• Keine Ergebnisse gefunden

Design and Performance of the 6 GS/s Waveform Digitizing Chip DRS4

N/A
N/A
Protected

Academic year: 2022

Aktie "Design and Performance of the 6 GS/s Waveform Digitizing Chip DRS4"

Copied!
32
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Design and Performance of the 6 GS/s Waveform Digitizing Chip

DRS4

Stefan Ritt

Paul Scherrer Institute, Switzerland

at 40 mW per channel

(2)

Switched Capacitor Array

• Cons

• No continuous acquisition

• No precise timing

• External (commercial) ADC needed

• Pros

• High speed (6 GHz) high resolution (11.5 bit resol.)

• High channel density (9 channels on 5x5 mm

2

)

• Low power (10-40 mW / channel)

• Low cost (~ 10$ / channel)

t t t t t

(3)

Oct. 21st, 2008 IEEE/NSS Dresden 3

DRS4

•Fabricated in 0.25 m 1P5M MMC process (UMC), 5 x 5 mm2, radiation hard

•8+1 ch. each 1024 cells

•Differential inputs, differential outputs

•Sampling speed 500 MHz … 6 GHz, PLL stabilized

•Readout speed

30 MHz, multiplexed or in parallel

I N 0 I N 1 I N 2 I N 3 I N 4 I N 5 I N 6 I N 7 I N 8

S T O P S H I F T R E G I S T E R R E A D S H I F T R E G I S T E R W S R O U T

C O N F I G R E G I S T E R R S R L O A D

D E N A B L E W S R I N D W R I T E

D S P E E D P L L O U T

D O M I N O W A V E C I R C U I T P L L

A G N D

D G N D A V D D

D V D D D T A P

R E F C L K

P L L L C K A 0 A 1 A 2 A 3

ENABLE

O U T 0 O U T 1 O U T 2 O U T 3 O U T 4 O U T 5 O U T 6 O U T 7 O U T 8 / M U X O U T B I A S O - O F S R O F S S R O U T R E S E T S R C L KS R I N

F U N C T I O N A L B L O C K D I A G R A M

M U X

WRITE SHIFT REGISTER WRITE CONFIG REGISTER

C H A N N E L 0 C H A N N E L 1 C H A N N E L 2 C H A N N E L 3 C H A N N E L 4 C H A N N E L 5 C H A N N E L 6 C H A N N E L 7 C H A N N E L 8

M U X L V D S

(4)

ROI readout mode

readout shift register

Trigger stop

normal trigger stop after latency

Delay

delayed trigger stop

33 MHz

e.g. 100 samples @ 33 MHz

 3 us dead time

e.g. 100 samples @ 33 MHz

 3 us dead time

(5)

Oct. 21st, 2008 IEEE/NSS Dresden 5

Daisy-chaining of channels

Channel 0 – 1024 cells Channel 1 – 1024 cells Channel 2 – 1024 cells Channel 3 – 1024 cells Channel 4 – 1024 cells Channel 5 – 1024 cells Channel 6 – 1024 cells Channel 7 – 1024 cells Domino Wave Generation

Deeper Sampling Depth can be reached by multiplexing channels Deeper Sampling Depth can be reached by multiplexing channels

(6)

Daisy-chaining of channels

Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Domino Wave

1 clock

0 1 0 1 0 1 0

enable input

enable input

Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Domino Wave

1 clock

0

1 0

1 0

1 0

enable input enable input

(7)

Oct. 21st, 2008 IEEE/NSS Dresden 7

Single Channel

Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Domino Wave

0 clock

0 0 0 0 0 0 0

1 Channel 0

Channel 1

1

Channel 2

1

Channel 3

1

Channel 4

1

Channel 5

1

Channel 6

1

Channel 7

1

DRS4

Connect channels externally to keep high bandwidth limited by bond wires (PCB or analog switches) Connect channels externally to keep high bandwidth limited by bond wires (PCB or analog switches)

DRS4 can be partitioned in: 8x1024, 4x2048, 2x4096, 1x8192 cells DRS4 can be partitioned in: 8x1024, 4x2048, 2x4096, 1x8192 cells

(8)

Chip Daisy Chaining

DRS4

SROUT SRIN

DRS4

SROUT SRIN

DRS4

SROUT SRIN

Virtually unlimited sampling depth

(9)

Oct. 21st, 2008 IEEE/NSS Dresden 9

Simultaneous Write/Read

Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

0

FPGA

0 0 0 0 0 0 0

1 Channel 0

Channel 1

1

Channel 0 readout

8-fold

analog multi-event buffer

Channel 2

1

Channel 1

0

Expected crosstalk ~few mV Expected crosstalk ~few mV

(10)

Trigger an DAQ on same board

• Using a multiplexer in DRS3, input signals can simultaneously digitized at 65 MHz and sampled in the DRS

• FPGA can make local trigger (or global one) and stop DRS upon a trigger

• DRS readout (6 GHz samples) though same 8-channel

FADCs

analog front end

DRS FADC

12 bit 65 MHz

MUX FPGA

trigger

LVDS

SRAM

DRS4

global trigger bus

“Free” local trigger capability without additional hardware

“Free” local trigger capability without additional hardware

(11)

DRS4

Test Results

(12)

On-chip PLL

Reference Clock

fclk = fsamp / 2048

Vspeed

• PLL jitter « 100 ps (Spartan-3 jitter 150 ps)

• “Dead Band” free

• PLL jitter « 100 ps (Spartan-3 jitter 150 ps)

• “Dead Band” free

loop filter

DRS4

Simulation

Measurement

Phase detector

up down

(13)

Oct. 21st, 2008 IEEE/NSS Dresden 13

Bandwidth

Bandwidth is determined by bond wire and internal bus resistance/capacitance:

850 MHz (QFP), 950 MHz (QFN), ??? (flip-chip)

850 MHz (-3dB)

QFP package final

bus width

Simulation Measurement

(14)

Timing jitter

t1 t2 t3 t4 t5

• Inverter chain has transistor variations

 ti between samples differ

 “Fixed pattern aperture jitter”

• “Differential temporal nonlinearity”

TDi= ti – tnominal

• “Integral temporal nonlinearity”

TIi = ti – itnominal

• “Random aperture jitter” = variation of ti between measurements

• Inverter chain has transistor variations

 ti between samples differ

 “Fixed pattern aperture jitter”

• “Differential temporal nonlinearity”

TDi= ti – tnominal

• “Integral temporal nonlinearity”

TIi = ti – itnominal

• “Random aperture jitter” = variation of ti between measurements

(15)

Oct. 21st, 2008 IEEE/NSS Dresden 15

Fixed jitter calibration

• Fixed jitter is constant over time, can be measured and corrected for

• Several methods are commonly used

• Most use sine wave with random phase and correct for TDi on a statistical basis

• Fixed jitter is constant over time, can be measured and corrected for

• Several methods are commonly used

• Most use sine wave with random phase and correct for TDi on a statistical basis

(16)

Fixed Pattern Jitter Results

• TDi typically ~50 ps RMS @ 5 GHz

• TIi goes up to ~600 ps

• Inter-channel variation on same chip is very small since all

channels are driven by the same domino wave

I N 0 I N 1 I N 2 I N 3 I N 4 I N 5 I N 6 I N 7 I N 8

S T O P S H I F T R E G I S T E R

R E A D S H I F T R E G I S T E R W S R O U T

R S R L O A D D E N A B L E W S R I N D W R I T E

D S P E E D P L L O U T

D O M I N O W A V E C I R C U I T P L L

A G N D A V D D P L L L C K R E F C L K D T A PA 0 A 1 A 2 A 3

ENABLE

O U T 0 O U T 1 O U T 2 O U T 3 O U T 4 O U T 5 O U T 6 O U T 7 O U T 8 / M U X O U T B I A S O - O F S R O F S S R O U T

F U N C T I O N A L B L O C K D I A G R A M

M U X

WRITE SHIFT REGISTER WRITE CONFIG REGISTER

C H A N N E L 0 C H A N N E L 1 C H A N N E L 2 C H A N N E L 3 C H A N N E L 4 C H A N N E L 5 C H A N N E L 6 C H A N N E L 7 C H A N N E L 8

M U X L V D S

(17)

Oct. 21st, 2008 IEEE/NSS Dresden 17

Random Jitter Results

• Sine curve frequency fitted for each measurement (PLL jitter compensation)

• Encouraging result for DRS3:

2.7 ps RMS (best channel) 3.9 ps RMS (worst channel)

• Differential measurement

t1 – t2 adds a 2, needs to be verified by measurement

• Measurement of n points on a rising edge of a signal improves by n

• Sine curve frequency fitted for each measurement (PLL jitter compensation)

• Encouraging result for DRS3:

2.7 ps RMS (best channel) 3.9 ps RMS (worst channel)

• Differential measurement

t1 – t2 adds a 2, needs to be verified by measurement

• Measurement of n points on a rising edge of a signal improves by n

Measurements for DRS4

currently going on, expected to be slightly better

Measurements for DRS4

currently going on, expected to be slightly better

(18)

Experiments using DRS chip

MAGIC-II 1200 channels DRS2 MAGIC-II 1200 channels DRS2 MEG 3000 channels DRS2

MEG 3000 channels DRS2

BPM for XFEL@PSI

1000 channels DRS4 (planned)

(19)

Oct. 21st, 2008 IEEE/NSS Dresden 19

Availability

• DRS4 will become available in larger quantities in November 2008

• Chip can be obtained from PSI on a “non-profit” basis

• Delivery “as-is”

• Reference design (schematics) from PSI

• Costs ~ 10-15$/channel

VME boards from industry in 2009

64-channel

65 MHz/12bit digitizer

“boosted” by DRS4 chip to 6 GHz

64-channel

65 MHz/12bit digitizer

“boosted” by DRS4 chip to 6 GHz

Input USB 2.0

ext.

Trigger

DRS4

(20)

Conclusions

• Fast waveform digitizing with SCA chips will have a big impact on experiments in the next future

• DRS4 chip solves all known issues of DRS3 and adds more flexibility

• DRS4 has 6 GHz, 1024 sampling cells per channel, 9

channels per chip, 11.5 bit vertical resolution, 3 ps timing resolution

• ~4000 DRS channels already used in several experiments, hope that other experiments can benefit from this

technology

http://midas.psi.ch/drs

(21)
(22)

A bit of history…

DRS2 DRS2

DRS3 DRS3 DRS1 DRS1

MEG Experiment searching for e  down to 10-13 MEG Experiment searching for e  down to 10-13

DRS4 DRS4

2008 2006 2004 2001

3000 Channels with 3000 Channels with GHz sampling

(23)

Oct. 21st, 2008 IEEE/NSS Dresden 23

DRS4 packaging

6 4 - L e a d L Q F P

6 4 - L e a d Q F N

1 7 6 4

1 8 6 3

1 9 6 2

2 0 6 1

2 1 6 0

2 2 5 9

2 3 5 8

2 4 5 7

2 5 5 6

2 6 5 5

2 7 5 4

2 8 5 3

2 9 5 2

3 0 5 1

3 1 5 0

3 2 4 9

1 6 3 3

3 4 1 5

3 5 1 4

3 6 1 3

3 7 1 2

3 8 1 1

3 9 1 0

4 0 9

4 1 8

4 2 7

4 3 6

4 4 5

4 5 4

4 6 3

4 7 2

1 4 8

D R S 3 T O P V I E W ( N o t t o S c a le )

P I N 1

D R S 3 T O P V I E W ( N o t t o S c a l e )

P I N 1

P I N C O N F I G U R A T I O N

A 0

A 0 I N 8 +

I N 8 + A 1

A 1 I N 8 -

I N 8 - A 2

A 2 I N 7 +

I N 7 + A 3

A 3 I N 7 -

I N 7 -

O U T 1 1 O U T 1 1

I N 6 + I N 6 +

O U T 1 0 O U T 1 0

I N 6 - I N 6 -

O U T 9 O U T 9

I N 5 + I N 5 +

O U T 8

O U T 8 I N 5 -

I N 5 - O U T 7

O U T 7 I N 4 +

I N 4 +

O U T 6

O U T 6 I N 4 -

I N 4 -

O U T 5

O U T 5 I N 3 +

I N 3 +

O U T 4

O U T 4

I N 3 -

I N 3 -

O U T 3

O U T 3

I N 2 +

I N 2 +

O U T 2

O U T 2

I N 2 -

I N 2 -

O U T 1

O U T 1

I N 1 +

I N 1 +

I N 1 -

I N 1 -

DGND DVDD DTAPDSPEEDDWRITEDENABLEDMODEROFSIN11+IN11-IN10+IN10-IN9+IN9- DVDD DGND DGND DVDD DTAPDSPEEDDWRITEDENABLEDMODEROFSIN11+IN11-IN10+IN10-IN9+IN9- DVDD DGND

M U X O U T / O U T 0

M U X O U T / O U T 0

AGND AGND

AVDD AVDD

BIAS BIAS

SRIN SRIN

RSRLOAD RSRLOAD

RSRCLK RSRCLK

RSROUT RSROUT

RSRRST RSRRST

SSRLOAD SSRLOAD

SSROUT SSROUT

WSRCLK WSRCLK

WSROUT WSROUT

IN0- IN0-

IN0+ IN0+

AVDD AVDD

AGND AGND

DRS3 DRS4

9 mm 18 mm

4.2 mm

DRS4 flip-chip

P I N 1

O U T 0 + 5 7 A G N D

O U T 0 - 5 6 A G N D 21

O U T 1 - 5 5

I N 0 + 3

O U T 1 + D G N D

D G N D

D G N D 5 4

I N 0 - 4

O U T 2 + 5 3

I N 1 + 5

O U T 2 - 5 2

I N 1 - 6

O U T 3 - 5 1

I N 2 + 7

I N 2 - 8

O U T 4 + 4 9

I N 3 + 9

O U T 4 - 4 8 I N 3 - 1 0

O U T 5 - 4 7 I N 4 + 1 1

O U T 5 + 4 6 I N 4 - 1 2

O U T 6 + 4 5 I N 5 + 1 3

O U T 6 - 4 4 I N 5 - 1 4

O U T 7 - 4 3 I N 6 + 1 5

I N 6 - I N 7 + I N 7 - D G N D

1 6 1 7 1 8 1 9

AGND AGNDAVDD A2A3BIAS DTAP

REFCLK+REFCLK- PLLLCK

PLLOUTDSPEED

DWRITEDENABLEWSRIN AVDD

AVDD AGND

AGND

76 75 636465666768697071727374 62 61 60 59 58

O U T 7 + 4 2 4 1 4 0 3 9

OUT8-

35 36 37 38OUT8+

34 O-OFS

33DVDD DVDD RESET 32A131A030ROFS29RSRLOAD28SRCLK27SRIN26SROUT25

DVDD DVDD23DGND22IN8-21IN8+20

(24)

“Residual charge” problem

R

“Ghost pulse”

2% @ 2 GHz

“Ghost pulse”

2% @ 2 GHz

After sampling a pulse, some residual

charge remains in the capacitors on the next turn and can mimic wrong pulses

After sampling a pulse, some residual

charge remains in the capacitors on the next turn and can mimic wrong pulses

Solution: Clear before write

write clear Implemented

in DRS4 Implemented

in DRS4

(25)

Oct. 21st, 2008 IEEE/NSS Dresden 25

Sine Curve Fit Method

S. Lehner, B. Keil, PSI i

j



500

0 1024

0

2

2 2 ) )) min

sin(

( (

j i

j i

j j

j

ji o

i f a

y   

yji : i-th sample of measurement j

aj fj j oj : sine wave parameters

i : phase error  fixed jitter

“Iterative global fit”:

• Determine rough sine wave parameters for each measurement by fit

• Determine i using all measurements where sample “i” is near zero crossing

• Make several iterations

“Iterative global fit”:

• Determine rough sine wave parameters for each measurement by fit

• Determine i using all measurements where sample “i” is near zero crossing

• Make several iterations

(26)

Signal-to-noise ratio (DRS3!)

“Fixed pattern” offset error of 5 mV RMS

can be reduced to 0.35 mV by offset correction in FPGA

SNR:

1 V linear range / 0.35 mV = 69 dB (11.5 bits)

“Fixed pattern” offset error of 5 mV RMS

can be reduced to 0.35 mV by offset correction in FPGA

SNR:

1 V linear range / 0.35 mV = 69 dB (11.5 bits)

ANALOG OUTPUT [V]

BIN NUMBER

0 200 400 600 800 1000

0.48 0.49 0.5 0.51 0.52

Crosstalk from trigger signal

OCCURENCE

0 20 40 60 80 100 120 140 160 180 200

OCCURENCE

0 20 40 60 80 100 120 140 160 180 200

Offset Correction

(27)

Oct. 21st, 2008 IEEE/NSS Dresden 27

Global Timing Clock

signal

20 MHz Reference clock

PMT hit

Domino stops after trigger latency

8 inputs

shift register Reference

clock

domino wave

MUX

PLL jitter O(100ps)  Timing difference between signals sampled by different chips need a global reference clock PLL jitter O(100ps)  Timing difference

between signals sampled by different chips need a global reference clock

(28)

Datasheet

(29)

Oct. 21st, 2008 IEEE/NSS Dresden 29

Interleaved sampling

delays (200ps/8 = 25ps)

G. Varner et al., Nucl.Instrum.Meth. A583, 447 (2007) G. Varner et al., Nucl.Instrum.Meth. A583, 447 (2007)

6 GSPS * 8 = 48 GSPS

Possible with DRS4 if delay is implemented on PCB Possible with DRS4 if delay is implemented on PCB

(30)

Comparison with other chips

MATACQ D. Breton

LABRADOR G. Varner

DRS4

Bandwidth (-3db) 300 MHz > 1000 MHz 950 MHz

Sampling frequency 1 or 2 GHz 10 MHz … 3.5 GHz 500 MHz … 6 GHz Full scale range ±0.5 V +0.4 …2.1 V +0.1 … 1.1V

Effective #bits 12 bit 10 bit 12 bit

Sample points 1 x 2520 9 x 256 9 x 1024

Channel per board 4 N/A 64

Digitization 5 MHz N/A 30 MHz

Readout dead time 650 s 150 s 3 s – 370 s

Integral nonlinearity ± 0.1 % ± 0.1 % ± 0.05%

Radiation hard No No Yes (chip)

(31)

Oct. 21st, 2008 IEEE/NSS Dresden 31

On-line waveform display

click template

fit

pedestal histo

848

PMTs

“virtual oscilloscope”

“virtual oscilloscope”

(32)

Latch Latch Latch Latch

Constant Fraction Discr.

Latch

12 bit

Clock

+ +

MULT

Latch

 0

&

<0

Delayed signal Inverted signal Sum

Referenzen

ÄHNLICHE DOKUMENTE

In this paper, we investigated the delin- eation accuracy of non-uniform ECG signals arising from level-crossing sampling based on a hidden Markov model (HMM) and compared the

According to the equation (4) this is a consequence of the strongly increasing threshold fluence and decreasing penetration depth with increasing pulse duration (cf. Figure 5a):

• Current readout less sensitive to charge injection and cross-talk. • First implemented in DRS2 (DRS1 had

• The DRS3 chip solves temperature dependence of DRS2 chip, DRS4 solves ghost pulse problem. • The DRS4 chip will be available in larger quantities

These ASICs sample the input signal in a series of capacitors at high sampling rates, and are then read out at lower frequencies through a shift register with commercial ADCs..

Figure 4 Cascading several DRS4 chips to for a very deep sampling channel by connecting their shift register outputs (SROUT) to the shift register inputs (SRIN) of the next

March 14th, 2009 TIPP09 Tsukuba 3.. Switched

8 Channel board to be mounted directly on detector electronics 50 mm x 100 mm Preamplifier for PMTs, APDs, SiPMTs Read out through Gigabit Ethernet Local LVDS bus for cascading