• Keine Ergebnisse gefunden

8 Anhang

8.1 Geräte und Chemikalien

8.1.3 Chemikalien , Reagenzien und Kits

Tabelle 15: Verwendete Chemikalien und Reagenzien

Produkt Name Konzentration Hersteller

Acrylamid Rotiphorese® Gel 30 Firma Carl Roth,

Karlsruhe, Deutschland

Aprotinin 10 mg/mL Firma Carl Roth,

Karlsruhe, Deutschland

APS Firma Carl Roth,

Karlsruhe, Deutschland Augensalbe Bepanthen

Augensalbe Bayer Vital GmbH,

Leverkusen, Deutschland

Benzamidin 10mg/mL Firma Carl Roth,

Karlsruhe, Deutschland

Beta-Glycerolphosphat 100mg/mL Firma Carl Roth,

Karlsruhe, Deutschland Bradford Reagenz

Biorad-Dye-Reagent-Concentrate Bio-Rad Laboratories,

Münschen, Deutschland

138

Tabelle 15: Verwendete Chemikalien und Reagenzien

Produkt Name Konzentration Hersteller

Bromphenolblau Firma Carl Roth,

Karlsruhe, Deutschland

Chemilumineszenz-Lösung Pierce®ECL Western

Blotting Substrate Pierce Biotechnologie, Rockford, USA

DAPI

Eindeckelmedium Vectashield Mounting

Medium Vector Laboratories,

Inc. Burlingame, CA, DSS Dextran-Sulfat- USA

Sodium-Salt-Reagent-Grade, Lot:

M5164, MP

MW:36000-50000 g/mol Biomedicals, Eschwege, Deutschland

DTT Biochrom AG, Berlin

Deutschland

FCS Low endotoxin Biochrom AG, Berlin

Deutschland

Formalin Formaldehyd 37% Firma Carl Roth,

Karlsruhe, Deutschland

Glycine Firma Carl Roth,

Karlsruhe, Deutschland

HEPES Pufferan Firma Carl Roth,

Karlsruhe, Deutschland

Isofluran Isofluran CP® CP-Pharma

Handelsgesellschaft mbH, Burgdorf, Deutschland

Klonidin Clonidine

hydrochloride Sigma Aldrich,

Steinheim, Deutschland

L-Glutamin 200 mM

low endotoxin Biochrom AG, Berlin Deutschland

139

Tabelle 15: Verwendete Chemikalien und Reagenzien

Produkt Name Konzentration Hersteller

Leupeptin 5mg/mL Firma Carl Roth,

Karlsruhe, Deutschland

Magermilchpulver Firma Carl Roth,

Karlsruhe, Deutschland Nicht-essentielle

Aminosäuren Sigma Aldrich,

Steinheim, Deutschland

Paraffin Paraffin Histoplast Thermo Fischer,

Walthan, USA Penicillin/Streptomycin 10000µg/mL

low endotoxin Biochrom AG, Berlin Deutschland

Pferde-Serum Oxoid Limited,

Hampshire, UK

Phenantroline 10mM Firma Carl Roth,

Karlsruhe, Deutschland

PMSF Fluka, Riedel-de Haën,

Seelze, Deutschland Proteinase K Proteinase K 50µg/µL Epicentre

Biotechnologies, Biozym Scientific GmbH, Oldendorf, Deutschland

Pyruvat Biochrom AG, Berlin

Deutschland Rinderserumalbumin Albumin Fraktion V ≥ 98%, MW

66000g/mol, Firma Roth, Karlsuhe, Deutschland

RPMI 1640 Medium Biochrom AG, Berlin

Deutschland

SDS Firma Roth, Karlsuhe,

Deutschland

Sodiumfluoride 1M (84mg in

2mL H2O) Firma Roth, Karlsuhe, Deutschland

Sodiumvanadat 100mM Firma Roth, Karlsuhe,

Deutschland SybrGreen Master-Mix Fast SYBR® Green

Master Mix Applied Biosystems,

Weiterstadt, Deutschland

140

Tabelle 15: Verwendete Chemikalien und Reagenzien

Produkt Name Konzentration Hersteller

Target retrieval

solution Dako, Hamburg,

Deutschland Taq-Man Master-Mix TaqMan® Fast

Advanced Master Mix Applied Biosystems, Weiterstadt,

Deutschland

TEMED Firma Roth, Karlsuhe,

Deutschland

Tris Firma Roth, Karlsuhe,

Deutschland

Triton-X SERVA

Electrophoresis GmbH, Heidelberg,

Deutschland

Trypsininhibitor 10mg/mL Firma Carl Roth,

Karlsruhe, Deutschland

Tween 20 Firma Roth, Karlsuhe,

Deutschland Zinksulfat Zink-Sulfat-Lösung 0,1M,

MW: 161,45 g/mol

Sigma Aldrich, Steinheim, Deutschland Tabelle 16: Verwendete Reaktionskits

Produkt Name Hersteller

Apoptose/TUNEL-Färbung In situ Cell Detection Kit, TMR red Roche, Basel, Schweiz DNA Verdau RNase freies DNase Set Quiagen, Hilden,

Deutschland

ELISA CD14 Quantikine®ELISA, Mouse CD14 R&D SystemsMinneapolis, Multiplex Kit mLn. USA

Kulturüberstand Magnetic Luminex® Screening

Assays R&D Systems GmbH,

Wiesbaden-Nordenstadt RNA Isolierung RNeasy Mini Kit Qiagen, Hilden,

Deutschland)

ReverseTranskriptase-PCR QuantiTect Reverse Transcription

Kit (Qiagen, Hilden,

Deutschland)

141 8.1.4 Puffer und Lösungen

4-Hydroxyethyl-1-Piperazinethansulfonsäure = HEPES Puffer (238,3012 g/mol) 0,5 M → 119 g Chemikalie für 1L Puffer, auf pH 7,4 einstellen

Phosphatgepufferte Salzlösung = PBS Rezept für 1L 10x PBS, auf pH 7,4 einstellen

Chemikalie Menge

NaCl 80,0 g (137 mM)

KCl 20,0 g (2,7 mM)

Na2HPO4 14,4 g (8,1 mM)

KH2PO4 2,4 g (1,5 mM)

Medium für Lymphozytenkultur

Zusätze für 500 mL RPMI-1640 Medium

Chemikalie Menge

Penicillin/Streptomycin 5 mL (1%)

L-Glutamin 5 mL (2mM)

Pyruvat 5 mL (1mM)

Nicht essentielle Aminosäuren

1x 5 mL

FCS 25 mL (5%)

Β-Mercaptoethanol 0,5 mL (50µM)

Lysepuffer für Proteinisolierung Rezept für 100 mL Pufferlösung

Chemikalie Menge

Tris HCl 1 M pH 7,4 2 mL

MgCl2 500 µL

EDTA 0,5 M 200 µL

EGTA 0,5 M 120 µL

142 Vor Versuchsbeginn, auf Eis gekühlt, dazugeben:

Aprotinin 1µL/mL Benzamidin 1,6µL/mL Leupeptin 2µL/mL Pepstatin 15µL/mL PMSF 20µL/mL Sodiumflaride 5µL/mL Β-Glycerolphosphat 22µL/mL Sodiumvanadat 1,5µL/mL Trypsininhibitor 1µL/mL Primathroline 5µL/mL

Zusammensetzung der Gele Rezept für jeweils 2 Gele

Chemikalie 12,5%-iges Trenngel 3%-iges Sammelgel

H2O 5,5 mL 6,3 mL

Tris-HCL pH 8,8 1,5 M 3 mL 2,5 mL Rotiphorese Gel 30 6,25 mL 1 mL

SDS 10% 150 µL 100 µL

APS 10% 75 µL 60 µL

TEMED 11 µL 11 µL

Ladepuffer für die SDS-Page Gelelektrophorese Rezept für 30 mL 5x Puffer

Chemikalie Menge

Glycerol 15 mL (50%)

SDS 3 g (5%)

Tris-HCL pH 8,8 0,5 M 7,5 mL (125 mM)

+ eine Spatelspitze Bromphenolblau

143

Elektrophorese-Puffer für die SDS-Page Gelelektrophorese Rezept für 1L 10x Puffer

Chemikalie Menge

Tris 30 g (250mM)

Glycine 144 g (1,92M)

SDS 10 g (1%)

Transfer-Puffer für den Western Blot Rezept für 5L Puffer, auf pH 8,3 einstellen

Chemikalie Menge

Tris 29 g (48mM)

Glycine 14,5 g (39mM)

SDS 1,85 g (0,037%)

Methanol 1 L (20%)

Wasch-Puffer für den Western Blot = TBS-Twen Rezept für 5L Puffer, auf pH 7,6 einstellen

Chemikalie Menge

Tris 12,1 g (20mM)

HCl 1M 19 mL (4mM)

NaCl 40 g (137mM)

Tween 20 5 mL (0,1%)

Block-Lösung für den Western Blot Rezept für 50mL Lösung

50mL TBS-Tween + 1,25 g BSA (2,5%)

+ 2,5 g Magermilchpulver (5%)

144 Stripping-Puffer für den Western Blot Rezept für 500mL Puffer, auf pH 2,2 einstellen

Chemikalie Menge

Glycine 7,5 g

SDS 0,5 g

Tween 20 5 mL

Erylyse-Lösung für die Transferkolitis

Rezept für 100mL 10x Lösung, auf pH 7,3 einstellen 100mL H2O

+ 8,99 g NH4Cl (1,7M) + 1 g KHCO3 (0,1M)

+ 37 mg EDTA-Na2-2H2O (1mM)

MACS-Puffer für die Transferkolitis Rezept für 50mL Puffer

50 mL PBs

+ 200 µL 5mM EDTA (2mM) + 0,25 g BSA

145 8.1.5 Antikörper

Tabelle 17: Verwendete Antikörper

Produkt Konzentration,

Klon Hersteller

AntiCD3: Zellkultur

purified anti-mouse CD3 0.5 mg/ml

Klon: 145-2C11 BioLegend, San Diego, USA AntiCD3: Zellsortierung

APC-Cy7 0,2mg/mL

Klon: 145-2C11 BioLegend, San Diego, USA AntiCD4: Zellsortierung

APC 0,2mg/mL

Klon: RM 4-5 BioLegend, San Diego, USA AntiCD8: Zellsortierung

PE-Cy7 0,2mg/mL

Klon: 53-6.7 BioLegend, San Diego, USA AntiCD14: WB

Goat IgG 0,1µg/ml

polyklonal R&D Systems, Wiesbaden, Deutschland

AntiCD45R: Zellsortierung

(B220)- VioBlue® 30µg/mL

Klon: RA3-6B2 Miltenyi Biotec GmbH,

Bergisch Gladbach, Deutschland

AntiCD62L: Zellsortierung

PE 30µg/mL

Klon:MEL14H2.100 Miltenyi Biotec GmbH,

Bergisch Gladbach, Deutschland

Anti GAPDH: WB

Goat 0,5 mg/mL

polyklonal GenScript USA Inc., NJ USA Anti Goat: Sekundär-AK

Donkey IgG antibody HRP 1mg/mL

polyklonal, antibodies-online GmbH, Aachen, Deutschalnd

Anti Ki67: Immunhistologie

rabbit 1 mg/mL

polyklonal Abcam, Cambridge, UK Anti Occludin:

rabbit 0.25 mg/mL

polyklonal Invitrogen, Darmstadt,

Deutschland Anti Rabitt: Sekundär-AK

donkey DyLight®594 0.5 mg/ml

polyklonal Abcam, Cambridge, UK

146 8.1.6 Primer

Tabelle 18: Verwendete Primer

Produkt Hersteller

Quantitect Primer assay Claudin 4

Mm_Cldn4_1_SG QuantiTect Primer Assay

Qiagen, Hilden, Deutschland Quantitect Primer assay Occludin

Mm_Ocln_1_SG QuantiTect Primer Assay Quantitect Primer assay Zonula-1

Mm_Tjp1_1_SG QuantiTect Primer Assay Quantitect Primer assay Beta-Aktin

Mm_Actb_2_SG QuantiTect Primer Assay Quantitect Primer assay CD14

Mm_CD14_SG QuantiTect Primer Assay TaqMan® Gene Expression Assay TNFα;

Mm00443258_m1

Applied Biosystems, Weiterstadt, Deutschland TaqMan® Gene Expression Assay IFNγ;

Mm01168134_m1

TaqMan® Gene Expression Assay Actb;

Mm00607939_s1

147

9 Literaturverzeichnis

AKASHI-TAKAMURA, S. u. K. MIYAKE (2008):

TLR accessory molecules.

Curr Opin Immunol 20, 420-425 AKIRA, S. u. K. HOSHINO (2003):

Myeloid differentiation factor 88-dependent and -independent pathways in toll-like receptor signaling.

J Infect Dis 187 Suppl 2, S356-363

AL-SADI, R., M. BOIVIN u. T. MA (2009):

Mechanism of cytokine modulation of epithelial tight junction barrier.

Front Biosci (Landmark Ed) 14, 2765-2778

AMASHEH, S., S. MILATZ, S. M. KRUG, A. G. MARKOV, D. GUNZEL, M.

AMASHEH u. M. FROMM (2009):

Tight junction proteins as channel formers and barrier builders.

Ann N Y Acad Sci 1165, 211-219

ANAS, A. A., J. W. HOVIUS, C. VAN 'T VEER, T. VAN DER POLL u. A. F. DE VOS (2010):

Role of CD14 in a mouse model of acute lung inflammation induced by different lipopolysaccharide chemotypes.

PLoS One 5, e10183

ARAKI, A., T. KANAI, T. ISHIKURA, S. MAKITA, K. URAUSHIHARA, R. IIYAMA, T.

TOTSUKA, K. TAKEDA, S. AKIRA u. M. WATANABE (2005):

MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis.

J Gastroenterol 40, 16-23

ARNOTT, I. D., E. R. NIMMO, H. E. DRUMMOND, J. FENNELL, B. R. SMITH, E.

MACKINLAY, J. MORECROFT, N. ANDERSON, D. KELLEHER, M. O'SULLIVAN, R.

MCMANUS u. J. SATSANGI (2004):

NOD2/CARD15, TLR4 and CD14 mutations in Scottish and Irish Crohn's disease patients: evidence for genetic heterogeneity within Europe?

Genes Immun 5, 417-425

ASQUITH, M. J., O. BOULARD, F. POWRIE u. K. J. MALOY (2010):

Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease.

Gastroenterology 139, 519-529, 529 e511-512

148

ATARASHI, K., T. TANOUE, T. SHIMA, A. IMAOKA, T. KUWAHARA, Y. MOMOSE, G. CHENG, S. YAMASAKI, T. SAITO, Y. OHBA, T. TANIGUCHI, K. TAKEDA, S.

HORI, IVANOV, II, Y. UMESAKI, K. ITOH u. K. HONDA (2011):

Induction of colonic regulatory T cells by indigenous Clostridium species.

Science 331, 337-341

BALDA, M. S., J. A. WHITNEY, C. FLORES, S. GONZALEZ, M. CEREIJIDO u. K.

MATTER (1996):

Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein.

J Cell Biol 134, 1031-1049

BANERJEE, A., R. GUGASYAN, M. MCMAHON u. S. GERONDAKIS (2006):

Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells.

Proc Natl Acad Sci U S A 103, 3274-3279 BARNES, M. J. u. F. POWRIE (2009):

Regulatory T cells reinforce intestinal homeostasis.

Immunity 31, 401-411 BASIC, M. (2014)

Dynamic interaction of microbiota and intestinal barrier.

PhD Thesis.

BAUMANN, C. L., I. M. ASPALTER, O. SHARIF, A. PICHLMAIR, S. BLUML, F.

GREBIEN, M. BRUCKNER, P. PASIERBEK, K. AUMAYR, M. PLANYAVSKY, K. L.

BENNETT, J. COLINGE, S. KNAPP u. G. SUPERTI-FURGA (2010):

CD14 is a coreceptor of Toll-like receptors 7 and 9.

J Exp Med 207, 2689-2701

BAUMGART, D. C. u. S. R. CARDING (2007):

Inflammatory bowel disease: cause and immunobiology.

Lancet 369, 1627-1640

BAUMGART, D. C. u. W. J. SANDBORN (2007):

Inflammatory bowel disease: clinical aspects and established and evolving therapies.

Lancet 369, 1641-1657

BENCHIMOL, E. I., K. J. FORTINSKY, P. GOZDYRA, M. VAN DEN HEUVEL, J.

VAN LIMBERGEN u. A. M. GRIFFITHS (2011):

Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends.

Inflamm Bowel Dis 17, 423-439

149

BISWAS, A., J. WILMANSKI, H. FORSMAN, T. HRNCIR, L. HAO, H. TLASKALOVA-HOGENOVA u. K. S. KOBAYASHI (2011):

Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine.

Eur J Immunol 41, 182-194

BLANDER, J. M. u. L. E. SANDER (2012):

Beyond pattern recognition: five immune checkpoints for scaling the microbial threat.

Nat Rev Immunol 12, 215-225

BLEICH, A., M. MÄHLER, C. MOST, E. H. LEITER, E. LIEBLER-TENORIO, C. O.

ELSON, H. J. HEDRICH, B. SCHLEGELBERGER u. J. P. SUNDBERG (2004):

Refined histopathologic scoring system improves power to detect colitis QTL in mice.

Mamm Genome 15, 865-871

BLEICH, A., J. P. SUNDBERG, A. SMOCZEK, R. VON WASIELEWSKI, M. F. DE BUHR, L. M. JANUS, G. JULGA, S. N. UKENA, H. J. HEDRICH u. F. GUNZER (2008):

Sensitivity to Escherichia coli Nissle 1917 in mice is dependent on environment and genetic background.

Int J Exp Pathol 89, 45-54

BOONSTRA, A., R. RAJSBAUM, M. HOLMAN, R. MARQUES, C. ASSELIN-PATUREL, J. P. PEREIRA, E. E. BATES, S. AKIRA, P. VIEIRA, Y. J. LIU, G.

TRINCHIERI u. A. O'GARRA (2006):

Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals.

J Immunol 177, 7551-7558 BRADFORD, M. M. (1976):

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.

Anal Biochem 72, 248-254

BRISTOL, I. J., M. A. FARMER, Y. CONG, X. X. ZHENG, T. B. STROM, C. O.

ELSON, J. P. SUNDBERG u. E. H. LEITER (2000):

Heritable susceptibility for colitis in mice induced by IL-10 deficiency.

Inflamm Bowel Dis 6, 290-302

BRUNO, M. E., A. L. FRANTZ, E. W. ROGIER, F. E. JOHANSEN u. C. S. KAETZEL (2011):

Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-kappaB pathways in intestinal epithelial cells.

Mucosal Immunol 4, 468-478

150 BURISCH, J. u. P. MUNKHOLM (2013):

Inflammatory bowel disease epidemiology.

Curr Opin Gastroenterol 29, 357-362

CARAMALHO, I., T. LOPES-CARVALHO, D. OSTLER, S. ZELENAY, M. HAURY u.

J. DEMENGEOT (2003):

Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide.

J Exp Med 197, 403-411

CARIO, E., G. GERKEN u. D. K. PODOLSKY (2004):

Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C.

Gastroenterology 127, 224-238

CARIO, E., G. GERKEN u. D. K. PODOLSKY (2007):

Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function.

Gastroenterology 132, 1359-1374

CERF-BENSUSSAN, N. u. V. GABORIAU-ROUTHIAU (2010):

The immune system and the gut microbiota: friends or foes?

Nat Rev Immunol 10, 735-744

CHANG, E. Y., B. GUO, S. E. DOYLE u. G. CHENG (2007):

Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production.

J Immunol 178, 6705-6709

CHASSAING, B., J. D. AITKEN, M. MALLESHAPPA u. M. VIJAY-KUMAR (2014):

Dextran sulfate sodium (DSS)-induced colitis in mice.

Curr Protoc Immunol 104, Unit 15 25

CHASSAING, B. u. A. DARFEUILLE-MICHAUD (2011):

The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases.

Gastroenterology 140, 1720-1728

D'INCA, R., V. DI LEO, G. CORRAO, D. MARTINES, A. D'ODORICO, C.

MESTRINER, C. VENTURI, G. LONGO u. G. C. STURNIOLO (1999):

Intestinal permeability test as a predictor of clinical course in Crohn's disease.

Am J Gastroenterol 94, 2956-2960 DE BUHR, M. (2008)

Analysis of Cd14 as a candidate gene for experimental inflammatory bowel disease.

151

DE BUHR, M. F., H. J. HEDRICH, A. M. WESTENDORF, F. OBERMEIER, C.

HOFMANN, N. H. ZSCHEMISCH, J. BUER, D. BUMANN, S. M. GOYERT u. A.

BLEICH (2009):

Analysis of Cd14 as a genetic modifier of experimental inflammatory bowel disease (IBD) in mice.

Inflamm Bowel Dis 15, 1824-1836

DE BUHR, M. F., M. MÄHLER, R. GEFFERS, W. HANSEN, A. M. WESTENDORF, J. LAUBER, J. BUER, B. SCHLEGELBERGER, H. J. HEDRICH u. A. BLEICH (2006):

Cd14, Gbp1, and Pla2g2a: three major candidate genes for experimental IBD identified by combining QTL and microarray analyses.

Physiol Genomics 25, 426-434

DEURING, J. J., C. DE HAAR, E. J. KUIPERS, M. P. PEPPELENBOSCH u. C. J.

VAN DER WOUDE (2013):

The cell biology of the intestinal epithelium and its relation to inflammatory bowel disease.

Int J Biochem Cell Biol 45, 798-806

DEVITT, A., K. G. PARKER, C. A. OGDEN, C. OLDREIVE, M. F. CLAY, L. A.

MELVILLE, C. O. BELLAMY, A. LACY-HULBERT, S. C. GANGLOFF, S. M.

GOYERT u. C. D. GREGORY (2004):

Persistence of apoptotic cells without autoimmune disease or inflammation in CD14-/- mice.

J Cell Biol 167, 1161-1170

DI LEO, V., R. D'INCA, M. BAROLLO, A. TROPEA, W. FRIES, E. MAZZON, P.

IRATO, A. CECCHETTO u. G. C. STURNIOLO (2001):

Effect of zinc supplementation on trace elements and intestinal metallothionein concentrations in experimental colitis in the rat.

Dig Liver Dis 33, 135-139

DURIEUX, J. J., N. VITA, O. POPESCU, F. GUETTE, J. CALZADA-WACK, R.

MUNKER, R. E. SCHMIDT, J. LUPKER, P. FERRARA, H. W. ZIEGLER-HEITBROCK u. ET AL. (1994):

The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes.

Eur J Immunol 24, 2006-2012

ECHCHANNAOUI, H., K. FREI, M. LETIEMBRE, R. M. STRIETER, Y. ADACHI u. R.

LANDMANN (2005):

CD14 deficiency leads to increased MIP-2 production, CXCR2 expression, neutrophil transmigration, and early death in pneumococcal infection.

J Leukoc Biol 78, 705-715

152

EGGER, B., H. V. CAREY, F. PROCACCINO, N. N. CHAI, E. P. SANDGREN, J.

LAKSHMANAN, V. S. BUSLON, S. W. FRENCH, M. W. BÜCHLER u. V. E.

EYSSELEIN (1998):

Reduced susceptibility of mice overexpressing transforming growth factor alpha to dextran sodium sulphate induced colitis.

Gut 43, 64-70

EHLERS, S., N. REILING, S. GANGLOFF, A. WOLTMANN u. S. GOYERT (2001):

Mycobacterium avium infection in CD14-deficient mice fails to substantiate a significant role for CD14 in antimycobacterial protection or granulomatous inflammation.

Immunology 103, 113-121

ELSON, C. O., K. W. BEAGLEY, A. T. SHARMANOV, K. FUJIHASHI, H. KIYONO, G. S. TENNYSON, Y. CONG, C. A. BLACK, B. W. RIDWAN u. J. R. MCGHEE (1996):

Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance.

J Immunol 157, 2174-2185

ELSON, C. O. u. Y. CONG (2002):

Understanding immune-microbial homeostasis in intestine.

Immunol Res 26, 87-94 FARBER, J. M. (1990):

A macrophage mRNA selectively induced by gamma-interferon encodes a member of the platelet factor 4 family of cytokines.

Proc Natl Acad Sci U S A 87, 5238-5242

FARHADI, A., A. BANAN, J. FIELDS u. A. KESHAVARZIAN (2003):

Intestinal barrier: an interface between health and disease.

J Gastroenterol Hepatol 18, 479-497

FARMER, M. A., J. P. SUNDBERG, I. J. BRISTOL, G. A. CHURCHILL, R. LI, C. O.

ELSON u. E. H. LEITER (2001):

A major quantitative trait locus on chromosome 3 controls colitis severity in IL-10-deficient mice.

Proc Natl Acad Sci U S A 98, 13820-13825 FASANO, A. u. T. SHEA-DONOHUE (2005):

Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases.

Nat Clin Pract Gastroenterol Hepatol 2, 416-422

153

FENG, T., L. WANG, T. R. SCHOEB, C. O. ELSON u. Y. CONG (2010):

Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis.

J Exp Med 207, 1321-1332

FERRERO, E., D. JIAO, B. Z. TSUBERI, L. TESIO, G. W. RONG, A. HAZIOT u. S.

M. GOYERT (1993):

Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide.

Proc Natl Acad Sci U S A 90, 2380-2384

FREY, E. A., D. S. MILLER, T. G. JAHR, A. SUNDAN, V. BAZIL, T. ESPEVIK, B. B.

FINLAY u. S. D. WRIGHT (1992):

Soluble CD14 participates in the response of cells to lipopolysaccharide.

J Exp Med 176, 1665-1671

FROLOVA, L., P. DRASTICH, P. ROSSMANN, K. KLIMESOVA u. H. TLASKALOVA-HOGENOVA (2008):

Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis.

J Histochem Cytochem 56, 267-274

FUKATA, M., K. BREGLIO, A. CHEN, A. S. VAMADEVAN, T. GOO, D. HSU, D.

CONDUAH, R. XU u. M. T. ABREU (2008):

The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease.

J Immunol 180, 1886-1894

FUKATA, M., A. CHEN, A. KLEPPER, S. KRISHNAREDDY, A. S. VAMADEVAN, L.

S. THOMAS, R. XU, H. INOUE, M. ARDITI, A. J. DANNENBERG u. M. T. ABREU (2006):

Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine.

Gastroenterology 131, 862-877

FUKATA, M., K. S. MICHELSEN, R. ERI, L. S. THOMAS, B. HU, K. LUKASEK, C. C.

NAST, J. LECHAGO, R. XU, Y. NAIKI, A. SOLIMAN, M. ARDITI u. M. T. ABREU (2005):

Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis.

Am J Physiol Gastrointest Liver Physiol 288, G1055-1065

FUNDA, D. P., L. TUCKOVA, M. A. FARRE, T. IWASE, I. MORO u. H.

TLASKALOVA-HOGENOVA (2001):

CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited.

Infect Immun 69, 3772-3781

154

FURUSE, M., M. HATA, K. FURUSE, Y. YOSHIDA, A. HARATAKE, Y. SUGITANI, T.

NODA, A. KUBO u. S. TSUKITA (2002):

Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice.

J Cell Biol 156, 1099-1111

FURUSE, M., T. HIRASE, M. ITOH, A. NAGAFUCHI, S. YONEMURA, S. TSUKITA u. S. TSUKITA (1993):

Occludin: a novel integral membrane protein localizing at tight junctions.

J Cell Biol 123, 1777-1788

GAZOULI, M., G. MANTZARIS, A. KOTSINAS, P. ZACHARATOS, E.

PAPALAMBROS, A. ARCHIMANDRITIS, J. IKONOMOPOULOS u. V. G.

GORGOULIS (2005):

Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population.

World J Gastroenterol 11, 681-685

GELMAN, A. E., J. ZHANG, Y. CHOI u. L. A. TURKA (2004):

Toll-like receptor ligands directly promote activated CD4+ T cell survival.

J Immunol 172, 6065-6073

GOH, J. u. C. A. O'MORAIN (2003):

Review article: nutrition and adult inflammatory bowel disease.

Aliment Pharmacol Ther 17, 307-320 GOLDER, J. P. u. W. F. DOE (1983):

Isolation and preliminary characterization of human intestinal macrophages.

Gastroenterology 84, 795-802

GONZALEZ-MARISCAL, L., R. TAPIA u. D. CHAMORRO (2008):

Crosstalk of tight junction components with signaling pathways.

Biochim Biophys Acta 1778, 729-756

GONZALEZ-NAVAJAS, J. M., S. FINE, J. LAW, S. K. DATTA, K. P. NGUYEN, M.

YU, M. CORR, K. KATAKURA, L. ECKMAN, J. LEE u. E. RAZ (2010):

TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice.

J Clin Invest 120, 570-581

GONZALEZ-NAVAJAS, J. M., J. LEE, M. DAVID u. E. RAZ (2012):

Immunomodulatory functions of type I interferons.

Nat Rev Immunol 12, 125-135

155

GOYERT, S. M., E. M. FERRERO, S. V. SEREMETIS, R. J. WINCHESTER, J.

SILVER u. A. C. MATTISON (1986):

Biochemistry and expression of myelomonocytic antigens.

J Immunol 137, 3909-3914

GROSCHWITZ, K. R. u. S. P. HOGAN (2009):

Intestinal barrier function: molecular regulation and disease pathogenesis.

J Allergy Clin Immunol 124, 3-20; quiz 21-22

GUO, S., R. AL-SADI, H. M. SAID u. T. Y. MA (2013):

Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14.

Am J Pathol 182, 375-387

HACKBARTH, H. u. D. HACKBARTH (1981):

Genetic analysis of renal function in mice. 1. Glomerular filtration rate and its correlation with body and kidney weight.

Lab Anim 15, 267-272

HANS, W., J. SCHOLMERICH, V. GROSS u. W. FALK (2000):

The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice.

Eur J Gastroenterol Hepatol 12, 267-273

HAZIOT, A., E. FERRERO, F. KÖNTGEN, N. HIJIYA, S. YAMAMOTO, J. SILVER, C.

L. STEWART u. S. M. GOYERT (1996):

Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice.

Immunity 4, 407-414

HAZIOT, A., N. HIJIYA, S. C. GANGLOFF, J. SILVER u. S. M. GOYERT (2001):

Induction of a novel mechanism of accelerated bacterial clearance by lipopolysaccharide in CD14-deficient and Toll-like receptor 4-deficient mice.

J Immunol 166, 1075-1078

HAZIOT, A., G. W. RONG, V. BAZIL, J. SILVER u. S. M. GOYERT (1994):

Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood.

J Immunol 152, 5868-5876 HEITKAMP, A.-S. (2012)

Charakterisierung des Maus-Cd14-Promotors hinsichtlich der Bedeutung von CD14 für die intestinalen Barriere- und Abwehrmechanismen im Darm.

156

HORNEF, M. W., T. FRISAN, A. VANDEWALLE, S. NORMARK u. A. RICHTER-DAHLFORS (2002):

Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells.

J Exp Med 195, 559-570

HRNCIR, T., R. STEPANKOVA, H. KOZAKOVA, T. HUDCOVIC u. H.

TLASKALOVA-HOGENOVA (2008):

Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice.

BMC Immunol 9, 65

JACQUE, B., K. STEPHAN, I. SMIRNOVA, B. KIM, D. GILLING u. A. POLTORAK (2006):

Mice expressing high levels of soluble CD14 retain LPS in the circulation and are resistant to LPS-induced lethality.

Eur J Immunol 36, 3007-3016

JEON, S. G., H. KAYAMA, Y. UEDA, T. TAKAHASHI, T. ASAHARA, H. TSUJI, N. M.

TSUJI, H. KIYONO, J. S. MA, T. KUSU, R. OKUMURA, H. HARA, H. YOSHIDA, M.

YAMAMOTO, K. NOMOTO u. K. TAKEDA (2012):

Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

PLoS Pathog 8, e1002714

JIANG, Z., P. GEORGEL, X. DU, L. SHAMEL, S. SOVATH, S. MUDD, M. HUBER, C.

KALIS, S. KECK, C. GALANOS, M. FREUDENBERG u. B. BEUTLER (2005):

CD14 is required for MyD88-independent LPS signaling.

Nat Immunol 6, 565-570

JONES-HALL, Y. L. u. M. B. GRISHAM (2014):

Immunopathological characterization of selected mouse models of inflammatory bowel disease: Comparison to human disease.

Pathophysiology 21, 267-288

KARIN, N. u. G. WILDBAUM (2015):

The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells.

Int Immunopharmacol

KATAKURA, K., J. LEE, D. RACHMILEWITZ, G. LI, L. ECKMANN u. E. RAZ (2005):

Toll-like receptor 9-induced type I IFN protects mice from experimental colitis.

J Clin Invest 115, 695-702

KAYAMA, H. u. K. TAKEDA (2012):

Regulation of intestinal homeostasis by innate and adaptive immunity.

Int Immunol 24, 673-680

157

KEUBLER, L. M., M. BUETTNER, C. HÄGER u. A. BLEICH (2015):

A Multihit Model: Colitis Lessons from the Interleukin-10-deficient Mouse.

Inflamm Bowel Dis 21, 1967-1975

KHOR, B., A. GARDET u. R. J. XAVIER (2011):

Genetics and pathogenesis of inflammatory bowel disease.

Nature 474, 307-317

KITAJIMA, S., M. MORIMOTO, E. SAGARA, C. SHIMIZU u. Y. IKEDA (2001):

Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice.

Exp Anim 50, 387-395

KITCHENS, R. L. u. P. A. THOMPSON (2005):

Modulatory effects of sCD14 and LBP on LPS-host cell interactions.

J Endotoxin Res 11, 225-229

KLEIN, W., A. TROMM, T. GRIGA, H. FRICKE, C. FOLWACZNY, M. HOCKE, K.

EITNER, M. MARX, N. DUERIG u. J. T. EPPLEN (2002):

A polymorphism in the CD14 gene is associated with Crohn disease.

Scand J Gastroenterol 37, 189-191

KNUEFERMANN, P., S. NEMOTO, A. MISRA, N. NOZAKI, G. DEFREITAS, S. M.

GOYERT, B. A. CARABELLO, D. L. MANN u. J. G. VALLEJO (2002):

CD14-deficient mice are protected against lipopolysaccharide-induced cardiac inflammation and left ventricular dysfunction.

Circulation 106, 2608-2615

KONTOYIANNIS, D., M. PASPARAKIS, T. T. PIZARRO, F. COMINELLI u. G.

KOLLIAS (1999):

Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements:

implications for joint and gut-associated immunopathologies.

Immunity 10, 387-398

KORN, T., E. BETTELLI, M. OUKKA u. V. K. KUCHROO (2009):

IL-17 and Th17 Cells.

Annu Rev Immunol 27, 485-517

KÜHN, R., J. LOHLER, D. RENNICK, K. RAJEWSKY u. W. MULLER (1993):

Interleukin-10-deficient mice develop chronic enterocolitis.

Cell 75, 263-274

LAKATOS, P. L., L. S. KISS, K. PALATKA, I. ALTORJAY, P. ANTAL-SZALMAS, E.

PALYU, M. UDVARDY, T. MOLNAR, K. FARKAS, G. VERES, J. HARSFALVI, J.

PAPP u. M. PAPP (2011):

Serum lipopolysaccharide-binding protein and soluble CD14 are markers of disease activity in patients with Crohn's disease.

Inflamm Bowel Dis 17, 767-777

158 LAL-NAG, M. u. P. J. MORIN (2009):

The claudins.

The claudins.