• Keine Ergebnisse gefunden

1. Hoppe, UC., Bohm, M., Dietz, R. Guidelines for therapy of chronic heart failure. Z Kardiol. 2005. 94(8): p. 488-509.

2. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS).

The CONSENSUS Trial Study Group. N Engl J Med, 1987. 316(23): p. 1429-35.

3. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF).

Lancet, 1999. 353(9169): p. 2001-7.

4. Pitt, B., et al., The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med, 1999. 341(10): p. 709-17.

5. Somberg, J.C. and J. Molnar, The pharmacologic treatment of heart failure.

Am J Ther, 2004. 11(6): p. 480-8.

6. Christiansen, S., S. Brose, and R. Autschbach, [Surgical therapy of end-stage heart failure]. Herz, 2003. 28(5): p. 380-92.

7. Mesana, T.G., Rotary blood pumps for cardiac assistance: a "must"? Artif Organs, 2004. 28(2): p. 218-25.

8. Kherani, A.R., S. Maybaum, and M.C. Oz, Ventricular assist devices as a bridge to transplant or recovery. Cardiology, 2004. 101(1-3): p. 93-103.

9. El-Banayosy, A., et al., Bridging to cardiac transplantation with the Thoratec Ventricular Assist Device. Thorac Cardiovasc Surg, 1999. 47 Suppl 2: p. 307-10.

10. Robbins, R.C., et al., The totally implantable novacor left ventricular assist system. Ann Thorac Surg, 2001. 71(3 Suppl): p. S162-5; discussion S183-4.

11. Schwartz, R.S. and G.D. Curfman, Can the heart repair itself? N Engl J Med, 2002. 346(1): p. 2-4.

12. Urbanek, K., et al., Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A, 2003. 100(18): p.

10440-5.

13. Cooley, D.A., et al., Organ transplantation for advanced cardiopulmonary disease. Ann Thorac Surg, 1969. 8(1): p. 30-46.

14. el-Gamel, A., et al., Orthotopic heart transplantation hemodynamics: does atrial preservation improve cardiac output after transplantation? J Heart Lung Transplant, 1996. 15(6): p. 564-71.

15. Massad, M.G., Current trends in heart transplantation. Cardiology, 2004.

101(1-3): p. 79-92.

16. O'Neill, J.O., D.O. Taylor, and R.C. Starling, Immunosuppression for cardiac transplantation--the past, present and future. Transplant Proc, 2004. 36(2 Suppl): p. 309S-313S.

17. Taylor, D.O., et al., The Registry of the International Society for Heart and Lung Transplantation: twenty-first official adult heart transplant report--2004. J Heart Lung Transplant, 2004. 23(7): p. 796-803.

18. Grady, K.L., A. Jalowiec, and C. White-Williams, Patient compliance at one year and two years after heart transplantation. J Heart Lung Transplant, 1998.

17(4): p. 383-94.

19. Tang, M.K., et al., Heart-type fatty acid binding proteins are upregulated during terminal differentiation of mouse cardiomyocytes, as revealed by proteomic analysis. Cell Tissue Res, 2004. 316(3): p. 339-47.

20. Chiu, R.C., A. Zibaitis, and R.L. Kao, Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg, 1995. 60(1): p.

12-8.

21. Sakai, T., et al., Autologous heart cell transplantation improves cardiac function after myocardial injury. Ann Thorac Surg, 1999. 68(6): p. 2074-80;

discussion 2080-1.

22. Ruhparwar, A., et al., Transplanted fetal cardiomyocytes as cardiac pacemaker. Eur J Cardiothorac Surg, 2002. 21(5): p. 853-7.

23. Taylor, D.A., et al., Regenerating functional myocardium: improved

performance after skeletal myoblast transplantation. Nat Med, 1998. 4(8): p.

929-33.

24. Fujii, T., et al., Cell transplantation to prevent heart failure: a comparison of cell types. Ann Thorac Surg, 2003. 76(6): p. 2062-70; discussion 2070.

25. Li, R.K., et al., Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. J Thorac Cardiovasc Surg, 2000. 119(1):

p. 62-8.

26. Atkins, B.Z., et al., Myogenic cell transplantation improves in vivo regional performance in infarcted rabbit myocardium. J Heart Lung Transplant, 1999.

18(12): p. 1173-80.

27. Scorsin, M., et al., Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg, 2000. 119(6): p. 1169-75.

28. Klug, M.G., et al., Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest, 1996. 98(1):

p. 216-24.

29. Eschenhagen, T., et al., Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system.

Faseb J, 1997. 11(8): p. 683-94.

30. Kofidis, T., et al., In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg, 2002. 124(1): p. 63-9.

31. Li, R.K., et al., Survival and function of bioengineered cardiac grafts.

Circulation, 1999. 100(19 Suppl): p. II63-9.

32. Li, R.K., et al., Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg, 2000. 119(2): p. 368-75.

33. Carrier, R.L., et al., Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng, 2002. 8(2): p. 175-88.

34. Brogsitter, C., et al., 18F-FDG PET for detecting myocardial viability: validation of 3D data acquisition. J Nucl Med, 2005. 46(1): p. 19-24.

35. Kofidis, T., et al., Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials, 2003. 24(27): p. 5009-14.

36. Zimmermann, W.H., et al., Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng, 2000. 68(1): p. 106-14.

37. Fuchs, J.R., B.A. Nasseri, and J.P. Vacanti, Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg, 2001. 72(2): p.

577-91.

38. Poston, R.S. and B.P. Griffith, Heart transplantation. J Intensive Care Med, 2004. 19(1): p. 3-12.

39. Langer, R., Tissue engineering. Mol Ther, 2000. 1(1): p. 12-5.

40. Carrier, R.L., et al., Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng, 1999.

64(5): p. 580-9.

41. Fuss, M., et al., Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions. A light, scanning and transmission electron microscopy study. Anat Anz, 2000. 182(4): p. 303-10.

42. Pei, M., et al., Bioreactors mediate the effectiveness of tissue engineering scaffolds. Faseb J, 2002. 16(12): p. 1691-4.

43. Bursac, N., et al., Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol, 1999. 277(2 Pt 2): p. H433-44.

44. Thompson, C.A., et al., A novel pulsatile, laminar flow bioreactor for the

development of tissue-engineered vascular structures. Tissue Eng, 2002. 8(6):

p. 1083-8.

45. Sodian, R., et al., New pulsatile bioreactor for fabrication of tissue-engineered patches. J Biomed Mater Res, 2001. 58(4): p. 401-5.

46. Krause, D.S., et al., Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001. 105(3): p. 369-77.

47. Anderson, D.J., F.H. Gage, and I.L. Weissman, Can stem cells cross lineage boundaries? Nat Med, 2001. 7(4): p. 393-5.

48. Ferrari, G., et al., Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998. 279(5356): p. 1528-30.

49. Korbling, M., et al., Hepatocytes and epithelial cells of donor origin in

recipients of peripheral-blood stem cells. N Engl J Med, 2002. 346(10): p. 738-46.

50. Kim, B.J., et al., Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport, 2002. 13(9): p. 1185-8.

51. Quirici, N., et al., Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol, 2001. 115(1): p. 186-94.

52. Yeh, E.T., et al., Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation, 2003. 108(17): p. 2070-3.

53. Condorelli, G., et al., Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration.

Proc Natl Acad Sci U S A, 2001. 98(19): p. 10733-8.

54. Badorff, C., et al., Transdifferentiation of blood-derived human adult

endothelial progenitor cells into functionally active cardiomyocytes. Circulation, 2003. 107(7): p. 1024-32.

55. Vasa, M., et al., Number and migratory activity of circulating endothelial

progenitor cells inversely correlate with risk factors for coronary artery disease.

Circ Res, 2001. 89(1): p. E1-7.

56. Orlic, D., J.M. Hill, and A.E. Arai, Stem cells for myocardial regeneration. Circ Res, 2002. 91(12): p. 1092-102.

57. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.

58. Doetschman, T.C., et al., The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol, 1985. 87: p. 27-45.

59. Akhyari, P., et al., Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 2002. 106(12 Suppl 1): p. I137-42.

60. Stocum, D.L., Regenerative biology and engineering: strategies for tissue restoration. Wound Repair Regen, 1998. 6(4): p. 276-90.

61. Kofidis, T., et al., Distinct cell-to-fiber junctions are critical for the

establishment of cardiotypical phenotype in a 3D bioartificial environment.

Med Eng Phys, 2004. 26(2): p. 157-63.

62. Griffith, L.G. and G. Naughton, Tissue engineering--current challenges and expanding opportunities. Science, 2002. 295(5557): p. 1009-14.

63. Palecek, S.P., et al., Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature, 1997. 385(6616): p.

537-40.

64. Ozawa, T., et al., Optimal biomaterial for creation of autologous cardiac grafts.

Circulation, 2002. 106(12 Suppl 1): p. I176-82.

65. Kim, B.S., C.E. Baez, and A. Atala, Biomaterials for tissue engineering. World J Urol, 2000. 18(1): p. 2-9.

66. Langer, R. and D.A. Tirrell, Designing materials for biology and medicine.

Nature, 2004. 428(6982): p. 487-92.

67. Shimizu, T., et al., Cell sheet engineering for myocardial tissue reconstruction.

Biomaterials, 2003. 24(13): p. 2309-16.

68. Itabashi, Y., et al., A new method for manufacturing cardiac cell sheets using fibrin-coated dishes and its electrophysiological studies by optical mapping.

Artif Organs, 2005. 29(2): p. 95-103.

69. Kofidis, T., et al., Clinically established hemostatic scaffold (tissue fleece) as biomatrix in tissue- and organ-engineering research. Tissue Eng, 2003. 9(3):

p. 517-23.

70. Riesle, J., et al., Collagen in tissue-engineered cartilage: types, structure, and crosslinks. J Cell Biochem, 1998. 71(3): p. 313-27.

71. Eyre, D.R., J.J. Wu, and P.E. Woods, The cartilage collagens: structural and metabolic studies. J Rheumatol Suppl, 1991. 27: p. 49-51.

72. Montesano, R., L. Orci, and P. Vassalli, In vitro rapid organization of

endothelial cells into capillary-like networks is promoted by collagen matrices.

J Cell Biol, 1983. 97(5 Pt 1): p. 1648-52.

73. Ye, Q., et al., Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg, 2000. 17(5): p. 587-91.

74. Wechselberger, G., et al., Muscle prelamination with urothelial cell cultures via fibrin glue in rats. Tissue Eng, 2001. 7(2): p. 153-9.

75. Bach, A.D., et al., Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng, 2001. 7(1): p. 45-53.

76. Christman, K.L., et al., Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol, 2004. 44(3): p. 654-60.

77. Cullen, J.P., et al., Pulsatile flow-induced angiogenesis: role of G(i) subunits.

Arterioscler Thromb Vasc Biol, 2002. 22(10): p. 1610-6.

78. Colton, C.K., Implantable biohybrid artificial organs. Cell Transplant, 1995.

4(4): p. 415-36.

79. Folkman, J. and M. Hochberg, Self-regulation of growth in three dimensions. J Exp Med, 1973. 138(4): p. 745-53.

80. Tuder, R.M., B.E. Flook, and N.F. Voelkel, Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or

to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest, 1995. 95(4): p. 1798-807.

81. Tabibiazar, R. and S.G. Rockson, Angiogenesis and the ischaemic heart. Eur Heart J, 2001. 22(11): p. 903-18.

82. Kuwabara, K., et al., Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci U S A, 1995. 92(10): p. 4606-10.

83. Shweiki, D., et al., Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992. 359(6398): p. 843-5.

84. Namiki, A., et al., Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem, 1995. 270(52): p. 31189-95.

85. Li, J., et al., VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol, 1996. 270(5 Pt 2): p. H1803-11.

86. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964-7.

87. Asahara, T., et al., VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J, 1999.

18(14): p. 3964-72.

88. Takahashi, T., et al., Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med, 1999. 5(4): p. 434-8.

89. Young, M.R., et al., Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin Exp Metastasis, 1999. 17(10): p. 881-8.

90. Kubin, T., et al., Porcine aortic endothelial cells show little effects on smooth muscle cells but are potent stimulators of cardiomyocyte growth. Mol Cell Biochem, 2003. 242(1-2): p. 39-45.