• Keine Ergebnisse gefunden

Da HOCl-haltige Produkte viele Vorteile bieten, wird HOCl im Haushalt und im Ge-werbe in vielfältigen Anwendungen als Desinfektionsmittel eingesetzt. Die oben gezeig-ten Dagezeig-ten zeigen, dass die Toxizität von HOCl-haltigen Produkgezeig-ten vergleichsweise ge-ring ist gegenüber anderen Haushaltsprodukten, die allgemein als sicher anerkannt sind.

Unfälle mit HOCl-Reinigungsmitteln sind auf einzelne Fälle beschränkt, wobei in den meisten Fällen bei unabsichtlicher (und ebenfalls absichtlicher) Aufnahme von HOCl durch Menschen keine oder nur geringe gesundheitliche Effekte resultierten. Falls doch, sind es im wesentlichen immer unbedenkliche und ohne jegliche medizinische Behand-lung oder im schlimmsten Falle mit geringer unterstützender medizinischer Therapie heilbare Folgen. Spezielle medizinische Überwachung und Hilfe ist eventuell notwendig

in bestimmten Fällen absichtlicher oraler Aufnahme oder durch Einatmung von Cl2-Gas entstandene Reizungen der Atemwege.

Weiterhin wurde gezeigt, dass Prozesse im menschlichen Immunsystem, bei denen HOCl generiert wird, bedeutend sind beim Abtöten von Bakterien aber andererseits auch gesundes Gewebe schädigen und zur Auslösung bestimmter Krankheiten führen können. Proteine sind dabei das Hauptziel für oxidative Schädigungen durch HOCl auf-grund ihrer großen Menge in biologischen Systemen und der großen Geschwindigkeits-konstanten der Reaktionen. HOCl ist ein starkes nichtradikalisches Oxidationsmittel und Chlorierungsreagenz, wobei Oxidationsreaktionen schneller ablaufen. Die Thiolgruppen der Aminosäuren sind wiederum am oxidationsempfindlichsten und damit die reaktiv-sten Gruppen, danach folgt erst mit weitaus geringerer Reaktivität die Umsetzung von HOCl mit Aminen zu Chloraminen. Erst wenn alle Thiolgruppen verbraucht sind, kommt es zu Reaktionen mit den anderen reaktiven Gruppen. Thiolgruppen (insbeson-dere im Serumalbumin) sind daher sehr relevant für den Organismus, da sie antioxidati-ve Wirkung gegenüber HOCl besitzen.

Weitere biologisch relevante Reaktionen von HOCl sind die Chlorierung von Phenolen, die Umsetzung der olefinischen Reste von Lipiden sowie die Lipidperoxidation und Proteinvernetzung. Die Lipidperoxidation ist beispielsweise maßgeblich an der Ausbrei-tung der atherosklerotischen Gefäßschädigung beteiligt.

8. Literatur

[1] Alfafara, C.G., Kawamori, T., Nomura, N., Kiuchi, M., Matsamura, M.: Electro-lytic removal of ammonia from brine wastewater: scale-up, operation and pilot-scale evaluation. J. Chem. Technol. Biotechnol. 79 (2004) 291-298.

[2] Anderson, M.M., Hazen, S.L., Hsu, F.F., Heinecke, J.W.: Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hy-droxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. J.

Clin. Invest. 99 (1997) 424-432.

[3] Antelo, J.M., Arce, F., Parajo, M.: Kinetic study of the formation of N-chloramines. Int. J. Chem. Kinetics 27 (1995a) 637-648.

[4] Antelo, J.M., Arce, F., Castro, M.C., Crugeiras, J., Perez-Moure, J.C., Rodri-guez, P.: Kinetic of the formation, decomposition, and disproportionation reac-tions of N-chlorobutylamines. Int. J. Chem. Kinetics 27 (1995b) 637-648.

[5] Armesto, X.L., Canle, M.L., Santaballa, J.A.: α-amino acids chlorination in aqueous media. Tetrahedron 49 (1993) 275-284.

[6] Armesto, X.L., Canle, M.L., Garcia, M.V., Losada, M., Santaballa, J.A.: Halo-gen-induced aqueous oxidation of (L)-isoleucine. Bull. Soc. Chim. Fr. 132 (1995) 1061-1068.

[7] Arnhold, J., Hammerschmidt, S., Wagner, M., Müller, S., Arnold, K., Grimm, E.: On the action on human serum albumin. Biomed. Biochim. Acta 49 (1990) 991-997.

[8] Arnhold, J, Müller, S., Arnold, K., Sonntag, K.: Mechanisms of inhibition of chemiluminescence in the oxidation of luminol by sodium hypochlorite. J.

Biolumin. Chemilumin. 8 (1993) 307-313.

[9] Arnhold, J., Panasenko, O.M., Schiller, J., Vladimirov, Yu.A., Arnold, K.: The action of hypochlorous acid on phosphatidylcholine liposomes in dependence on the content of double bonds. Stochiometry and NMR analysis. Chem. Phys. Li-pids 78 (1995) 55-64.

[10] Arnhold, J., Osipov, A.N., Spalteholz, H., Panasenko, O.M., Schiller, J.: Effects of hypochlorous acid on unsaturated phosphatidylcholines. Free Radic. Biol.

Med. 31 (2001) 1111-1119.

[11] Arnhold, J., Osipov, A.N., Spalteholz, H., Panasenko, O.M., Schiller, J.: Forma-tion of lysophospholipids from unsaturated phosphatidylcholines under the in-fluence of hypochlorous acid. Biochim. Biophys. Acta 1572 (2002) 91-100.

[12] Arnold, K.: Neutrophile Granulozyten. In: Arnold, K. (Hrsg.): Wasserbindungen und Abbauprozesse des Gelenkknorpels. Von den molekularen und zellulären Eigenschaften zur biomechanischen Funktion. Akademie-Verlag, Berlin, 1997.

[13] ASTM Standard Method E 1055-1085, 1985.

[14] Baker, M.S., Green, S.P., Lowther, D.A.: Changes in the viscosity of hyaluronic acid after exposure to a myeloperoxidase-derived oxidant. Arthritis Rheum. 32 (1988) 461-467.

[15] Van den Berg, J.J.M., Winterbourn, C.C., Kuypers, F.A.: Hypochlorous acid-mediated modification of cholesterol and phospholipid: analysis of reaction products by gas chromatography-mass spectrometry. J. Lipid Res. 34 (1993) 2005-2012.

[16] BIBRA: Toxicity Profile. Sodium hypochlorite. BIBRA Toxicology Interna-tional, Carshalton, Surrey, UK, 1990.

[17] Blaser, M.J., Smith, P.F., Cody, H.J., Wang, W.-L., LaForce, F.M.: Killing of fabric-associated bacteria in hospital laundry by low-temperature washing. J.

Infect. Dis. 149 (1984) 48-57.

[18] Bloomfield, S.F.: A review: the use of disinfectants in the home. J. Appl. Bac-teriol. 45 (1978) 1-38.

[19] Brites, P., Waterham, H.R., Wanders, R.J.A.: Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta 1636 (2004) 219-231.

[20] Carr, A.C., Winterbourn, C.C.: Oxidation of neutrophil glutathione and protein thiols by myeloperidase-derived hypochlorous acid. Biochem. J. 327 (1997) 275-281.

[21] Carr, A.C., McCall, M.R., Frei, B.: Oxidation of LDL by myeloperoxidase and reactive nitrogen species: Reaction pathways and antioxidant protection. Ar-terioscler. Thromb. Vasc. Biol. 20 (2000) 1716-1723.

[22] Castegnaro, M., De Méo, M., Laget, M., Michelon, J., Garren, L., Sportouch, M.H., Hansel, S.: Chemical degradation of wastes of antineoplastic agents. Int.

Arch. Occup. Environ. Health 70 (1997) 378-384.

[23] Cunningham, R.P., Ahern, H.: Antioxidant defenses of escherichia coli and sal-monella typhimurium. In: Ahmad, S. (ed.): Oxidative stress and antioxidant de-fenses in biology. Chapman & Hall, New York, 1995, 273-297.

[24] Curieux, F.L., Marzin, D., Erb, F.: Comparison of three short-term assays: re-sults on seven chemicals. Potential contribution to the control of water geno-toxicity. Mutat. Res. 319 (1993) 223-236.

[25] Dammaschke, T.: Natriumhypochlorit – eine Übersicht. Endodontie 1 (1999) 9-19.

[26] Davies, M.J., Horwitz, D.A., Davies, K.J.: Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis.

Free Radic. Biol. Med. 15 (1993) 637-643.

[27] Davies, M.J.: The oxidative environment and protein damage. Biochim. Bio-phys. Acta 1703 (2005) 93-109.

[28] Domigan, N.M., Charlton, T.S., Duncan, M.W., Winterbourn, C.C., Kettle, A.J.:

Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neu-trophils. J. Biol. Chem. 270 (1995) 16542-16548.

[29] Draize, J.H., Woodard, G., Calvery, H.O.: Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes.

J. Pharmacol. Exp. Ther. 82 (1944) 377-390.

[30] Ebert, G.: Biopolymere. Teubner Studienbücher, Stuttgart, 1993, S. 235.

[31] Ellenhorn, M.J., Barceloux, D.G.: Medical toxicology. Diagnosis and treatment of human poisoning. Elsevier, New York, 1988, 903-905.

[32] Eun, H.C., Lee, A.Y., Lee, Y.S.: Sodium hypochlorite dermatitis. Contact Dermatitis 11 (1984) 45.

[33] Flohé, L.: Glutathione peroxidase brought into focus. In: Pryor, W.A. (ed.): Free Radicals in Biology. Academic Press, New York, 1982.

[34] Freeberg, F.E., Griffith, J.F., Bruce, R.D., Bay, P.H.S.: Correlation of animal test methods with human experience for household products. J. Toxicol. Cuta-neous Ocul. Toxicol. 1 (1984) 53-64.

[35] Freeberg, F.E., Hooker, D.T., Griffith, J.F.: Correlation of animal eye test data with human experience for household product: an update. J. Toxicol. Cutaneous Ocul. Toxicol. 5 (1986a) 115-123.

[36] Freeberg, F.E. Nixon, G.A., Reer, P.J., Weaver, J.E., Brucer, R.D., Griffith, J.F., Sanders, L.W.: Human and rabbit eyes responses to chemical insult. Fundam.

Appl. Toxicol. 7 (1986b) 626-634.

[37] Greenwood, N.N., Earnshaw, A.: Chemie der Elemente. Verlag Chemie, Wein-heim, 1988.

[38] Griffith, J.F., Nixon, G.A., Bruce, R.D., Reer, P.J., Bannan, E.A.: Dose-response studies with chemical irritants in the albino rabbit eye as a basis for selecting op-timum testing conditions for predicting hazard to the human eye. Toxicol. Appl.

Pharmacol. 55 (1980) 501-513.

[39] Grisham, M.B., Jefferson, M.M., Melton, D.F., Thomas, E.L.: Chlorination of endogenous amines by isolated neutrophils. J. Biol. Chem. 259 (1984) 10404-10412.

[40] Habets J.M.W., Geursen-Reitsma A.M., Stolz, E., Van Joost, T.: Sensitization to sodium hypochlorite causing contact dermatitis. Contact Dermatitis 15 (1986) 140-142.

[41] Hampton, M.B., Kettle, A.J., Winterbourn, C.C.: Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92 (1998) 3007-3017.

[42] Hawkins, C.L., Davies, M.J.: Reaction of HOCl with amino acids and peptides:

EPR evidence for rapid rearrangement and fragmentation, reactions of nitrogen-centred radicals. J. Chem. Soc. Perkin Trans. 2 (1998) 1937-1945.

[43] Hawkins, C.L., Pattison, D.I., Davies, M.J.: Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25 (2003) 259-274.

[44] Hawkins, C.L., Davies, M.J.: The role of aromatic amino acid oxidation, protein unfolding, and aggregation in the hypobromous acid-induced inactivation of trypsin inhibitor and lysozyme. Chem. Res. Toxicol. 18 (2005) 1669-1677.

[45] Hazen, S.L., Hsu, F.F., d’Avignon, A., Heinecke, J.W.: Human neutrophils em-ploy myeloperoxidase to convert α-amino acids to a battery of reactive

alde-hydes: A pathway for aldehyde generation at sites of inflammation. Biochemis-try 37 (1998a) 6864-6873.

[46] Hazen, S.L., d’Avignon, A., Anderson, M.M., Hsu, F.F., Heinecke, J.W.: Hu-man neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride sys-tem to oxidize α-amino acids to a family of reactive aldehydes. J. Biol. Chem.

273 (1998b) 4997-5005.

[47] Heinecke, J.W., Li, W., Daehnke, H.L., Goldstein, J.A.: Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 268 (1993a) 4069-4077.

[48] Heinecke, J.W., Li, W., Francis, G.A., Goldstein, J.A.: Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J. Clin. In-vest. 91 (1993b) 2866-2872).

[49] Hewson, W.D., Hager, L.P.: Mechanisms of the chlorination reaction catalysed by horseradish peroxidase with chlorite. J. Biol. Chem. 254 (1979) 3175-3181.

[50] Hollemann, A.F., Wiberg, E.: Lehrbuch der Anorganischen Chemie. Walter de Gruyter, Berlin, 1985.

[51] Horner, L., Gerhard, J.: Zur Oxidation von Thioethern mit Hypochlorit. Phos-phorus & Sulfur 22 (1985) 5-11.

[52] Hostynek, J.J., Patrick, E., Younger, B., Maibach, H.I.: Hypochlorite sensitivity in man. Contact Dermatitis 20 (1989) 32-37.

[53] Hostynek J.J., Wilhelm, K.P., Cua, A.B., Maibach, H.I.: Irritation factors of so-dium hypochlorite solutions in human skin. Contact Dermatitis 23 (1990) 316-324.

[54] Hu, M.L., Louie, S, Cross, C.E., Motchnik, P., Halliwell, B.: Antioxidant protec-tion against hypochlorous acid in human plasma. J. Lab. Clin. Med. 121 (1993) 257-262.

[55] IARC: Monographs on the evaluation of carcinogenic risks to humans. Vol. 52:

Chlorinated drinking water; chlorination by-products; some other haloginated compounds; cobalt and cobalt compounds. International Agency for Research on Cancer, Lyon, 1991.

[56] Jacob, J.S., Cistola, D.P., Hsu, F.F., Muzaffar, S., Müller, D.M., Hazen, S.L., Heinecke, J.W.: Human phagocytes employ the myeloperoxidase-hydrogen per-oxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityro-sine by a tyrosyl radical-dependent pathway. J. Biol. Chem. 271 (1996) 19950-19956.

[57] Kettle, A.J.: Neutrophils convert tyrosyl residues in albumin to chlorotyrosine.

FEBS Lett. 379 (1996) 103-106.

[58] Kim, C., Park, E., Quinn, M.R., Schuller-Levis, G.: The production of super-oxide anion and nitric super-oxide by cultured murine leukocytes and the accumulation of TNF-alpha in the conditioned media is inhibited by taurine chloramine. Im-munopharmacol. 34 (1996) 89-95.

[59] Klebanoff, J.F., Waltersdorff, A.M., Rosen, H.: Antimicrobial activity of myelo-peroxidase. Meth. Enymol. 105 (1984) 399-405.

[60] Klebanoff, S.J.: Myeloperoxidase: occurrence and biological function. In:

Everse, J., Everse, K.E., Grisham, M.B. (eds.): Peroxidases in Chemistry and Biology. CRC Press, Boca Raton, 1991, 1-35.

[61] Klebanoff, S.J.: Myeloperoxidase: friend and foe. J. Leukocyte Biol. 77 (2005) 598-625.

[62] Kleber, H.P., Schlee, D., Schöpp, W.: Biochemisches Praktikum. Fischer Ver-lag, Jena, 1997, 226.

[63] Krasowska, A., Konat, G.W.: Vulnerability of brain tissue to inflammatory oxi-dant, hypochlorous acid. Brain Res. 997 (2004) 176-184.

[64] Lachapelle, J.M., Lauwerys, R., Tennstedt, D., Andanson, J., Benezra, C., Cha-beau, G., Ducombs, G., Foussereau, J., LaCroix, M., Martin, P.: Eau de Javel and prevention of chromate allergy in France. Contact Dermatitis 6 (1980) 107-110.

[65] Landau, G.D., Saunders, Z.H.: Bleach ingestion and the esophagus. Arch.

Otolaryngol. 80 (1964) 174-176.

[66] Lamirande, E., Jiang, H., Zini, A., Kodama, H., Gagnon, C.: Reactive oxygen species and sperm physiology. Rev. Reprod. 2 (1997) 48-54.

[67] Langheld, K.: Über das Verhalten von α-Aminosäuren gegen Natriumhypochlo-rit. Ber. Dtsch. Chem. Ges. 42 (1909) 392.

[68] Leßig, J., Gey, C., Schiller, J., Süß, R., Paasch, U., Grunewald, S., Glander, H.-J., Arnhold, J.: Hypochlorous acid-induced stress on human spermatozoa: A model for inflammation in the male genital tract. Chem. Phys. Lipids 135 (2005) 201-211.

[69] Lin, Y.Y., Wright, C.E., Zagorski, M., Nakanishi, K.: 13C NMR study of taurine and chlorotaurine in human cells. Biochim. Biophys. Acta 969 (1988) 242-248.

[70] Mainnemare, A., Mégarbane, B., Soueidan, A., Daniel, A., Chapple, I.L.C.: Hy-pochlorous acid and taurine-N-monochloramine in periodontal diseases. J. Dent.

Res. 83 (2004) 823-831.

[71] Maskos, Z., Rush, J.D., Koppenol, W.H.: The hydroxylation of phenylalanine and tyrosine: A comparison with salicylate and tryptophan. Arch. Biochem.

Biophys. 296 (1992a) 521-529.

[72] Maskos, Z., Rush, J.D., Koppenol, W.H.: The hydroxylation of tryptophan.

Arch. Biochem. Biophys. 296 (1992b) 514-520.

[73] Meier, J.R.: Genotoxic activity of organic chemicals in drinking water. Mutation Res. 196 (1988) 211-245.

[74] Midwinter, R.G., Vissers, M.C.M., Winterbourn, C.C.: Hypochlorous acid stimulation of the MAP-kinase pathway enhances cell survival. Arch. Biochem.

Biophys. 394 (2001) 13-20.

[75] Morris, J.C.: The acid ionization constant of HOCl from 5° to 35°. J. Phys.

Chem. 70 (1966) 3798-3805.

[76] Nagra, R.M., Becher, B., Tourtellotte, W.W., Antel, J.P., Gold, D., Paladino, T., Smith, R.A., Nelson, J.R., Reynolds, W.F.: Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J. Neuroimmu-nol. 78 (1997) 97-107.

[77] Nakamori, K., Koyama, I., Nakamura, T., Yoshida, T., Umeda, M., Inoue, K.:

Effectiveness of taurine in protecting biomembrane oxidant. Chem. Pharm. Bull.

38 (1990) 3116-3119.

[78] Nixon, G.A., Tyson, C.A., Wertz, W.C.: Interspecies comparisons of skin irri-tancy. Toxicol. Appl. Pharmacol. 31 (1975) 481-490.

[79] Nixon, G.A., Bannan, E.A., Gaynor, T.W., Johnston, D.H., Griffith, J.F.:

Evaluation of modified methods for determining skin irritation. Regul. Toxicol.

Pharmacol. 12 (1990) 127-136.

[80] Ogata, Y., Kimura, M., Kondo, Y.: Photo-promoted hypochlorite oxidation of α-amino acids. Kinetics and irradiation effect for the Strecker degradation. Bull.

Chem. Soc. Jpn. 54 (1981) 2057-2060.

[81] Ohshima, H., Tatemichi, M., Sawa, T.: Chemical basis of inflammation-induced carcinogenesis. Arch. Biochem. Biophys. 417 (2003) 3-11.

[82] Olszowski, S., Mak, P., Olszowska, E., Marcinkiewicz, J.: Collagen Type II modification by hypochlorite. Acta Biochim. Pol. 50 (2003) 471-479.

[83] Osmundsen, P.E.: Contact dermatitis due to sodium hypochlorite. Contact Dermatitis 4 (1978) 177-178.

[84] Oncag, O., Hosgor, M., Hilmioglu, S., Zekioglu, O., Eronat, C., Burhanoglu, D.:

Comparison of antibacterial and toxic effects of various root canal irrigants. Int.

Endod. J. 36 (2003) 423-432.

[85] Panasenko, O.M., Arnhold, J., Schiller, J., Arnold, K., Sergienko, V.I.:

Peroxidation of egg yolk phosphatidylcholine liposomes by hypochlorous acid.

Biochim. Biophys. Acta 1215 (1994) 259-266.

[86] Panasenko, O.M., Evgina, S.A., Driomina, E.S., Sharov, V.S., Sergienko, V.I., Vladimirov, Y.A.: Hypochlorite induces lipid peroxidation in blood lipoproteins and phospholipid liposomes. Free Radic. Biol. Med. 19 (1995) 133-140.

[87] Panasenko, O.M., Arnhold, J., Vladimirov, Y.A., Arnold, K., Sergienko, V.I.:

Hypochlorite-induced peroxidation of egg yolk phosphatidylcholine is mediated by hydroperoxides. Free Radic. Res. 27 (1997a) 1-12.

[88] Panasenko, O.M., Arnhold, J., Schiller, J.: Hypochlorite reacts with an organic hydroperoxide forming free radicals, but not singlet oxygen, and thus initiates lipid peroxidation. Biochemistry (Moscow) 62 (1997b) 951-959.

[89] Panasenko, O.M., Arnhold, J.: Linoleic acid hydroperoxide favours hypochlo-rite- and myeloperoxidase-induced lipid peroxidation. Free Radic. Res. 30 (1999) 479-487.

[90] Panasenko, O.M., Sergienko, V.I.: Hypochlorite, oxidative modification of plasma lipoproteins, and atherosclerosis. Bull. Exp. Biol. Med. 131 (2001) 407-415.

[91] Panasenko, O.M., Spalteholz, H., Schiller, J., Arnhold, J.: Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic. Biol. Med. 34 (2003) 553-562.

[92] Pereira, W.E., Hoyano, Y., Summons, R.E., Bacon, V.A., Duffield, A.M.:

Chlorination studies: II. The reaction of aqueous hypochlorous acid with α-amino acids and dipeptides. Biochim. Biophys. Acta 313 (1973) 170-180.

[93] Pichorner, H., Metodiewa, D., Winterbourn, C.C.: Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione. Arch.

Biochem. Biophys. 323 (1995) 429-437.

[94] Pratt, H.T.: The role of Javel water in the history of chlorine bleach. Text.

Chem. Color. 21 (1989) 23-29.

[95] Prütz, W.: Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. 332 (1996) 110-120.

[96] Qin, G.F., Li, Z.Y., Chen, X.D., Russell, A.B.: An experimental study of an Na-ClO generator for anti-microbial applications in the food industry. J. Food Eng.

54 (2002) 111-118.

[97] Racioppi, F., Daskaleros, P.A., Besbelli, N., Borges, A., Deraemaeker, C., Ma-galini, S.I., Martinez Arrieta, R., Pulce, C., Ruggerone, M.L., Vlachos, P.:

Household bleaches based on sodium hypochlorite: Review of acute toxicology and poison control center experience. Food Chem. Toxicol. 32 (1994) 845-861.

[98] Raitano, A.: Antisepsi e disinfezione in ospedale. OEMF, Milan, 1990, S. 186.

[99] Rausch, T., Hofmann, F., Hilgenberg, W.: Kinetics of oxidation of tryptophan by sodium hypochlorite. Z. Naturforsch. 36b (1981) 359-361.

[100] Reiss, D., Beyer, K., Engelmann, B.: Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. J. 323 (1997) 807-814.

[101] Reisz, G.R., Gammon, R.S.: Toxic pneumonitis from mixing household clea-ners. Chest 8 (1986) 49-52.

[102] Reynolds, W.F., Rhees, J., Maciejewski, D., Paladino, T., Sieburg, H., Maki, R.A., Masliah, E.: Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer’s disease. Exp. Neurol. 155 (1999) 31-41.

[103] Rovito, S.M., Mulach, R., Tashiro, M.: CEH Marketing Research Report. Hy-pochlorite Bleaches. Chemical Economics Handbook/ SRI International, Menlo Park, CA, 1989.

[104] Rutala, W.A., Weber, D.J.: Uses of inorganic hypochlorite (bleach) in health-care facilities. Clin. Microbiol. Rev. 10 (1997) 597-610.

[105] Salavej, P., Spalteholz, H., Arnhold, J.: Modification of amino acid residues in human serum albumin by myeloperoxidase. Free Radic. Biol. Med. 40 (2006) 516-525.

[106] Saran, M., Hamm, U., Friedl, A.A., Bors, W.: Radiation-induced cell killing is highly dependent upon buffer treatment (filtration compared to autoclaving) due to metal-catalyzed formation of hypochlorite: A cautionary note. Radiat. Res.

146 (1996) 232-235.

[107] Schaur, R.J., Jerlich, A., Stelmaszynska, T.: Hypochlorous acid as reactive oxy-gen species. Curr. Topics Biophys. 22 (1998) 176-185.

[108] Schiller, J., Arnhold, J., Gründer, W., Arnold, K.: The action of hypochlorous acid on polymeric components of cartilage. Biol. Chem. Hoppe-Seyler 375 (1994) 167-172.

[109] Schiller, J., Arnhold, J., Arnold, K.: Action of hypochlorous acid on polymeric components of cartilage. Use of 13C NMR spectroscopy. Z. Naturforsch. 50c (1995a) 721-728.

[110] Schiller, J., Arnhold, J., Arnold, K.: NMR studies on the action of hypochlorous acid on native pig articular cartilage. Eur. J. Biochem. 233 (1995b) 672-676.

[111] Schiller, J., Fuchs, B., Arnhold, J., Arnold, K.: Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, di-agnosis and potential therapeutic strategies. Curr. Med. Chem. 10 (2003) 2123-2145.

[112] Schuller-Levis, G.B., Park, E.: Taurine: new implications for an old amino acid.

FEMS Microbiol. Lett. 226 (2003) 195-202.

[113] Sepe, S.M., Clark, R.A.: Oxidant membrane injury by the neutrophil oxidase system: I. Characterisation of a liposome model and injury by myeloper-oxidase, hydrogen peroxide, and halides. J. Immunol. 134 (1985) 1888-1895.

[114] Sharanov, B.P., Govorova, N.Yu., Lyzlova, S.N.: A comperative study of serum proteins ability to scavenge active oxygen species: O2-, and OCl-. Biochem. Int.

17 (1988) 783-790.

[115] Sharanov, B.P., Govorova, N.Yu., Lyzlova, S.N.: Serum protein degradation by hypochlorite. Biochem. Int. 19 (1989) 27-35.

[116] Spickett, C.M., Jerlich, A., Panasenko, O.M., Arnhold, J., Pitt, A.R., Stel-maszynska, T., Schaur, R.J.: The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim. Pol.

47 (2000) 889-899.

[117] Stelmaszynska, T., Kukovetz, E., Egger, G. Schaur, R.J.: Possible involvement of myeloperoxidase in lipid peroxidation. Int. J. Biochem. 24 (1992) 121-128.

[118] Stryer, L.: Biochemie. Vieweg-Verlag, Braunschweig, 1987.

[119] Suzuki, T., Noro, T., Kawamura, Y., Fukunaga, K., Watanabe, M., Ohta, M., Sugiue, H., Sato, Y., Kohno, M., Hotta, K.: Decontamination of aflatoxin-forming fungus and elimination of aflatoxin mutagenicity with electrolyzed NaCl anode solution. J. Agric. Food Chem. 50 (2002) 633-641.

[120] Thomas, E.L.: Myeloperoxidase, hydrogen peroxide, chloride antimicrobial sys-tem: nitrogen-chlorine derivates of bacterial components in their actions against escherichia coli. Infect. Immun. 25 (1979) 110-116.

[121] Vissers, M.C.M., Pullar, J.M., Hampton, M.B.: Low-level exposure to hy-pochlorous acid causes apoptosis or growth arrest in human endothelial cells.

Biochem. J. 344 (1999) 443-449.

[122] Weiss, S.J., Lampert, M.B., Test, S.T.: Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science 222 (1982) 625-628.

[123] Winterbourn, C.C.: Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim. Biophys. Acta 840 (1985) 204-210.

[124] Winterbourn, C.C., van den Berg, J.J.M., Roitman, E., Kuypers, F.A.: Chloro-hydrin formation from unsaturated fatty acids reacted with hypochlorous acid.

Arch. Biochem. Biophys. 296 (1992) 547-555.

[125] Winterbourn, C.C., Brennan, S.O.: Characterization of the oxidation products of the reaction between glutathione and hypochlorous acid. Biochem. J. 326 (1997) 87-92.

[126] Winterbourn, C.C., Kettle, A.J.: Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med. 29 (2000) 403-409.

[127] Winterbourn, C.C.: Biological reactivity and biomarkers of the neutrophil oxi-dant, hypochlorous acid. Toxicology 181 (2002) 223-227.

Hiermit erkläre ich,

die vorliegende Arbeit selbständig und ausschließlich unter Verwendung der angegebe-nen Literatur und Hilfsmittel angefertigt zu haben.

Dr. Beate Fuchs Leipzig, den 26. Juni 2006