• Keine Ergebnisse gefunden

Geography  and  climate  of  coastal  Peru  and  the  Atacama  Desert

2.3.   Geologic,  geomorphologic,  and  climatic  settings  of  tropical  western  South  America

2.3.4.   Geography  and  climate  of  coastal  Peru  and  the  Atacama  Desert

Rocks   characteristic   of   continental   crust   are   exposed   along   the   coast   of   southern   Peru   and   northern   Chile.   The   Coastal   Cordillera   is   made   up   of   upper   Jurassic   to   Cretaceous   tholeiitic   rocks,  plutonites  and  marine  backarc  strata  of  Mesozoic  age  (Pinto  et  al.,  2007).  The  Central   Depression   is   a   forearc   depression,   at   ~1,000   m   elevation   that   lies   between   the   Coastal   Cordillera   and   the   western   mountain   front   and   is   underlain   by   subhorizontal   Oligocene   to   Recent   alluvial,   colluvial   and   volcanoclastic   deposits   (Allmendinger   et   al.,   1997;  Pinto   et   al.,   2007).   A   line   of   Miocene   to   Recent   stratovolcanoes   overlying   older   ignimbrite   sheets   marks   the   Western   Cordillera,   the   modern   magmatic   front.   The   Altiplano   surface   is   covered   by   several   large   salars,   Quaternary   fill,   and,   locally,   Late   Oligocene   to   Recent   volcanic   rocks,   including   immense   Late   Miocene   to   Pliocene   ignimbrite   centers   at   the   southern   end   of   the   plateau.  Sparse  exposures  of  the  underlying  basement  consist  of  Ordovician  and  Cretaceous   rocks  ignimbrites  (Allmendinger  et  al.,  1997;  Pinto  et  al.,  2007).  

2.3.4.  Geography  and  climate  of  coastal  Peru  and  the  Atacama  Desert  

South   of   6°30’   S   the   Andes   reach   almost   all   the   way   to   the   coast,   restricting   the   coastal   lowlands  to  a  narrow  strip,  which  is  often  no  wider  than  10  km.  This  pattern  continues,  with   minor  exceptions,  to  Chile.  Several  physiographic  provinces  exist  in  the  study  area  (Figure  2.7).  

From  west  to  east,  they  are  1)  Coastal  Cordillera,  2)  Central  Depression,  3)  western  mountain   front,  4)  Western  Cordillera,  and  5)  Altiplano.  The  Coastal  Cordillera,  less  than  20  km  wide,  lies   between  the  Pacific  Ocean  and  the  Central  Depression  and  has  peaks  as  high  as  2,500  m  and   an  average  elevation  of  ~1,500  m  that  wanes  toward  the  north,  where  it  is  less  than  1,000  m  at   18.5°S.   Smoothed   hills   and   shallow   valleys   form   it.   The   deepest   canyons   of   South   America   were  cut  by  the  Cotahuasi,  Ocoña,  and  Colca  rivers  at  15°–16°S.  Although  their  valley  heads   currently   impinge   beyond   the   Quaternary   volcanic   arc   into   the   semi-­‐arid   Altiplano   (rainfall   250–350  mm/yr),  these  canyons  occur  in  a  region  where  rainfall  is  <100–200  mm/yr  (Thouret   et  al.,  2007).  

51

Figure  2.  7  Morphostructural  units  in  the  orocline  of  the  Central  Andes,  from  Pinto  et  al.  (2004).  

 

To  the  west,  the  Coastal  Cordillera  is  cut  by  a  subvertical  escarpment  (“Coastal  Escarpment”)   of  1,000  m  high.  To  the  east,  the  altitude  diminishes  towards  the  Central  Depression  and  the   deposits   filling   the   Central   Depression   overlap   the   basement   rocks.   The   Central   Depression   extends  parallel  to  the  continental  margin,  bracketed  between  the  Coastal  Cordillera  and  the   Precordillera.  It  corresponds  to  a  forearc  continental  basin  with  a  flat  top  surface  at  altitudes   from  500  to  1,000  m  in  the  west  to  1,900  to  2,300  m  in  the  east  (Allmendinger  et  al.,  1997;  

Pinto  et  al.,  2007).  The  Central  Depression  is  void  of  hydrologic  processes,  and  is  where  the   Atacama’s  hyper-­‐arid  conditions  occur.  The  surface  of  the  northern  part  of  Central  Depression   has  been  locally  deeply  dissected  by  quebradas  (canyons),  in  some  cases  up  to  1.5  km  deep,   but  typically  less  than  1  km  (Mortimer,  1980).  Their  incision  postdates  deposition  of  the  Late   Tertiary  valley-­‐fill  sediments  of  the  Central  Depression  succession.  Only  the  trunk  drainages  of   the  quebradas  contain  actively  flowing  or  intermittent  streams.  Some  tributaries  are  relict  and   contain  no  evidence  of  recent  flow  or  even  of  relict  fluvial  sediments  along  their  floors,  and   may   have   been   shaped,   at   least   partly,   by   groundwater   sapping   (Hoke   et   al.,   2004).   The   western  mountain  front  connects  the  high  elevations  of  the  Western  Cordillera  and  Altiplano   to   the   Central   Depression.   The   Western   Cordillera   is   a   magmatic   arc   that   consists   of   widely   spaced  volcanic  peaks  superimposed  on  a  4,000  to  5,500  m  plateau.  The  Altiplano  province  is  a  

Study  area:  The  Eastern  tropical  and  subtropical  Pacific.  

52

250  km  wide,  3,700  m  high  plateau  with  internal  drainage.  The  eastern  limit  of  the  plateau  is   marked  by  the  high  topography  of  the  Eastern  Cordillera  (Allmendinger  et  al.,  1997;  Pinto  et  al.,   2007).  

 

Figure  2.  8  (A)  Location  map  showing  present-­‐day  climatic  zones  of  western  South  America,  from  Hartley  and  Chong    

(2002).  (B)  Digital  Elevation  Map  of  the  subtropical  Andes  showing  precipitation  seasonality  in  the  Atacama  Desert   and  key  sites,  from  Betancourt  et  al.  (2000).  Approximate  elevations  are  >4,000  m  (blue),  4,000  to  3,500  m  (pink),   3,500  to  3,000  m,  3,500  to  2,500  m  (brown),  2,500  to  1,000  (yellow),  and,  1,000   m   (green).   Broad   areas   of   pink   denote  the  Bolivian/Peruvian  Altiplano.  

 

All   parts   of   the   study   area   below   3,500   m   elevation   are   subject   to   the   hyperarid   and   arid   conditions  of  the  Atacama  and  Peruvian  Coastal  Desert,  which  extends  from  the  Ecuador-­‐Peru   border  (3°30’S)  to  la  Serena  (30°S),  Chile  (Figures  2.8a,  b).  The  Atacama  Desert  is  one  the  driest   locations   in   the   world   and   harbors   no   vegetation.   A   primary   cause   for   Atacama   aridity   is   its   location   at   the   eastern   boundary   of   the   subtropical   Pacific.   In   that   region,   large-­‐scale   atmospheric  subsidence  of  the  Hadley  circulation  significantly  reduces  precipitation  (Houston,   2006)  and  maintains  a  surface  anticyclone  over  the  southeast  Pacific  that  hinders  the  arrival  of   mid-­‐latitude   disturbances   (Garreaud   et   al.,   2010).   The   subtropical   anticyclone   drives   equatorward   winds   along   the   coast   that,   in   turn,   foster   the   transport   of   cold   waters   from   higher   latitudes   (I.e.,   the   Peru   Current),   forcing   upwelling   of   deep   waters,   that   inhibits   the   moisture   capacity   of   onshore   winds   creating   a   persistent   inversion   that   traps   any   Pacific   moisture   below   1,000   m.a.s.l.,   and   that   also   leads   to   the   formation   of   a   persistent   deck   of   stratus  clouds  (see  section  2.1).  These  factors  result  in  a  marked  regional  cooling  of  the  lower   troposphere   that   is   compensated   by   enhanced   subsidence   along   the   Atacama   coast   (E.g.  

Takahashi  and  Battisti,  2007)  further  drying  this  area.  The  proximity  of  the  Andes  Cordillera  has   been  regarded  as  an  additional  factor  for  the  dryness  of  the  Atacama.  The  effect  of  the  Andes   on   continental   precipitation   was   discussed   on   section   2.1.   This   mountain   range   supposedly   restricts   the   moisture   advection   from   the   interior   of   the   continent   thus   producing   a   rain   shadow  effect  that  is  reflected  in  the  marked  east–west  rainfall  gradient  (Houston  and  Hartley,   2003).  

53

Figure  2.  9  .  Schematic  chronology  of  the  Andes  cordillera  paleoelevation,  from  Garreaud  et  al.,  (2010),  proposed    

onset  of  Atacama  hyperaridity  (different  sources  indicated  in  inset),  presence  of  Antarctic  ice  sheets  and  global   deep-­‐sea  oxygen  and  carbonate  isotopes  reflecting  cooling  of  the  deep  ocean  and  changes  in  ice  volumen,  and   some  key  biotic  events  off  north-­‐Central  Chile.  

 

In  the  central  and  northern  Atacama  Desert  >80%  of  the  mean  annual  precipitation  occurs  in   the  summer  months  (December–March).  Absolute  precipitation  amounts  depend  on  elevation   and  distance  from  the  crest  of  the  Andes,  which  controls  rainout  from  spillover  storms.  The   analysis   of   meteorological   station   data   by  Houston   and   Hartley  (2003)   shows   that   rainfall   is   strongly  dependent  on  elevation  in  this  area.  At  1,000  m,  in  the  Central  Depression,  rainfall  is  

<50  mm/yr.  Between  1,000–2,000  m  above  sea  level  is  less  than  50  mm,  generally  falling  in   Austral  winter  and  decreasing  with  latitude  in  the  coastal  desert  and  at  elevations  >3,500  m,   rainfall  is  ~150  mm/yr.  The  high  peaks  of  the  Western  Cordillera  (5,000–6,000  m)  do  not  have   station   data   but   are   believed   to   have   annual   precipitation   in   excess   of   200   mm/yr.  

Temperature   and   precipitation   vary   with   both   latitude   and   elevation   within   the   Atacama   Desert.  Mean  annual  temperatures  range  between  10°  and  16°C  (mainly  varying  with  elevation   and  proximity  to  the  coast).  Marine  fog,  which  gives  rise  to  light  drizzling  rain  (garúa)  in  coastal   areas,  is  the  most  important  source  of  water  for  native  plants  and  biological  soil  crusts  in  the   Atacama  Desert,  but  inland  incursion  of  this  fog,  as  well  as  formation  of  inland  radiation  fogs,   depends   on   elevation   and   topographic   connection   to   the   coast   (E.g.  Cereceda   et   al.,   2002;  

Cáceres   et   al.,   2007).   Thus   biological   systems   such   as   soil   bacteria,   hypolithic   cyanobacteria,   lichens  and  even  cacti  that  rely  on  fog  moisture  will  be  more  abundant  along  the  coast.  

 

The   El   Niño   events   affect   interannual   precipitation   variability   on   the   Altiplano,   especially   during   Austral   Summer   (Aceituno,   1988).   Precipitation   during   Austral   Winter   (JJA)   shows   no   relationship   with   the   extremes   of   the   Southern   Oscillation.   The   Eastern   and   Western   Cordilleras,  however,  exhibit  different  levels  of  sensitivity  to  El  Niño  events  (Garreaud,  1999;  

Vuille   et   al.,   2000).   High-­‐altitude   westerly   wind   anomalies   that   inhibit   convection   over   the   western  edge  of  the  Altiplano  characterize  El  Niño  years,  causing  sustained  dry  conditions  by  

Study  area:  The  Eastern  tropical  and  subtropical  Pacific.  

54

limiting  moist  air  advection  from  the  eastern  Cordillera  across  the  Altiplano  (Garreaud,  1999).  

Conversely,  a  southward  displacement  of  the  Bolivian  High  and  enhanced  easterly  circulation   that  produces  greater  advection  and  increased  precipitation  characterized  La  Niña  years  (Vuille,   1999).   In   the   western   coastal   regions   of   the   Americas,   an   El   Niño   event   is   associated   with   is  first  recorded  by  Late  Triassic–Early  Jurassic  (pre-­‐Sinemurian)  evaporites  (Clarke,  2006).  Late   Jurassic  evaporites  occur  at  modern  latitudes  of  21°–35°S,  which  are  close  to  the  Quaternary   distribution  of  19°–27°S,  indicating  that  there  has  been  little  latitudinal  shift  of  South  America   and  the  climatic  arid  zone  over  this  period,  although  the  Jurassic  zone  was  twice  as  wide  as  the   Quaternary   (Clarke,   2006).   Consistent   with   the   nearly   fixed   latitudinal   position   of   the   South   American  continent  during  the  last  150  Ma  (E.g.  Beck  et  al.,  2000;  Clarke,  2006)  it  is  generally   accepted  that  stable  arid/semiarid  conditions  (≤50  mm/year)  have  prevailed  over  the  Atacama   region   at   least   since  150   Ma   ago   despite   extreme   fluctuations   in   climate   during   the   Plio-­‐ subsidence,  respectively.  However  numerical  simulations  of  the  climate  system  (Garreaud  et   al.,  2010)  suggest  that  SST  cooling  off  Chile/Peru  since  the  Late  Miocene  and,  especially,  during   the   Pliocene/Pleistocene   transition,   very   effectively   resulted   in   a   drying   over   the   Atacama   Desert,  either  gradual  or  stepwise,  that  culminated  with  the  present  day  hyperarid  conditions.  

Conversely,  the  Andean  surface  uplift  had  little,  if  any,  effect  on  the  lack  of  precipitation  and  

55

moisture  over  the  Atacama,  regardless  of  the  age  of  uplift  (Garreaud  et  al.,  2010).