• Keine Ergebnisse gefunden

Here  we  present  new  proxy  data  from  Ocean  Drilling  Program  (ODP)  site  1237  drilled  on  the   easternmost  flank  of  Nazca  Ridge,  140  km  offshore  (16.11°S,  76.37°W;  3212m  water  depth),   covering   the   past   500   ka.   Its   position   below   the   path   of   eolian   transport   from   the   Atacama   Desert   and   close   to   the   arid   coasts   of   Peru,   but   west   of   the   deep-­‐sea   trench   provides   an   excellent   opportunity   to   reconstruct   eolian   input   due   to   its   undisturbed   and   complete   sediment  record  (Mix  et  al.,  2003).  Our  data  represent  the  only  continuous  dust  record  from   the   southeast   Pacific   south   of   5°S   covering   the   last   500   ka.   The   approach   of   using   multiple   proxies  including  grain-­‐size  distributions,  Th-­‐isotopes,  and  the  geochemical  composition  of  the   sediment  allows  us  to  differentiate  between  changes  in  wind  intensities  and  climatic  changes   in   the   source   areas   (E.g.  Rea   et   al.,   1985;  Olivarez   et   al.,   1991).   We   compare   our   record   to   previously  published  dust  flux  data  from  the  equatorial  Pacific  (Winckler  et  al.,  2008)  and  to  a   multiproxy   climate   reconstruction   at   ODP   Site   1239   located   on   Carnegie   Ridge   off   Ecuador,   constraining  latitudinal  shifts  of  the  ITCZ  on  glacial-­‐interglacial  timescales  (Rincón-­‐Martínez  et   al.,  2010).    

7.2  Materials  and  Methods  

The  age  model  of  site  1237  is  based  on  a  benthic  δ18O  record  tied  to  the  chronology  of  the   LR04   isotope   stratigraphy   of  Lisiecki   and   Raymo   (2005),   applying   the   Analyseries   software   (Paillard,  1996).  Ba-­‐counts  of  the  XRF-­‐scans  were  used  for  fine-­‐tuning  the  age  model  (Appendix   3).   The   lack   of   sample   material   between   3.3   –   7.4   mcd   (80   –   240   ka)   at   Site   1237   was   compensated   for   by   using   samples   from   pre-­‐site   survey   core   RRV9702A-­‐69PC   (16.01°S,   76.33°W).   The   latter   was   aligned   to   ODP   Site   1237   using   magnetic   susceptibility   data   from   both  cores  (Appendix  3).    

 

The   siliciclastic   content   of   ODP   Site   1237   sediments   represents   the   percentage   of   bulk   sediment   after   subtracting   measured   percentages   of   biogenic   opal,   carbonate,   and   organic   matter  (TOC).  The  biogenic  opal  content  (wt  %)  was  determined  with  an  automated  leaching   method,  following  procedures  outlined  in  Müller  and  Schneider  (1993).  TOC  and  total  carbon   contents  were  analyzed  with  the  LECO  technique  and  a  CNS  elemental  analyzer,  respectively,   before   calculating   CaCO3   contents,   following   standard   methods   (E.g.  Rincón-­‐Martínez   et   al.,   2010).   The   chemical   composition   of   the   sediment   was   analyzed   applying   X-­‐ray   fluorescence   scanning   (XRF)   (Aavatech   2nd   generation   XRF   Scanner   at   the   Alfred-­‐Wegener-­‐Institute,   Bremerhaven   (AWI))   and   Inductively   Coupled   Plasma   –   Optical   Emission   Spectrometry   (ICP-­‐

OES  in  the  Geochemistry  Department  at  AWI).  We  scanned  the  split  sediment  cores  in  1  cm   intervals   corresponding   to   a   time-­‐resolution   of   300   –   800   years.   Iron   XRF   counts   were   calibrated   to   absolute   concentrations   determined   by   ICP-­‐OES   on   35   samples   (cf.  Rincón-­‐

Martínez  et  al.,  2010).  

   

CHAPTER  7  

Figure   7.   2    Records  of  eolian-­‐derived  sediment  input  to  ODP  site  1237  over  the  last  500  ka.  (A)  Benthic  oxygen    

isotope   stack   (Lisiecki   and   Raymo,   2005),  (B)   Benthic   oxygen   isotope   record   of   ODP   site   1237,  (C)   Linear   sedimentation  rates  (LSR,  cm  ka-­‐1),  (D)  siliciclastic  accumulation  rates  (AR,  g  cm-­‐2  ka-­‐1),  (E)  Iron  accumulation  rates   (Fe  AR,  mg  cm-­‐2  ka-­‐1),  (F)  232Thorium  flux  (µg  cm-­‐2  ka-­‐1),  (G)  Mean  grain  size  of  siliciclastic  sediment  fraction  (µm).  

 

Late  quaternary  glacial-­‐interglacial  climate  variability  of  western  South  America   Inferred  from  eolian  dust  as  preserved  in  marine  sediments  

Linear  sedimentation  rates  (LSR,  in  cm  ka-­‐1)  were  derived  from  the  age  model  and  multiplied  

We  measured  the  grain-­‐size  distribution  of  the  terrigenous  siliciclastic  sediment  fraction  with  a   Beckman-­‐Coulter   Laser   Particle   Sizer.   To   isolate   the   terrigenous   sediment   fraction,   we   during  interglacials  (see  Appendix)  to  avoid  dilution  effects;  we  calculated  accumulation  rates   (ARs)  as  the  better  proxy.  This  resulted  in  siliciclastic  and  iron  (Fe)  ARs  that  are  increased  by   integrated  over  time  intervals  between  age  control  points,  assuming  a  constant  accumulation   rate  over  each  interval,  which,  however,  cannot  be  ascertained  (Francois  et  al.,  2004;  Loubere   the  equatorial  East  Pacific  comparing  the  different  MAR-­‐approaches,  where  one  explanation   could  be  sediment  redistribution  leading  to  focusing  during  glacials.  Focusing  factors  at  ODP   Site   1237   average   approximately   2   (not   shown)   and   vary   within   a   few   tens   of   percent   throughout  the  time  interval  in  consideration.  Sediment  focusing  could  explain  the  observed   35  -­‐  65  %  difference  in  the  accumulation  of  bulk  and  constituent  sediments  at  the  study  site  

except   of   3   outlying   peaks   >5.5µm,   representing   sediment   core   sections   contaminated   by   volcanic  ash.  However,  grain-­‐size  means  do  increase  on  a  longer  timescale,  from  500  ka  to  260   ka,  when  they  drop  to  <4µm,  only  to  slightly  increase  again  from  ~250  ka  until  ~30  ka,  before   another  drop  below  4µm  at  ~9  ka.  

 

7.4  Discussion    

7.4.1  Changes  in  dust  flux  on  glacial-­‐interglacial  cycles  

The  data  set  presented  in  Figure  7.2  is  the  first  record  obtained  from  below  the  major  dust-­‐

transporting   wind   field   in   the   southeast   Pacific   close   enough   to   the   source   area   to   record   changes  in  dust  supply  and  wind  intensity  (Figure  7.1).  Silt-­‐sized  material  deposited  in  areas   within   a   few   hundred   kilometers   offshore   is   considered   more   reliable   in   recording   these   changes  than  the  clay-­‐sized  fraction  (E.g.  Sarnthein  et  al.,  1981;  Tiedemann  et  al.,  1989),  which   is  the  only  fraction  documented  at  the  core  locations  of  previous  studies  further  offshore.  The   disadvantage  of  a  study  site  as  close  to  the  coast  as  ODP  Site  1237  is  the  hemipelagic  sediment   component   one   would   usually   expect,   and   which   would   contaminate   the   eolian   input   signal   (E.g.  Weltje  and  Prins,  2003;  Weltje  and  Prins,  2007).  However,  we  can  rule  out  a  hemipelagic   component  in  the  sediments  of  ODP  cores  1237  as  the  site  is  located  offshore,  an  area  where   no   major,   but   only   seasonal   rivers   drain   into   the   Pacific.   Furthermore,   the   South   American   deep-­‐sea  trench  represents  a  barrier  catching  the  fluvial  material  from  the  minor,  ephemeral   rivers  of  southern  Peru,  making  winds  the  most  probable  transport  agent  of  the  terrigenous   fraction  (E.g.  Krissek  et  al.,  1980;  Saukel  et  al.,  2011).  

 

Changes  in  MARs  of  dust  provide  a  comprehensive  picture  of  changes  in  the  intensity  of  the   dust   cycle,   including   source,   transport   and   deposition   (Kohfeld   and   Tegen,   2007).   Two   different  methods  of  calculating  accumulation  rates  consistently  show  a  2-­‐3-­‐time  increase  of   siliclastic   material   during   glacials   compared   to   interglacials   at   our   site.   Fe   MARs   calculated   from  LSRs  and  DBD  show  the  same  trend  and  amplitude  of  our  232Th-­‐dust  record  (Figures  7.2e,   f).   Our   records   generally   support   the   idea   of   dustier   glacials   compared   to   interglacials,   in   agreement  with  different  modeling  results  for  the  last  glacial  maximum  (LGM,  E.g.  Mahowald   et   al.,   1999;  Lunt   and   Valdes,   2002;  Werner   et   al.,   2002)   and,   in   particular,   support   earlier   results  from  the  equatorial  east  Pacific  (E.g.  Winckler  et  al.,  2008).    

 

Late  quaternary  glacial-­‐interglacial  climate  variability  of  western  South  America   Inferred  from  eolian  dust  as  preserved  in  marine  sediments  

Figure  7.  3  Comparison  of  eolian  flux  records  in  relation  to  SST  records.  (A)  Benthic  oxygen  isotope  stack  (Lisiecki    

and  Raymo,  2005),  (B)  Dust  flux  of  ODP  Site  1237  (g  m-­‐2  a-­‐1)  (C)  Dust  flux  of  ODP  site  849  (g  m-­‐2  a-­‐1),  B  and  C  are   calculated  by  dividing  by  the  average  232Th  concentration  of  upper  continental  crust,  (D)  Iron  accumulation  rates  (Fe   AR,  mg  cm-­‐2  ka-­‐1)  of  ODP  Site  1237,  (E)  230Th-­‐normalized  iron  flux  at  ODP  Site  1237,  (F)  Iron  accumulation  rates  (Fe   AR,  mg  cm-­‐2  ka-­‐1)  of  ODP  Site  1239  (Rincón-­‐Martínez  et  al.,  2010),  (G)  Alkenone  sea  surface  temperatures  (SST,  °C)  

heavily  influenced  by  the  equatorial  front,  ODP  Site  1239  (Rincón-­‐Martínez  et  al.,  2010),  (H)  Alkenone  sea  surface   at  all.  Since  the  hemipelagic  contribution  to  the  terrigenous  sediment  component  is  negligible   at  our  study  site,  the  derived  proxy  record  allows  a  re-­‐interpretation  of  previously  published   results  clearly  oppose  this  hypothesis.  According  to  Rincón-­‐Martínez  et  al.  (2010),  terrigenous   input   during   interglacials   at   ODP   Site   1239   (Figures   7.1   and   7.3)   was   increased   due   to  

Late  quaternary  glacial-­‐interglacial  climate  variability  of  western  South  America   Inferred  from  eolian  dust  as  preserved  in  marine  sediments