• Keine Ergebnisse gefunden

Late  Pleistocene  source  and  flux  of  terrigenous  sediments  into  the  eastern  equatorial  Pacific

9.1.   Summary  and  conclusions

9.1.2.   Late  Pleistocene  source  and  flux  of  terrigenous  sediments  into  the  eastern  equatorial  Pacific

 

The  second  part  of  this  thesis  comprises  three  case  studies  (chapters  5,  6,  7)  focused  on  the   transport  and  deposition  of  terrigenous  material  in  the  easternmost  Pacific  Ocean  at  different   time   periods   in   the   Late   Pleistocene.   These   studies   used   a   multi-­‐proxy   approach   combining   inorganic   (elements   and   element   ratios)   and   organic   (biomarker)   proxies,   as   well   as   bulk   geochemistry   and   grain-­‐size   analysis.   Fluvial   and   eolian   transports   are   the   most   important   pathways   for   the   transference   of   terrigenous   material   into   the   ocean.   One   case   study   therefore   deals   with   the   long-­‐term   variability   in   the   accumulation   of   fine-­‐grained   sediments   that  reach  the  deep  sea  off  the  Ecuadorian  coast  (ODP  Site  1239;  Chapter  5),  while  other  study   investigates  on  long-­‐term  eolian  dust  deposition  in  the  deep  sea  off  the  Peruvian  coast  (ODP   Site  1237;  Chapter  7).  Besides  tracing  terrigenous  input  into  these  deep-­‐sea  environments,  the   Lima  Basin  case  study  (Chapter  6)  also  reconstructed  paleo-­‐conditions  on  the  continent  based   on  specific  biomarkers.    

 

Based  on  the  geographical  location  and  oceanographic/atmospheric  settings  of  each  site  we   hypothesized   that   for   ODP   Site   1239,   drilled   close   to   the   eastern   crest   of   Carnegie   Ridge   (Sections  2.4.1  and  3.1.2;  Figure  2.4b),  terrigenous  sediment  supply  comes  from  the  mainland   delta   systems   formed   around   river   mouths   located   along   the   continental   shelf   (I.e.   Guayas   and/or  Esmeraldas  drainage  systems).  Although  these  rivers  deposit  most  of  their  sediments  in   the   Ecuadorian   Trench,   the   eastern   portion   of   the   Carnegie   Ridge   still   receiving   a   moderate   load  of  continental  detritus  (Figure  2.13;  E.g.  Pazmiño,  2005).  Additionally,  based  on  232Th  flux   measurementsSingh  et  al.  (2011)  established  that  in  the  Panama  Basin,  included  the  Carnegie   Ridge,the  location  at  which  eolian  (as  opposed  to  riverine)  fluxes  dominate  the  detrital  flux   occurs  at  approximately  300  km  from  the  margin.  On  the  other  hand,  ODP  Site  1237,  drilled  on   the   easternmost   flank   of   Nazca   Ridge,   lies   below   the   wind-­‐driven   surface   currents   of   the   southeast  Pacific  (Sections  2.4.1  and  3.1.3;  Figure  3.2),  therefore  recording  mainly  deposition   of  terrigenous  eolian  components  from  the  Atacama  Desert  and  the  arid  coasts  of  Peru  (E.g.  

Molina-­‐Cruz  and  Price,  1977;  Scheidegger  and  Krissek,  1982).    

 

Table  9.1.  Selection  of  published  Ti/Al  and  Fe/Al  ratios,  taken  from  Plewa  et  al.  (2012).  

   

The  Al/Ti,  Ti/Al  and  Fe/Al  ratios  can  be  used  to  further  constrain  the  potential  source  of  the   terrigenous  material,  since  different  rock  types  have  different  ratios  (Table  9.1).  Regarding  the   Al/Ti  ratio  ODP  Site  1239  exhibit  values  in  a  range  from  11  to  25  (mean  17.53  ±  2.78)  with  no   glacial-­‐interglacial  pattern,  while  ODP  Site  1237  is  slightly  higher  (mean  20.42  ±  2.51),  varying   CHAPTER  9  

between  15  and  30.  According  to  Pye  (1987),  the  Al/Ti  ratio  of  windblown  material  is  21.  This   points  to  dust  as  the  most  probable  terrigenous  source  at  ODP  Site  1237.  For  comparison,  the   Al/Ti  ratio  of  average  continental  crust  is  15.6,  average  upper  crust  is  26.8,  granites  are  even   40  but  basalt  or  oceanic  crust  are  lower  than  10  (Taylor  and  McLennan,  1985).  The  Fe/Al  ratio   (0.49   ±   0.07   for   ODP   Site   1239   and   0.50   ±   0.05   for   ODP   Site   1237)   does   not   show   any   significant   downcore   variations.   Hence,   by   comparing   the   values   reported   in   Table   9.1   with   those  from  our  study  sites,  the  terrigenous  matter  for  ODP  Site  1239  (Ti/Al  0.06  ±  0.01)  seems   to  come  mainly  from  river  suspended  matter,  while  for  ODP  Site  1237  (Ti/Al  0.05  ±  0.01)  the   terrigenous   matter   could   be   mainly   derived   from   windblown   dust.   Besides   confirming   our   initial   hypothesis   about   the   source   for   terrigenous   matter,   both   ratios   (Ti/Al   and   Fe/Al)   also   validate  that  the  terrigenous  source  did  not  change  over  the  last  500  kyr  in  any  of  the  studied   cores.  

 

Figure   9.   2  Map   showing   location   of   studied   cores   in   the   Panama   Basin,   from  Singh   et   al.  (2011).   Red   circles    

represent  cores  analyzed  by  Singh  et  al.  (2011)  and  yellow  circles  represent  cores  studied  by  others  (Kienast  et  al.,   2007;  Loubere  et  al.,  2001).  Focusing  factors  are  bracketed  next  to  each  core  identification  (first  number  in  bracket   represents  Holocene  (0–13  ka)  focusing  factor  and  second  number  represents  glacial  (13–25  ka)  focusing  factor.  

 

The  content  and  accumulation  rates  of  siliciclastic  material,  iron  (Fe),  titanium  (Ti),  and  lipid   biomarker  taraxerol  at  ODP  Sites  1239  and  1237  exhibit  a  consistent  glacial/interglacial  pattern   over   the   past   500   kyr.   In   the   former,   sediments   are   predominantly   terrigenous   during   interglacials,   while   glacial   siliciclastic   supplies   are   substantially   lower   (Figures   5.3).   Further   support   is   provided   by   the  232Th   fluxes   calculated   by  Singh   et   al.  (2011),   which   demonstrate   that  at  cores  V19-­‐27  (close  to  ODP  Site  1239),  ME0005-­‐27JC  and  TR163-­‐38,  which  are  closest   to  the  South  American  margin,  fluxes  are  higher  during  the  Holocene  than  those  during  glacial   (Table  9.2).  Further  to  the  west  232Th  fluxes  of  non-­‐margin  cores  are  higher  in  glacial  than  in   the   Holocene,   implying   that   as   one   moves   away   from   the   continent,   the   detrital   signal   becomes  predominantly  eolian  derived  (Singh  et  al.,  2011).  

 

Glacial-­‐interglacial  siliciclastic  AR  variations  at  Site  1239  (Figure  5.3)  are  unlikely  due  to  post-­‐

depositional   processes   such   as   horizontal   focusing   or   winnowing.   This   part   of   the   Carnegie   Ridge  is  thickly  clearly  depositional  and  probably  has  not  supplied  much  additional  sediment  to   the   Panama   Basin   (Singh   et   al.,   2011).   In   seismic   survey   for   drilling   on   ODP   Leg   202   (line   6;  

Shipboard   Scientific   Party,   2003a)   it   is   possible   to   estimate   how   variable   the   average   sedimentation   rates   have   been   based   on   the   depth   to   the   first   major   seismic   horizon   compared  to  its  depth  at  Site  1239.  Site  1239  has  a  sedimentation  rate  of  4.8  cm/kyr  in  the   upper  50  m.  Along  line  6,  60%  of  the  profile  has  a  sedimentation  rate  between  0.5  and  1.5X—  

that  of  Site  1239,  15%  of  the  profile  has  rates  >1.5X—  that  of  Site  1239,  and  a  little  less  than   20%  of  the  profile  has  sedimentation  rates  ~0.5X—  that  of  Site  1239  (Singh  et  al.,  2011).  Based   on   this   and   inspection   of   the   other   seismic   lines,  Singh   et   al.  (2011)   concluded   that   the   sedimentation   rate   on   the   ridge   appears   to   be   uniform.   Moreover,   for   margin   cores   V19-­‐27   and  TR163-­‐38,  located  on  the  easternmost  Carnegie  Ridge,  the  average  focusing  factors  during   the  Holocene  and  glacial  are  1  and  1,  respectively  (Figure  9.2),  so  glacial  focusing  factors  imply   that   sediment   has   not   been   redistributed   at   the   studied   site.   Further   south,   cores   TR163-­‐33   and   ME0005A-­‐27JC   exhibit   1.4   and   1.8   during   Holocene,   respectively   (Figure   9.2),   indicating   that  sediment  in  excess  of  what  has  been  delivered  vertically  has  been  advected  by  deep-­‐sea   horizontal  advection  (I.e.  focusing)  to  the  studied  site.  

 

Table  9.2.  Spatio-­‐temporal  variability  of  232Th  flux  in  the  Panama  Basin,  from  Singh  et  al.  (2011).  232Th  flux  data   for  the  first  five  cores  are  from  Kienast  et  al.  (2007),  while  the  remaining  data  are  from  Singh  et  al.  (2011).    

 

   

Two  different  methods  of  calculating  accumulation  rates  at  ODP  Site  1237  consistently  show   increased  siliciclastic  and  Fe  accumulation  rates  by  factors  of  2-­‐3  during  glacials  compared  to   interglacials  (Figure  7.2).  Dust  flux  analyses  based  on  232Th  data  also  suggest  that  there  were   two-­‐fold  increases  in  eolian  fluxes  during  glacial  in  the  central  equatorial  (E.g.  Anderson  et  al.,   2006;  McGee  et  al.,  2007;  Winckler  et  al.,  2008)  and  eastern  equatorial  Pacific  Ocean  (E.g.  

McGee   et   al.,   2007;   Winckler   et   al.,   2008).   Among   those   studies,   the   easternmost   cores   are   located   at   110°W,   and   the   dust   source   is   hypothesized   to   change  from   northern-­‐sourced   (Chinese  and  North  American)  to  southern-­‐sourced  (Africa,  Australia  and  South  American)  dust   between   5°N   and   0°N   in   the   equatorial   Pacific   (McGee   et   al.,   2007).   Although  our   study   provides   the   record   of   the   core   furthest   to   the   east   (76.37°W)   and   closest   to   the   South   American   continent,   magnitude   of   the   AR   variations   is   very   similar   to   the   Glacial/   Holocene   variations  at  both  110°W  (McGee  et  al.,  2007;  Winckler  et  al.,  2008)  and  140°W  (Anderson  et   al.,   2006).   Dust   fluxes   at   Site   1237   are   >30   times   those   measured   in   cores   located   on   the   equator  at  110°W,  which  we  explained  by  the  proximal  position  of  core  1237  to  the  continent.  

Given  the  large  distance  between  the  cores,  the  coherence  of  the  dust  flux  records  between   the  two  sites  is  surprisingly  good,  supporting  the  hypothesis  of  a  common  source.  It  is  clear   that  the  major  part  of  the  detrital  fractions  at  these  two  locations  must  be  eolian.  

 

Focusing  factor  at  ODP  Site  1237  average  approximately  2,  indicating  that  sediment  in  excess   of  what  has  been  delivered  vertically  has  been  advected  by  deep-­‐sea  horizontal  advection  (I.e.  

CHAPTER  9  

focusing)  throughout  the  time  interval  in  consideration.  Sediment  focusing  could  explain  the   Pacific,  revealed  by  alkenone-­‐derived  glacial-­‐interglacial  SST  amplitudes  of  up  to  3.5°C  (Figure   5.5.e).    Conversely,  during  glacials,  the  W-­‐E  gradient  suggests  an  intensified  Walker  circulation   Section  3.1.5).  Systematic  glacial-­‐interglacial  patterns  are  also  recorded  in  the  meridional  SST   gradient  record  (Figures  5.5b  and  c).  Low  meridional  SST  gradients  occur  during  interglacials,   while  glacials  were  characterized  by  a  steeper  SST  gradient,  with  SST  amplitudes  of  up  to  2.6°C.  

Meridional   SST   gradients   within   the   cold   tongue   (ODP   Site   1239   –   TG7,   off   southern   Peru)   change  in  a  glacial-­‐interglacial  pacing,  the  gradient  being  4  -­‐  5°C  during  interglacials  and  6  -­‐  7°C   during  glacials  (Figures  7.3g-­‐h).  Then,  the  intensity  of  equatorward  winds,  a  part  of  the  Hadley   atmospheric  circulation,  was  likely  increased  during  glacials.  In  the  modern  climate  system  this   intensificationis  accompanied  of  displacements  of  high-­‐pressure  cells  closer  to  the  continental   low,   and   equatorial   upwelling   activity   (see   sections   1.3   and   2.2).   The   opposite   settings   are