• Keine Ergebnisse gefunden

Abrahamsen, M.S., Templeton, T.J., Enomoto, S., Abrahante, J.E., Zhu, G., Lancto, C.A., Deng, M., Liu, C., Wid-mer, G., Tzipori, S., et al. (2004). Complete genome sequence of the apicomplexan, Cryptosporidium parvum.

Science 304, 441-445.

Alcolea, P.J., Alonso, A., Gomez, M.J., Sanchez-Gorostiaga, A., Moreno-Paz, M., Gonzalez-Pastor, E., Torano, A., Parro, V., und Larraga, V. (2010). Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics 11, 31.

Ali, M.M., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Prodromou, C., und Pearl, L.H. (2006).

Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013-1017.

Alvar, J., Velez, I.D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., und den Boer, M. (2012). Leishmania-sis worldwide and global estimates of its incidence. PloS one 7, e35671.

Argaman, M., Aly, R., und Shapira, M. (1994). Expression of heat shock protein 83 in Leishmania is regulated post- transcriptionally. Mol Biochem Parasitol 64, 95-110.

Banumathy, G., Singh, V., Pavithra, S.R., und Tatu, U. (2003). Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. The Journal of biological chemistry 278, 18336-18345.

Bates, P.A., Cobertson, C.D., Tetley, L., und Coombs, G.H. (1992). Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology 105, 193-202.

Bente, M., Harder, S., Wiesgigl, M., Heukeshoven, J., Gelhaus, C., Krause, E., Clos, J., und Bruchhaus, I. (2003).

Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3, 1811-1829.

Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P.C., Nicolas, A., und Forterre, P. (1997). An atypical topoiso-merase II from Archaea with implications for meiotic recombination. Nature 386, 414-417.

Brandau, S., Dresel, A., und Clos, J. (1995). High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. Biochem J 310, 225-232.

Buchner, J. (1999). Hsp90 & Co. - a holding for folding. Trends Biochem Sci 24, 136-141.

Bukau, B., Weissman, J., und Horwich, A. (2006). Molecular chaperones and protein quality control. Cell 125, 443-451.

Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R.W., Alvar, J., und Boelaert, M. (2007). Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature reviews Microbiology 5, 873-882.

Chavany, C., Mimnaugh, E., Miller, P., Bitton, R., Nguyen, P., Trepel, J., Whitesell, L., Schnur, R., Moyer, J., und Neckers, L. (1996). p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. The Journal of biological chemistry 271, 4974-4977.

Chen, B., Piel, W.H., Gui, L., Bruford, E., und Monteiro, A. (2005). The HSP90 family of genes in the human ge-nome: insights into their divergence and evolution. Genomics 86, 627-637.

Chen, B., Zhong, D., und Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of ge-nes across all kingdoms of organisms. BMC Genomics 7, 156.

Chrobak, M., Forster, S., Meisel, S., Pfefferkorn, R., Forster, F., und Clos, J. (2012). Leishmania donovani HslV does not interact stably with HslU proteins. International Journal for Parasitology 42, 329-339.

Clos, J., Brandau, S., und and Hoyer, C. (1998). Chemical stress does not induce heat shock protein synthesis in Leishmania donovani. Protist 149, 167-172.

David, C.L., Smith, H.E., Raynes, D.A., Pulcini, E.J., und Whitesell, L. (2003). Expression of a unique drug-resis-tant Hsp90 ortholog by the nematode Caenorhabditis elegans. Cell Stress Chaperones 8, 93-104.

David, C.V., und Craft, N. (2009). Cutaneous and mucocutaneous leishmaniasis. Dermatologic therapy 22, 491-502.

Descoteaux, A., Avila, H.A., Zhang, K., Turco, S.J., und Beverley, S.M. (2002). Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. Embo J 21, 4458-4469.

Descoteaux, A., Mengeling, B.J., Beverley, S.M., und Turco, S.J. (1998). Leishmania donovani has distinct man-nosylphosphoryltransferases for the initiation and elongation phases of lipophosphoglycan repeating unit biosyn-thesis. Mol Biochem Parasitol 94, 27-40.

Dillon, R.J., und Lane, R.P. (1999). Detection of Leishmania lipophosphoglycan binding proteins in the gut of the sandfly vector. Parasitology 118 ( Pt 1), 27-32.

Dittmar, K.D., und Pratt, W.B. (1997). Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial hsp90.p60.hsp70-dependent step is sufficient for creating the steroid binding conformation. J Biol Chem 272, 13047-13054.

Dougherty, J.J., Rabideau, D.A., Iannotti, A.M., Sullivan, W.P., und Toft, D.O. (1987). Identification of the 90 kDa substrate of rat liver type II casein kinase with the heat shock protein which binds steroid receptors. Biochimica et biophysica acta 927, 74-80.

Dutta, R., und Inouye, M. (2000). GHKL, an emergent ATPase/kinase superfamily. Trends in biochemical sciences 25, 24-28.

Edgar, R.C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity.

BMC bioinformatics 5, 113

Eisen, J.A., Coyne, R.S., Wu, M., Wu, D., Thiagarajan, M., Wortman, J.R., Badger, J.H., Ren, Q., Amedeo, P., Jo-nes, K.M., et al. (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model euka-ryote. PLoS biology 4, e286.

Feder, M.E., und Hofmann, G.E. (1999). Heat-shock proteins, molecular chaperones, and the stress response:

evolutionary and ecological physiology. Annual review of physiology 61, 243-282.

Literaturverzeichnis

Felts, S.J., und Toft, D.O. (2003). p23, a simple protein with complex activities. Cell stress & chaperones 8, 108-113.

Folgueira, C., und Requena, J.M. (2007). A postgenomic view of the heat shock proteins in kinetoplastids. FEMS microbiology reviews 31, 359-377.

Fulton, J.D., und Joyner, L.P. (1949). Studies on protozoa; the metabolism of Leishman-Donovan bodies and fla-gellates of Leishmania donovani. Transactions of the Royal Society of Tropical Medicine and Hygiene 43, 273-286, pl.

Geller, R., Taguwa, S., und Frydman, J. (2012). Broad action of Hsp90 as a host chaperone required for viral re-plication. Biochimica et biophysica acta 1823, 698-706.

Graefe, S.E., Wiesgigl, M., Gaworski, I., Macdonald, A., und Clos, J. (2002). Inhibition of HSP90 in Trypanosoma cruzi Induces a Stress Response but No Stage Differentiation. Eukaryot Cell 1, 936-943.

Grenert, J.P., Sullivan, W.P., Fadden, P., Haystead, T.A.J., Clark, J., Mimnaugh, E., Krutzsch, H., Ochel, H.J., Schulte, T.W., Sausville, E., et al. (1997). The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272, 23843-23850.

Gupta, R.S. (1995). Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examina-tion of the relaexamina-tionship among animals, plants, and fungi species. Molecular biology and evoluexamina-tion 12, 1063-1073.

Hainzl, O., Lapina, M.C., Buchner, J., und Richter, K. (2009). The charged linker region is an important regulator of Hsp90 function. J Biol Chem 284, 22559-22567.

Haslbeck, M., Franzmann, T., Weinfurtner, D., und Buchner, J. (2005). Some like it hot: the structure and function of small heat-shock proteins. Nature structural & molecular biology 12, 842-846.

Herwaldt, B.L. (1999). Leishmaniasis. Lancet 354, 1191-1199.

Hess, D.T., und Stamler, J.S. (2012). Regulation by S-nitrosylation of protein post-translational modification. The Journal of biological chemistry 287, 4411-4418.

Hombach, A., Ommen, G., Chrobak, M., und Clos, J. (2012). The Hsp90-Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cellular microbiology.

Hubel, A., Brandau, S., Dresel, A., und Clos, J. (1995). A member of the ClpB family of stress proteins is ex-pressed during heat shock in Leishmania spp. Mol Biochem Parasitol 70, 107-118.

Hubel, A., und Clos, J. (1996). The genomic organization of the HSP83 gene locus is conserved in three Leishmania species. Exp Parasitol 82, 225-228.

Hubel, A., Krobitsch, S., Horauf, A., und Clos, J. (1997). Leishmania major Hsp100 is required chiefly in the mammalian stage of the parasite. Mol Cell Biol 17, 5987-5995.

Hunter, K.W., Cook, C.L., und Hayunga, E.G. (1984). Leishmanial differentiation in vitro: induction of heat shock proteins. Biochem Biophys Res Commun 125, 755-760.

Ivens, A.C., Peacock, C.S., Worthey, E.A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M.A., Adlem, E., Aert, R., et al. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436-442.

Johnson, J.L. (2012). Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochimica et biophysica acta 1823, 607-613.

Johnson, J.L., und Brown, C. (2009). Plasticity of the Hsp90 chaperone machine in divergent eukaryotic orga-nisms. Cell Stress Chaperones 14, 83-94.

Jones, C., Anderson, S., Singha, U.K., und Chaudhuri, M. (2008). Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei. Parasitol Res 102, 835-844.

Kaye, P., und Scott, P. (2011). Leishmaniasis: complexity at the host-pathogen interface. Nature reviews Microbi-ology 9, 604-615.

Kramer, S. (2012). Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Molecular and biochemical parasitology 181, 61-72.

Krobitsch, S., und Clos, J. (1999). A novel role for 100 kD heat shock proteins in the parasite Leishmania dono-vani. Cell Stress Chaperones 4, 191-198.

Larreta, R., Soto, M., Alonso, C., und Requena, J.M. (2000). Leishmania infantum: gene cloning of the GRP94 homologue, its expression as recombinant protein, and analysis of antigenicity. Exp Parasitol 96, 108-115.

Lee, C.T., Graf, C., Mayer, F.J., Richter, S.M., und Mayer, M.P. (2012). Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. The EMBO journal 31, 1518-1528.

Lee, M.G., Atkinson, B.L., Giannini, S.H., und Van der Ploeg, L.H. (1988). Structure and expression of the hsp 70 gene family of Leishmania major [published erratum appears in Nucleic Acids Res 1988 Dec 9;16(23):11400- 1].

Nucleic Acids Res 16, 9567-9585.

Levine, A.J. (1992). The p53 tumor-suppressor gene. The New England journal of medicine 326, 1350-1352.

Li, J., Richter, K., und Buchner, J. (2011). Mixed Hsp90-cochaperone complexes are important for the progressi-on of the reactiprogressi-on cycle. Nat Struct Mol Biol 18, 61-66.

Louvion, J.F., Warth, R., und Picard, D. (1996). Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast. Proceedings of the National Academy of Sciences of the Uni-ted States of America 93, 13937-13942.

Martinez-Ruiz, A., Villanueva, L., Gonzalez de Orduna, C., Lopez-Ferrer, D., Higueras, M.A., Tarin, C., Rodriguez-Crespo, I., Vazquez, J., und Lamas, S. (2005). S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A 102, 8525-8530.

Matlashewski, G. (2001). Leishmania infection and virulence. Medical microbiology and immunology 190, 37-42.

Mayer, M.P., und Bukau, B. (1999). Molecular chaperones: the busy life of Hsp90. Curr Biol 9, R322-325.

Literaturverzeichnis

Meyer, P., Prodromou, C., Liao, C., Hu, B., Mark Roe, S., Vaughan, C.K., Vlasic, I., Panaretou, B., Piper, P.W., und Pearl, L.H. (2004). Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machi-nery. The EMBO journal 23, 511-519.

Miyata, Y. (2009). Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cellular and molecular life sciences : CMLS 66, 1840-1849.

Mollapour, M., und Neckers, L. (2012). Post-translational modifications of Hsp90 and their contributions to cha-perone regulation. Biochimica et biophysica acta 1823, 648-655.

Mollapour, M., Tsutsumi, S., Kim, Y.S., Trepel, J., und Neckers, L. (2011a). Casein kinase 2 phosphorylation of Hsp90 threonine 22 modulates chaperone function and drug sensitivity. Oncotarget 2, 407-417.

Mollapour, M., Tsutsumi, S., Truman, A.W., Xu, W., Vaughan, C.K., Beebe, K., Konstantinova, A., Vourganti, S., Panaretou, B., Piper, P.W., et al. (2011b). Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Molecular cell 41, 672-681.

Morales, M.A., Watanabe, R., Dacher, M., Chafey, P., Osorio y Fortea, J., Scott, D.A., Beverley, S.M., Ommen, G., Clos, J., Hem, S., et al. (2010). Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proceedings of the National Academy of Sciences of the United States of America 107, 8381-8386.

Morales, M.A., Watanabe, R., Laurent, C., Lenormand, P., Rousselle, J.C., Namane, A., und Spath, G.F. (2008).

Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8, 350-363.

Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (1990). The stress response, function of the proteins, and perspectives. In Stress proteins in biology and medicine, R.I. Morimoto, Tissières, A. and Georgopoulos, C., ed.

(Plainview, New York, Cold Spring Harbor Laboratory Press), pp. 1-36.

Morrison, H.G., McArthur, A.G., Gillin, F.D., Aley, S.B., Adam, R.D., Olsen, G.J., Best, A.A., Cande, W.Z., Chen, F., Cipriano, M.J., et al. (2007). Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Sci-ence 317, 1921-1926.

Mottram, J.C., Murphy, W.J., and Agabian, N. (1989). A transcriptional analysis of the Trypanosoma brucei hsp83 gene cluster. Mol Biochem Parasitol 37, 115-128.

Muller, P., Ruckova, E., Halada, P., Coates, P.J., Hrstka, R., Lane, D.P., und Vojtesek, B. (2012). C-terminal phos-phorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cel-lular protein folding/degradation balances. Oncogene.

Murphy, P.J., Morishima, Y., Chen, H., Galigniana, M.D., Mansfield, J.F., Simons, S.S., Jr., und Pratt, W.B. (2003).

Visualization and mechanism of assembly of a glucocorticoid receptor.Hsp70 complex that is primed for subse-quent Hsp90-dependent opening of the steroid binding cleft. The Journal of biological chemistry 278, 34764-34773.

Murray, H.W., Berman, J.D., Davies, C.R., und Saravia, N.G. (2005). Advances in leishmaniasis. Lancet 366, 1561-1577.

Nathan, D.F., und Lindquist, S. (1995). Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 15, 3917-3925.

Nemoto, T., Ohara-Nemoto, Y., Ota, M., Takagi, T., und Yokoyama, K. (1995). Mechanism of dimer formation of the 90-kDa heat-shock protein. European journal of biochemistry / FEBS 233, 1-8.

Nigro, J.M., Baker, S.J., Preisinger, A.C., Jessup, J.M., Hostetter, R., Cleary, K., Bigner, S.H., Davidson, N., Bay-lin, S., Devilee, P., et al. (1989). Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705-708.

Ochel, H.J., Eichhorn, K., und Gademann, G. (2001). Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell stress & chaperones 6, 105-112.

Ommen, G., Chrobak, M., und Clos, J. (2010). The co-chaperone SGT of Leishmania donovani is essential for the parasite's viability. Cell Stress and Chaperones 39, 541-546.

Ommen, G., und Clos, J. (2009). Heat Shock Proteins in Protozoan Parasites - Leishmania spp. In Prokaryotic and eukaryotic heat shock proteins in infectious disease, S. Calderwood, G. Santoro, und G. Pockley, eds. (Ber-lin, Springer), pp. 135-151.

Ommen, G., Lorenz, S., und Clos, J. (2009). One-step generation of double-allele gene replacement mutants in Leishmania donovani. Int J Parasitol 39, 541-546.

Pallavi, R., Roy, N., Nageshan, R.K., Talukdar, P., Pavithra, S.R., Reddy, R., Venketesh, S., Kumar, R., Gupta, A.K., Singh, R.K., et al. (2010). Heat shock protein 90 as a drug target against protozoan infections: biochemical cha-racterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. The Journal of biological chemistry 285, 37964-37975.

Panaretou, B., Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., und Pearl, L.H. (1998). ATP bin-ding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Embo J 17, 4829-4836.

Parsons, M., Worthey, E.A., Ward, P.N., und Mottram, J.C. (2005). Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6, 127.

Pearl, L.H., und Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery.

Annual review of biochemistry 75, 271-294.

Peroval, M., Pery, P., und Labbe, M. (2006). The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth. International Journal for Parasitology 36, 1205-1215.

Pescher, P., Blisnick, T., Bastin, P., und Spath, G.F. (2011). Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cellular microbiology 13, 978-991.

Petersen, A.L., Guedes, C.E., Versoza, C.L., Lima, J.G., de Freitas, L.A., Borges, V.M., und Veras, P.S. (2012). 17-AAG Kills intracellular Leishmania amazonensis while reducing inflammatory responses in infected macropha-ges. PloS one 7, e49496.

Picard, D. (2002). Heat-shock protein 90, a chaperone for folding and regulation. Cellular and molecular life sci-ences : CMLS 59, 1640-1648.

Literaturverzeichnis

Pimienta, G., Herbert, K.M., und Regan, L. (2011). A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines. Molecular pharmaceutics 8, 2252-2261.

Pratt, W.B., Galigniana, M.D., Morishima, Y., und Murphy, P.J. (2004). Role of molecular chaperones in steroid receptor action. Essays in biochemistry 40, 41-58.

Pratt, W.B., und Toft, D.O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-ba-sed chaperone machinery. Experimental biology and medicine (Maywood, NJ 228, 111-133.

Prodromou, C. (2012). The 'active life' of Hsp90 complexes. Biochimica et biophysica acta 1823, 614-623.

Prodromou, C., Nuttall, J.M., Millson, S.H., Roe, S.M., Sim, T.S., Tan, D., Workman, P., Pearl, L.H., und Piper, P.W.

(2009). Structural basis of the radicicol resistance displayed by a fungal hsp90. ACS Chem Biol 4, 289-297.

Prodromou, C., Siligardi, G., O'Brien, R., Woolfson, D.N., Regan, L., Panaretou, B., Ladbury, J.E., Piper, P.W., und Pearl, L.H. (1999). Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.

The EMBO journal 18, 754-762.

Retzlaff, M., Stahl, M., Eberl, H.C., Lagleder, S., Beck, J., Kessler, H., und Buchner, J. (2009). Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10, 1147-1153.

Riggs, D.L., Cox, M.B., Cheung-Flynn, J., Prapapanich, V., Carrigan, P.E., und Smith, D.F. (2004). Functional spe-cificity of co-chaperone interactions with Hsp90 client proteins. Critical reviews in biochemistry and molecular biology 39, 279-295.

Roe, S.M., Prodromou, C., O'Brien, R., Ladbury, J.E., Piper, P.W., und Pearl, L.H. (1999). Structural basis for inhi-bition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42, 260-266.

Ross, R. (1903) Further notes on Leishman‘s bodies. British Medical Journal 2237, 1261-1262

Saar, Y., Ransford, A., Waldman, E., Mazareb, S., Amin-Spector, S., Plumblee, J., Turco, S.J., und Zilberstein, D.

(1998). Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani.

Mol Biochem Parasitol 95, 9-20.

Sacks, D.L., Modi, G., Rowton, E., Spath, G., Epstein, L., Turco, S.J., und Beverley, S.M. (2000). The role of phosphoglycans in Leishmania-sand fly interactions. Proceedings of the National Academy of Sciences of the United States of America 97, 406-411.

Sanchez, E.R., Meshinchi, S., Tienrungroj, W., Schlesinger, M.J., Toft, D.O., und Pratt, W.B. (1987). Relationship of the 90-kDa murine heat shock protein to the untransformed and transformed states of the L cell glucocortico-id receptor. The Journal of biological chemistry 262, 6986-6991.

Scheibel, T., Siegmund, H.I., Jaenicke, R., Ganz, P., Lilie, H., und Buchner, J. (1999). The charged region of Hsp90 modulates the function of the N-terminal domain. Proceedings of the National Academy of Sciences of the United States of America 96, 1297-1302.

Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hartl, F.U., und Moarefi, I. (2000).

Structure of TPR Domain–Peptide Complexes. Cell 101, 199-210.

Schluter, A., Wiesgigl, M., Hoyer, C., Fleischer, S., Klaholz, L., Schmetz, C., und Clos, J. (2000). Expression and subcellular localization of cpn60 protein family members in Leishmania donovani. Biochimica et biophysica acta 1491, 65-74.

Schmid, A.B., Lagleder, S., Grawert, M.A., Rohl, A., Hagn, F., Wandinger, S.K., Cox, M.B., Demmer, O., Richter, K., Groll, M., et al. (2012). The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. The EM-BO journal 31, 1506-1517.

Schulte, T.W., Akinaga, S., Murakata, T., Agatsuma, T., Sugimoto, S., Nakano, H., Lee, Y.S., Simen, B.B., Argon, Y., Felts, S., et al. (1999). Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol Endocrinol 13, 1435-1448.

Schulte, T.W., Blagosklonny, M.V., Romanova, L., Mushinski, J.F., Monia, B.P., Johnston, J.F., Nguyen, P., Trepel, J., und Neckers, L.M. (1996). Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf- 1-MEK-mi-togen-activated protein kinase signalling pathway. Mol Cell Biol 16, 5839-5845.

Shapira, M., and Pinelli, E. (1989). Heat-shock protein 83 of Leishmania mexicana amazonensis is an abundant cytoplasmic protein with a tandemly repeated genomic arrangement. Eur J Biochem 185, 231-236.

Silva, K.P., Seraphim, T.V., und Borges, J.C. (2013). Structural and functional studies of Leishmania braziliensis Hsp90. Biochimica et biophysica acta 1834, 351-361.

Smith, D.F., Whitesell, L., und Katsanis, E. (1998). Molecular chaperones: biology and prospects for pharmacolo-gical intervention. Pharmacol Rev 50, 493-514.

Soroka, J., Wandinger, S.K., Mausbacher, N., Schreiber, T., Richter, K., Daub, H., und Buchner, J. (2012). Con-formational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Molecular cell 45, 517-528.

Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U., und Pavletich, N.P. (1997). Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239-250.

Trepel, J., Mollapour, M., Giaccone, G., und Neckers, L. (2010). Targeting the dynamic HSP90 complex in cancer.

Nature reviews Cancer 10, 537-549.

Turbyville, T.J., Wijeratne, E.M., Liu, M.X., Burns, A.M., Seliga, C.J., Luevano, L.A., David, C.L., Faeth, S.H., Whi-tesell, L., und Gunatilaka, A.A. (2006). Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. Journal of natu-ral products 69, 178-184.

Usmani, S.Z., Bona, R., und Li, Z. (2009). 17 AAG for HSP90 inhibition in cancer--from bench to bedside. Current molecular medicine 9, 654-664.

Vonlaufen, N., Kanzok, S.M., Wek, R.C., und Sullivan, W.J., Jr. (2008). Stress response pathways in protozoan parasites. Cellular microbiology 10, 2387-2399.

Wang, X., Lu, X.A., Song, X., Zhuo, W., Jia, L., Jiang, Y., und Luo, Y. (2012). Thr90 phosphorylation of Hsp90al-pha by protein kinase A regulates its chaperone machinery. The Biochemical journal 441, 387-397.

Literaturverzeichnis

Webb, J.R., Campos-Neto, A., Skeiky, Y.A., und Reed, S.G. (1997). Molecular characterization of the heat-indu-cible LmSTI1 protein of Leishmania major [In Process Citation]. Mol Biochem Parasitol 89, 179-193.

Wegele, H., Muller, L., und Buchner, J. (2004). Hsp70 and Hsp90--a relay team for protein folding. Reviews of physiology, biochemistry and pharmacology 151, 1-44.

Whitesell, L., und Lindquist, S.L. (2005). HSP90 and the chaperoning of cancer. Nature reviews 5, 761-772.

Whitesell, L., Mimnaugh, E.G., De Costa, B., Myers, C.E., und Neckers, L.M. (1994). Inhibition of heat shock pro-tein HSP90-pp60v-src heteropropro-tein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91, 8324-8328.

Wiese, M. (2007). Leishmania MAP kinases--familiar proteins in an unusual context. Int J Parasitol 37, 1053-1062.

Wiese, M., Kuhn, D., und Grunfelder, C.G. (2003). Protein kinase involved in flagellar-length control. Eukaryot Cell 2, 769-777.

Wiesgigl, M. (2002). The role of HSP90 in Leishmania donovani with a special focus on stage differentiation. In Fachbereich Biologie (Hamburg, University of Hamburg), pp. 128.

Wiesgigl, M., und Clos, J. (2001). Heat Shock Protein 90 Homeostasis Controls Stage Differentiation in Leishma-nia donovani. Mol Biol Cell 12, 3307-3316.

Yi, F., und Regan, L. (2008). A novel class of small molecule inhibitors of Hsp90. ACS chemical biology 3, 645-654.

Young, D.G., Morales, A., Kreutzer, R.D., Alexander, J.B., Corredor, A., Tesh, R.B., Ferro de Carrasquilla, C., und de Rodriguez, C. (1987). Isolations of Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) from cryopre-served Colombian sand flies (Diptera: Psychodidae). J Med Entomol 24, 587-589.

Young, J.C., Moarefi, I., und Hartl, F.U. (2001). Hsp90: a specialized but essential protein-folding tool. The Journal of cell biology 154, 267-273.

Zamora-Veyl, F.B., Kroemer, M., Zander, D., und Clos, J. (2005). Stage-specific expression of the mitochondrial co-chaperonin of Leishmania donovani, CPN10. Kinetoplastid Biol Dis 4, 3.

Zhang, W.W., und Matlashewski, G. (1997). Loss of virulence in Leishmania donovani deficient in an amastigote- specific protein, A2. Proc Natl Acad Sci U S A 94, 8807-8811.

Zhang, W.W., und Matlashewski, G. (2001). Characterization of the A2-A2rel gene cluster in Leishmania donova-ni: involvement of A2 in visceralization during infection. Mol Microbiol 39, 935-948.

Zhao, Y.G., Gilmore, R., Leone, G., Coffey, M.C., Weber, B., und Lee, P.W. (2001). Hsp90 phosphorylation is lin-ked to its chaperoning function. Assembly of the reovirus cell attachment protein. The Journal of biological che-mistry 276, 32822-32827.

Zilberstein, D., und Shapira, M. (1994). The role of pH and temperature in the development of Leishmania parasi-tes. Annu Rev Microbiol 48, 449-470.

Zilka, A., Garlapati, S., Dahan, E., Yaolsky, V., und Shapira, M. (2001). Developmental regulation of HSP83 in Leishmania: transcript levels are controlled by the efficiency of 3? RNA processing and preferential translation is directed by a determinant in the 3' UTR. J Biol Chem 11, 11.

Zuehlke, A.D., und Johnson, J.L. (2012). Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modu-lating Hsp90 function in Saccharomyces cerevisiae. Genetics 191, 805-814.

Literaturverzeichnis