• Keine Ergebnisse gefunden

Conceptual  Issues  In  Quantum   Mechanics

N/A
N/A
Protected

Academic year: 2021

Aktie "Conceptual  Issues  In  Quantum   Mechanics"

Copied!
19
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ì  

Conceptual  Issues  In  Quantum   Mechanics  

Andrea  Oldofredi    UNIL  -­‐  MCMP  (LMU),  03  December  2014  

(2)

Quantum  Mechanics  

•  Quantum   Mechanics   (QM)   is   a   descripGon   of   maHer  and  its  dynamics  at  the  microsopic  regime;    

•  Therefore,   QM   is   about   molecules,   atoms,  

electrons,  nucleons  and  so  on;  The  theory  describes  

these   enGGes,   their   temporal   evoluGon   and   their  

properGes  with  the  following  axioms.    

(3)

Axioms  

1.   States:  In  QM  physical  states  are  described  by  state   vectors  on  Hilbert  space  (the  space  of  states)  

•  Equivalently,  they  are  described  by  wave  funcGons       in  configuraGon  space  (posiGon  representaGon)  

The   state   vector   (wave   funcGon)   contains   all   the  

informaGon   regarding   physical   systems;   thus,   one  

could  compute  any  parameter  of  the  system  from  it.  

(4)

Axioms  

2.   Dynamics:   The   evoluGon   of   a   (closed)   system   is   unitary.    

•  The  state  vector  at  Gme  t n  is  derived  from  the  state   vector   at   Gme   t 0 .   ApplicaGon   of   the   Unitary   Operator  U(t,  t 0 ).  

•  This   is   equivalent   to   say   that   the   temporal  

evoluGon   for   state   vectors   and   wave   funcGons   is  

given  by  the  Schrödinger  EquaGon.  

(5)

Axioms  

3.   Observables:   Every   physical   property   A   is   associated   with   an   operator   O   in   Hilbert   space   which  acts  on  the  system.    

•  Eigenvalues:   the   possible   values   of   the   physical   property;  the  set  of  all  possible  eigenvalues  of  O  is   the  spectrum  of  O;  

•  Eigenstates:   possible   physical   states   in   which   the  

system  could  be  (related  with  eigenvalues);    

(6)

Axioms  

4.  Born  Rule:  if              represents  a  physical  state  of  a  system   and            represents  another  physical  state,  then  the  

probability  to  find          in  the  state            is  given  by  the   squared  modulus  of  their  scalar  product:    

•  If  we  consider  a  wave  funcGon  of  a  parGcle,  the  Born   rule  states  that  the  probability  density  p(x,y,z)  for  a   posiGon  measurement  at  Gme  t  is  given  by    

 

•  In  the  second  formulaGon  of  the  Born  rule  it  is  clearer   the  dependence  on  measurements.  

ψ

ϕ ψ

ϕ

p(ψ ,ϕ )= ψ ϕ 2

p(x,y,z)= ψ(x,y,z,t)2

(7)

Axioms  

5.   Collapse:  if   a  system  interacts  with  an  experimental   device,  the  Schrödinger  evoluGon  is  suppressed.    

•  The   system   is   projected   into   one   of   the   possible   eigenstates  corresponding  to  the  effecGve  outcome   of  the  measurement.  

•  The   collapse   of   the   wave   funcGon   is   completely  

stochasGc.    

(8)

Measurement  

•  Measurement:  interacGon  between  physical   systems  (quantum)  and  experimental  devices   (classical);  

•  In  QM  the  laHer  ones  are  not  considered  in  the   equaGons;  

•  Is  there  an  intrinsic  limitaGon  in  the  domain  of   applicaGon  of  QM?    

•  Is  there  an  arbitrary  (non  defined)  division  between  

quantum  and  classical  regime?    

(9)

Measurement  

•  Observables  are  idenGfied  with  Operators  

•  What  kind  of  informaGon  do  we  obtain  from  an   operator?  

•  What  does  it  mean  exactly  «to  measure  an   operator»?  

 

(10)

Measurement  

•  Measurement  entails  the  noGon  of  observer;  

•  Do  we  have  a  rigorous  definiGon  of  «observer»?  

•  Do  we  need  such  a  definiton?  

(11)

Measurement  

•  Temporal  EvoluGon:  Schrödinger  equaGon  (linear   and  determinisGc)  +  collapse  postulate  (stochasGc);  

•  Do  we  have  an  inconsistency  between  these  to   dynamical  laws?  

•  When  is  the  Schrödinger  dynamics  valid?  

•  Measurement  Problem  (Schrödinger  1935);  

(12)

Measurement  

q  It   seems   that   axioms   and   physical   laws   concerns   our  epistemic  access  to  the  quantum  world  instead   of  a  realisGc  descripGon  of  quantum  phenomena.    

q  QM  as  phenomenological  algorhytm;  a  set  of  rules   for  compuGng  the  probability  of  measurements’  

outcomes    

(13)

Measurement  

•  J.  S  Bell,  Against  Measurement  (from  DGZ  2004):  

The  concept  of  ‘measurement’  becomes  so  fuzzy  on  reflecGon  that  

it  is  quite  surprising  to  have  it  appearing  in  physical  theory  at  the  

most   fundamental   level.   Less   surprising   perhaps   is   that  

mathemaGcians,   who   need   only   simple   axioms   about   otherwise  

undefined   objects,   have   been   able   to   write   extensive   works   on  

quantum  measurement  theory—which  experimental  physicists  do  

not   find   it   necessary   to   read.   .   .   .   Does   not   any   analysis   of  

measurement   require   concepts   more   fundamental   than  

measurement?And   should   not   the   fundamental   theory   be   about  

these  more  fundamental  concepts?  

(14)

Measurement  

•  Again  Bell:  

•  Here   are   some   words   which,   however   legiGmate   and   necessary  in  applicaGon,  have  no  place  in  a   formula>on   with   any   pretension   to   physical   precision:   system;  

apparatus;   environment;   microscopic,   macroscopic;  

reversible,   irreversible;   observable;   informa>on;  

measurement.   […]   The   noGons   of   “microscopic”   and  

“macroscopic”   defy   precise   definiGon.   […]   Einstein   said  

that   it   is   theory   which   decides   what   is   “observable”.   I  

think   he   was   right.   […]“observaGon”   is   a   complicated  

and  theory-­‐laden  business.  Then  that  noGon  should  not  

appear  in  the  formula>on  of  fundamental  theory.    

(15)

Completeness  

•  Einstein  Boxes:  Either  we  accept  incompleteness  of   the  wave  funcGon  (=  we  reject  Axiom  1)  or  locality   must  be  violated;  

•  Einstein   (1927)   and   Schrödinger   (1935)   are   the  

main   objecGons   against   this   formulaGon   of   QM   in  

the   first   half   of   the   previous   century;   they   raised  

different  problemaGc  points  of  the  theory.  

(16)

Complementarity  

•  Leaving  aside  issues  about  the  completeness  of  the   wave  funcGon,  consider  the  following  quesGon:  

•  What  kind  of  descripGon  do  we  have  of  quantum   objects?    

•  Complementarity;  

•  Complemetarity  depends  on  Measurements;  

•  QM:  Local  Beables  are  Local  Observables  

(17)

CM  and  QM  

•  CM  has  the  following  properGes:  

•  Determinism;  

•  ConGnuous  temporal  evoluGon;  

•  EffecGve  properGes  of  systems;  

•  Separability;  

•  Observer  Independence;  

q  What  about  QM?  

 

(18)

Conclusion  

•  What  do  we  need?    

•  Ontological  Clarity:  a  theory  should  claim  clearly  its   fundamental  enGGes,  which  are  supposed  to  be  the  

basic  objects  form  which  we  could  recover  our  manifest   image  of  the  world;    

•  Observers  Independence:  the  noGon  of  “observer”  is   rather  vague  and  should  not  play  any  crucial  role  in  a   fundamental  physical  theory;    

•  Non-­‐vagueness:  it  should  be  clear  the  domain  in  which  

the  theory  is  valid;    

(19)

References  

•  Bell  J.  S.,  1987,  Speakable  and  Unpseakble  in   Quantum  Mechanics,  CUP.    

•  Dürr  D.,  Goldstein  S.,  Zanghì  N.,  2013,  Quantum   Physics  without  Quantum  Philosophy,  Springer.    

•  Dürr  D.  Teufel  S.,  2009,  Bohmian  Mechanics,   Spinger.    

•  Ghirardi  G.C.,  2001,  Un’occhiata  alle  carte  di  Dio,  Il  

Saggiatore;    

Referenzen

ÄHNLICHE DOKUMENTE

(superposition principle) and interference phenomena occur The amplitude for a particle to go from to is obtained by summing the amplitude on each possible path (path integral)

We use the developed many particle quantum theory of scalar and spinor particles and their interaction with the electromagnetic field to derive the probability of photon emission

spin of particle determines how it interacts with identical particles half-numbered spin: fermions Fermi distribution (PAULI principle) integer spin: bosons Bose

In particular, we set up the interaction representation operators with the real electron mass m, and the initial and final states of scattering problems are defined as free

II. To demonstrate that the coupled dynamical equations allow us to describe the basic quantum phe- nomena of interaction of matter and electromagnetic radiation as inherent

Because the z-components are additive, one sees that for any orbital angular momentum the quantum numbers are integer, while for spin and total angular momentum integer and

When scattering two electrons (spin 1/2 particles) off each other the total wave function is antisymmetric, but the sym- metry of the scattering solution depends on the spin state.

Before I begin to introduce some basics of complex vector spaces and discuss the mathematical foundations of quantum mechanics, I would like to present a simple (seemingly