyperacidification in cystic fibrosis: links with lung disease and new prospects for treatment. Trends in Molecular Medicine 2002; 8 (11): 512-519

27. Tümmler B, Kievitz C. Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Molecular Medicine today 1999; 5: 351-358

28. Hahn H, Falke D, Kaufmann SHE, Ullmann U (Herausgeber). Medizinische Mikrobiologie und Infektionsepidemiologie, 4. Auflage. Springer Verlag Berlin Heidelberg New York 2001

29. Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, et al. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. Journal of Infectous Diseases 2001; 183 (12): 1767-1774

30. Hauser AR, Cobb E, Bodi M, Mariscal D, Valles J, Engel JN, et al. Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Critical Care Medicine 2002; 30 (3): 521-528

31. Kjelleberg S, Molin S. Is there a role for quorum sensing signals in bacterial biofilms? Current opinion in Microbiology 2002; 5: 254- 258

32. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, et al.

Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal 2003; 22 (15): 3803-3815

33. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. Journal of Clinical Investigation 2002; 109 (3): 317-325

34. Yoon S, Hennigan RF, Hillard GM et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis.

Development Cell 2002; 3: 593-603

35. Costerton JW. Anaerobic biofilm infections in cystic fibrosis. Molecular Cell 2002; 10 (4): 699-700

36. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple Phenotypes during developement as a biofilm.

Journal of Bacteriology 2002; 184 (4): 1140-1154

37. Goldberg JB, Pier GB. The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trends in Microbiology 2000; 8 (11):

514-520

38. Schroeder TH, Lee MM, Yacone PW, Cannon CL, Gerceker AA, Golan DE, et al. CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF- kappa B translocation. Proc National Academic Science USA 2002; 99 (10): 6807-6912

39. Esen M, Grassme H, Riethmüller J, Riehle A, Fassbender K, Gulbins E.

Invasion of human epithelial cells by Pseudomonas aeruginosa involves src-like tyrosine kinases p60Src and p59Fyn. Infection and Immunity 2001; 69 (1):

281-287

40. Grassme H, Jendrossek V, Gulbins E. Molecular mechanisms of bacteria induced apoptosis. Apoptosis 2001; 6 (6): 441-445

41. Jendrossek V, Grassme H, Müller I, Lang F, Gulbins E. Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activated protein kinases. Infection and Immunity 2001; 69 (4): 2675-2683

42. Cornelis GR, Van Gijsegem F. Assembly and function of type III secretory systems. Annual Reviews in Microbiology 2000; 54: 735-744

43. Bitter W. Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Archieves of Microbiology 2003; 179: 307-314

44. Wiehlmann L, Salunkhe P, Larbig K, Ritzka M, Tümmler B. Signature tagged mutagenesis of Pseudomonas aeruginosa. Genome Letters 2002; 3: 131-139 45. Cornelis GR. Yersinia type III secretion: send in the effectors. Journal of Cell

Biology 2002; 158 (3): 401-408

46. Aizawa SI. Bacterial flagella and type III secretion systems. FEMS Microbiology Letters 2001; 202 (2): 157-164

47. MinaminoT, Namba K. Self-assembly and type III protein export of the bacterial flagellum. Journal of Molecular Microbiological Technology 2004; 7 (1-2): 5-17

48. O’Connor CD, Timmis KN. Highly repressible expression system for cloning genes that specify potentially toxic proteins. Journal of Bacteriology 1987; 169 (10): 4457-4462

49. Geißdörfer W, Frosch SC, Haspel G, Ehrt S, Hillen W. Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1. Microbiology 1995; 142: 1425-1432

50. Stryer L. Biochemie. Völlig neu bearbeitete Auflage, basierend auf der 3.

amerikanischen Auflage. Spektrum der Wissenschaft Verlagsgesellschaft mbH, Heidelberg 1990

51. Coulter ED, Kurtz jr. DM. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Archieves of Biochemistry and Biophysics 2001; 394 (1): 76-86

52. Eggink G, Engel H, Vriend G, Terpstra P, Witholt B. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. Journal of Molecular Biology 1990; 212 (1): 135-142

53. Quadri LE, Keating TA, Patel HM, Walsh CT. Assembly of Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: In vitro reconstitution of aryl- 4,2-bisthiazoline synthetase activity from PchD, PchE, and PchF.

Biochemistry 1999; 38 (45): 14941-14954

54. Serino L, Reimmann C, Visca P, Beyeler M, Chiesa VD, Haas D. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. Journal of Bacteriology 1997; 179 (1):

248-257

55. Journet L, Agrain C, Broz P, Cornelis GR. The needle length of bacterial injectosomes is determined by a molecular ruler. Science 2003; 302: 1757-1760

56. Reeves EP, Lu H, Jacobs HL, Messina CGM, Bolsover S, Gabella G, et al..

Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 2002; 416: 291-297

57. Minamino T, Gonzales-Pedrajo B, Yamaguchi K, Aizawa SI, Macnab RM. FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Molecular Microbiology 1999; 34 (2): 295-304 58. Patterson-Delafield J, Martinez RJ, Stocker BAD, Yamaguchi S. A new fla

gene in Salmonella typhimurium –flaR- and ist mutant phenotype – superhooks. Arch Microbiology 1973; 90: 107-120

59. Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, Salunkhe P, et al.

Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 2004; 150: 831-841

60. Lee HJ, Basran J, Scrutton NS. Electron transfer fram flavin to iron in the Pseudomonas oleovorans rubredoxin reductase – rubredoxin electron transfer complex. Biochemistry 1998; 37 (44): 15513 –15522

61. Victor BL, Vincente JB, Oliveira RRS, Rodrigues-Pousada C, Frazao C, Gomes CM, et al. Docking and electron transfer studies between rubredoxin and rubredoxin:oxygen oxidoreductase. Journal of Biological Inorganic Chemistry 2003; 8: 475-488

62. Van Beilen JB, Wubbolts MG, Witholt B. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 1994; 5: 161-174

63. Smits THM, Balada SB, Witholt B, van Beilen JB. Functional analysis of alkane hydroxylases from Gram-negative and Gram-positive bacteria. Journal of Bacteriology 2002; 184: 1733-1742

64. Smits THM, Witholt B, van Beilen JB. Functional Characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie van Leeuwenhoek 2003; 84: 193-200

65. Marín MM, Yuste L, Rojo F. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. Journal of Bacteriology 2003; 185 (10): 3232-3237

66. Alonso A, Rojo F, Martinez JL. Enviromental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environmental Microbiology 1999; 1: 421-430

67. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome:

oxidants, myeloperoxidase and bacterial killing. Blood 1998; 92: 3007-3017 68. Chen L, Sharma P, LeGall J, Mariano AM, Teixeira M, Xavier A. A blue,

non-heme iron protein from Desulfovibrio gigas. European Journal of Biochemistry 1994; 226: 613-618

69. Baker CJ, Harmon GL, Glazener JA, Orlandi EW. A noninvasive technique for monitoring peroxidative and Abbildung H2O2-scavenging activities during interactions between bacterial plant-pathogens and suspension cells. Plant Physiology 1995; 108 (1): 353-359

70. Camara M, Williams P, Hardman A. Controling infection by tuning in and turning down the volume of bacterial small talk. Lancet Infectous Diseases 2002; 2: 667-676

71. Kievit TR, Iglewski BH. Bacterial Quorum sensing in pathogenic Relationship.

Infection and Immunity 2000; 68 (9): 4839-4849

72. Moré MI, Finger DL, Stryker JL, Fuqua C, Eberhard A, Winans SC. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates.

Science 1996; 272: 1655-1658

73. Watson WT, Minogue TD, Val DT, Beck von Bodmann S, Churchill MEA.

Structural basis and specifity of Acyl-homoserinelactone signal production in bacterial quorum sensing. Molecular Cell 2002; 9: 685-694

74. Weinberg MV, Jenney Jr. FE, Cui X, Adams MWW. Rubrerythrin from the hyperthermophilic archaeon Pyococcus furiosus is a rubredoxin-dependent, Iron-containing peroxidase. Journal of Bacteriology 2004; 186 (23): 7888-7895 75. Jenney FE jr., Verhagen MFJM, Cui X, Adams MWW. Anaerobic Microbes:

Oxygen Detoxification without Superoxid Dismutase. Science 1999; 286: 306-309

76. LeGall J, Prickril BC, Moura I, Xavier AV, Moura JJG, Huynh BH. Isolation and

vulgaris that contains rubredoxin centers and a hemerythrin-like binuclear iron cluster. Biochemistry 1988; 27: 1636-1642

77. Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM jr.

Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. Journal of Bacteriology 2001; 183 (1): 101-108

78. Alban PS, Popham DL, Rippere KE, Krieg NR. Identification of a gene for a rubrerythrin/nigrerythrin –like protein in Spirillum volutans by using amino acid sequence data from mass spectrometry and NH2-terminal sequencing. Journal of Applied Microbiology 1998; 85: 875-882

79. Das A, Coulter ED, Kurtz DM jr., Ljungdahl, LG. Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase- rubredoxin and rubrerythrin-type A flavoprotein- high- molcular- weight rubredoxin. Journal of Bacteriology 2001; 183: 1560-1567

80. Lehmann Y, Meile L, Teuber M. Rubrerythrin from Clostridium perfringens:

Cloning of the gene, purification of the protein, and characterization of its superoxid dismutase function. Journal of Bacteriology 1996; 178: 7152-7158 81. Geissmann TA, Teuber M, Meile L. Transcriptional analysis of the rubrerythrin

and superoxid dismutase genes of Clostridium perfringens. Journal of Bacteriology 1999; 181: 7136- 7139

82. Wakagi T. Sulerythrin, the smallest member of the rubrerythrin family, from the strictly aerobic and thermoacidophilic archaeon, Sulfolobus tokodaii strain 7.

FEMS Microbiology Letters 2003; 222: 33-37

83. Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA. 2004, 101 (39):14240-14245

84. Lombard M, Touati D, Fontecave M, Niviere V, 2000. Superoxide reductase as a unique defense system against superoxide stress in the microaerophile Treponema pallidum. Journal of Biological Chemistry 275: 27021-27026

85. Jovanovic T, Ascenso T, Hazlett KR, Sikkink R, Krebs C, Litwiller R, et al.

Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase. Journal of Biological Chemistry 2000; 275 (37): 28439-28448

86. Ankenbauer RG, Toyokuni T, Staley A, Rinehart jr. K, Cox CD. Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa.

Journal of Bacteriology 1988; 170: 5344-5351

87. Coffman TJ, Cox CD, Edeker BL, Britigan BE. Possible role of bacterial siderophores in inflammation: iron bound to the Pseudomonas siderophore pyochelin can function as a hdroxyl radical catalyst. Journal of Clinical Investigation 1990; 86: 1030-1037

88. Cox CD. Effect of pyochelin on the virulence of Pseudomonas aeruginosa.

Infection and Immunity 1982; 36: 17-23

89. Britigan BE, Rasmussen GT, Cox CD. Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophor Pyochelin. Infection and Immunity 1997;65 (3): 1071-1076

90. Takase H, Nitanai H, Hoshino K, Otani T. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infection and Immunity 2000; 68 (4): 1834-1839

91. Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, Lory S, et al. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Molecular Microbiology 2003; 50 (3): 809-824

92. Makishima S, Komoriya K, Yamaguchi S, Aizawa SI. Length of the flagellar hook and the capacity of the type III export apparatus. Science 2001; 291:

2411-2413

93. Edqvist PJ, Olsson J, Lavander M, Sundberg L, Forsberg A, Wolf-Watz H, et al. YscP ans YscU regulate substrate specifity of the Yersinia type III secretion system. Journal of Bacteriology 2003; 185: 2259-2266

94. Kubori T, Sukhan A, Aizawa SI, Galan JE. Molecular characterization and and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. National Academic Science USA 2000; 97: 10225-10230

95. Collazo CM, Zierler MK, Galan JE. Functional analysis of the Salmonella typhimurium invasion genes invI and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Molecular Microbiology 1995; 1: 25-38

96. Tamano K, Aizawa S, Katayama E, Nonaka T, Imajoh-Ohmi S, Kuwae A, et al.

Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors.

EMBO Journal 2000; 19 (15): 3876-3887

97. Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A, et al.

Spa32 regulates a switch in substrate specifity of the type III scretion of Shigella flexneri from needle components to Ipa proteins. Journal of Bacteriology 2002; 184: 3433

98. Kubori T et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 1998; 280: 602-605

99. Kimbrough TG, Miller SI. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. National Academic Science USA 2000; 97: 11008-11013

100. Blocker A, et al. Structure and composition of the Shigella flexneri ‚needle complex‘, a part of its type III secretion. Molecular Microbiology 2001; 39: 652-663

101. Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiology and Molecular Biology Reviews 1998; 62 (2): 379-433

102. Yahr TL, Goranson J, Frank DW. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III secretion pathway. Molecular Microbiology 1996; 22 (5): 991-1003

103. Galán JE, Collmer A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 1999; 284:1322- 1328

104. Williams AW, Yamaguchi S, Togashi F, Aizawa SI, Kawagishi I, Macnab RM.

Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. Journal of Bacteriology 1996; 178: 2960-2970

105. Macnab RM. The bacterial flagellum: reversible rotary propellor and type III export apparatus. Journal of Bacteriology 1999; 181: 7149-7153

106. Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 2001; 410: 331-337

107. Munson RS jr., Harrison A, Gillaspy A, Ray WC, Carson M, Armbruster D, et al. Partial analysis of the genomes of two nontypable Haemophilus influenzae otitis media isolates. Infection and Immunity 2004; 72 (5): 3002-3010

108. International Committee of Medical Journal Editors. Uniform Requirements for Manuscripts submitted to Biomedical Journals. The New England Journal of Medicine 1997; 336 (4): 309-316