• Keine Ergebnisse gefunden

The  Coupled  Ocean-­‐Land-­‐Atmosphere  System  in  the  Eastern  Tropical  Pacific

2.1.  The  Coupled  Ocean-­‐Land-­‐Atmosphere  System  in  the  Eastern  Tropical  Pacific     descending  branch  of  the  Hadley-­‐Walker  circulation.  The  large  static  stabilities  associated  with   cold  SSTs  and  atmospheric  subsidence  result  in  extensive  marine  stratus  cloud  deck.  Although   these   clouds   reflect   much   of   the   incoming   solar   radiation,   they   interfere   very   little   with   the   loss  of  energy  via  thermal  radiation,  resulting  in  less  radiative  heating  of  the  cold  water  region   than   in   the   warm   water   area   (Ma   et   al.,   1996).   The   overall   effect   of   the   distribution   of   evaporation  and  radiative  heating  and  cooling  is  thus  reinforcement  of  the  preexisting  thermal   contrast  illustrated  in  Figure  2.2.

39

Figure  2.  1  Schematic  diagram  of  surface  water  masses  and  currents  in  the  eastern  tropical  Pacific  Ocean  (modified    

from  Fiedler  and  Talley,  2006).  (a)  Mean  surface  temperature,  and  (b)  mean  surface  salinity  of  the  eastern  tropical   Pacific.  The  EECT  extends  out  from  the  west  coast  of  South  America  westward  along,  and  south  of,  the  equator.  The   eastern  Pacific  warm  pool  is  centered  along  the  coast  of  southwestern  Mexico  and  Guatemala.  TSW  is  characterized   by  low  salinity  and  high  temperature  (S<34  p.s.u,  T>25°C).  ESW  properties  (S>34  p.s.u,  T<25°C)  are  determined  by   the  seasonal  advection  of  cooler  and  saltier  water  from  the  Peru  Current  and  by  equatorial  upwelling.  

 

The   EECT   and   the   coastal   ocean   off   Peru   and   Chile   are   coupled   to   the   atmosphere   through   surface   wind   stress   and   heat   exchange.   The   winds   in   this   region   are   typically   southeasterly.  

However,  the  strength  and  spatial  distribution  of  the  surface  winds  have  shown  to  be  closely   tied  to  the  frontal  location  and  strength.  The  surface  wind  stress  in  this  southeasterly  cross-­‐

equatorial  flow  decreases  by  more  than  a  factor  of  4  over  the  cold  tongue  and  then  increases   by   almost   the   same   amount   to   the   north   of   the   cold   tongue   (Chelton   et   al.,   2001).   The   modulation  of  the  surface  wind  field  by  the  SST  provides  a  potential  mechanism  for  two-­‐way   air–sea   coupling   since   the   surface   interactions   are   coupled   to   the   atmospheric   circulation   through  horizontal  gradients  of  latent  heat  release  in  the  vicinity  of  ITCZ  convection,  as  well  as   radiative  and  sensible  heating  gradients,  especially  in  the  atmospheric  boundary  layer  (Chelton   et   al.,   2001).   The   upper   ocean   heat   budget   is   strongly   coupled   to   radiative   effects   of   the  

Study  area:  The  Eastern  tropical  and  subtropical  Pacific.  

40

extensive  decks  of  boundary  layer  clouds  in  the  southeast  tradewinds,  off  the  Peru  and  Chilean   coasts,  and  their  extension  into  the  equatorial  zone  (Raymond  et  al.,  2004).  Temperature  of   the   EECT   decreases   towards   the   east   as   progressively   cooler   waters   are   upwelled   from   the   Equatorial   Undercurrent   that   shoals   as   it   flows   from   west   to   east   (Fiedler  and  Talley,  2006).  

The   intensity   and   spatial   extent   of   the   EECT   and   associated   fronts   change   seasonally   (E.g.  

Mitchell   and   Wallace,   1992)   and   interannually   (E.g.  Deser   and   Wallace,   1990).   During   the   equatorial   warm   season   (March   through   June)   SST   colder   than   25°C   are   confined   to   the   upwelling  region  near  the  South  American  coast;  the  equatorial  front  is  weak  or  nonexistent   (Hays  et  al.,  1989).  During  the  cold  season  (July  through  November)  the  equatorial  cold  tongue   is   well   developed   and   SST   cooler   than   25°C   extends   westward   to   130°W   (Figure   2.3a).   The   EECT   seasonal   amplitude   is   ±1–3°C,   with   coldest   temperatures   during   the   Southern   Hemisphere  winter-­‐spring  (August-­‐September).  Surface  winds  vary  in  concert  with  the  changes   in  the  SST  distribution,  meaning  that  southeasterly  winds  are  strongest  during  the  cold  season   (Figures  2.3a,  c).  During  El  Niño  years,  SST  in  the  cold  tongue  is  elevated  throughout  the  year;  

and  there  is  a  southward  penetration  of  warm  water,  and  an  abnormal  displacement  of  the   front  towards  the  west  while,  in  the  east  the  equatorial  front  almost  disappears  (Hays  et  al.,   1989).

 

Figure  2.  2    Idealized  cross-­‐sections  through  the  ITCZ–cold  tongue  complex  at  approx.  95°W  in  the  east  Pacific    

showing  the  atmospheric  meridional  circulation,  atmospheric  boundary  layer  depth,  and  the  oceanic  thermal   structure,  from  Raymond  et  al.,  (2004).  SEC=South  Equatorial  Current,  NECC  =  North  Equatorial  Countercurrent,  and   the  EUC  =  Equatorial  Undercurrent.  Southeasterly  and  northeasterly  trade  winds  in  the  planetary  boundary  layer   (PBL)  converge  onto  the  ITCZ  (heavy  clouds),  located  over  the  warmest  SST.  Encircled  x’s  (dots)  denote  westward   (eastward)  flowing  winds  or  currents.  

 

The   rainfall   climatology   of   the   eastern   tropical   Pacific   is   dominated   by   the   ITCZ.   The   northeasterly   and   southeasterly   tradewind   belts,   which   occupy   most   of   the   eastern   tropical   and   subtropical   Pacific,   are   noted   for   fair   weather   and   a   large   excess   of   evaporation   over   precipitation,  while  narrow  ITCZ  that  separates  them  is  marked  by  heavy  and  persistent  rainfall.  

The  annual  cycle  of  the  surface  circulation  is  characterized  by  a  latitude  position  of  the  wind   confluence   and   ITCZ   closest   to   the   equator   in   March-­‐April,   a   northward   shift   till   June,   a   southward   displacement   in   July   and   August,   and   a   northernmost   position   in   September   (Figures  2.3b  and  c;  Hastenrath,  2002).  

41

Figure  2.  3  Seasonal  climatologies  of  (a)  SST  (°C,  colors)  and  surface  currents  (m/s,  vectors),  (b)  sea  surface  salinity    

(PSU,   colors)   and   rainfall   rates   (mm/day,   contour   lines   which   are   associated   to   the   ITCZ)   and  (c)   convergence   (positive  values)  and  divergence  (negative  values)  of  surface  winds  (*10-­‐5  s-­‐1,  colors,  black  lines  represents  a  value  of   zero)  and  surface  winds  (m/s,  vectors).  Taken  from  Garcés  (2005).  

 

In   addition   to   the   ITCZ,   another   convergence   zone   exists   but   in   the   Southern   Hemisphere   (SITCZ),  occurring  at  8°S–2°S,  130°W–90°W  in  the  southeast  Pacific  (Halpern  and  Hung,  2001).  

The   positions   and   intensities   of   the   ITCZs   are   highly   sensitive   to   the   underlying   sea-­‐surface   temperature   distribution.   For   instance,   only   in   March   and   April,   when   SSTs   south   of   the   equator  approach  those  to  the  north,  it  is  possible  to  observe  both  intertropical  convergence   zones,  with  convection  north  and  south  of  the  equator  (Halpern  and  Hung,  2001).  Five  features  

Study  area:  The  Eastern  tropical  and  subtropical  Pacific.  

42 with  increasing  depth  (Fiedler  and  Talley,  2006).  This  thermocline/productivity  linkage  occurs   because   the   thermocline   almost   invariably   coincides   with   the   nutricline,   defined   as   that   photosynthetic  carbon  uptake  of  an  elevated  phytoplankton  biomass  supported  by  upwelled   macronutrients   (nitrate,   phosphate   and   silicic   acid)   and   micronutrients.   Although   seasonal   variability   in   phytoplankton   assemblages   occurs   in   Peruvian   waters,   large   diatoms   tend   to   dominate   the   biomass   in   phytoplankton   blooms   that   develop   in   these   coastal   upwelling   regimes  in  all  seasons  (E.g.  de  Mendiola,  1981;  Abrantes  et  al.,  2007),  and  it  has  been  argued   that  diatom-­‐driven  new  production  efficiently  fuels  the  food  chains  leading  to  fish  production   (Smetacek,   1998).   With   this   rich   productivity,   it   is   surprising   that   high-­‐nitrate,   lower   than   expected  chlorophyll  (HNLC)  conditions  have  been  reported  for  the  Peru  upwelling  regime.