• Keine Ergebnisse gefunden

Waste Management 4.0 at the North/South/West/East Viewpoint

N/A
N/A
Protected

Academic year: 2021

Aktie "Waste Management 4.0 at the North/South/West/East Viewpoint"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Waste Management 4.0 at the North/South/West/East Viewpoint

Policies/Strategies

Waste Management 4.0

at the North/South/West/East Viewpoint

Dagmar Juchelková, Klaus Koppe and Helena Raclavská

1. Introduction and present situation ...75

2. Interesting projects ...76

3. Outlook and summary ...77

4. Sources ...78 Waste utilization has the potential of savings in using fossil fuels. Everywhere. But the boarder conditions are different. The article aims try to present the current situation, some examples and potential for the future according the Industry Revolution 4.0 at the Waste Part.

1. Introduction and present situation

Last time it seems everybody is speaking about the Industry 4.0. Almost everybody know, what is mean, but really?

What can we expect from Industry 4.0 at the field Waste management or Waste utilization? Are the same situation is for everybody in whole Europe or whole World?

If we concern us on the Europe:

Although production of MSW has decreased in recent years, mixed municipal solid waste (MSW) is the largest group of waste within the group of municipal waste, and with respect to the ban of landfilling in 2024, it will be necessary to use the complete production in a different way.

The situation is different at the so called west and north countries, south countries have also a specific situation.

But almost all of them have major techno-economic and logistical concepts:

• The method of direct energy use (WtE plant – Waste-to-Energy plant)

• Technology of so called small incinerators (20–50 kt)

• Mechanical-biological treatment associated with energy use of calorific fraction

• Gasification technologies (pyrolysis, plasma)

• Exporting MSW for energy recovery abroad (in a lot of countries the current legis- lation does not allow it).

(2)

Dagmar Juchelková, Klaus Koppe, Helena Raclavská

76

Policies/Strategies

All the technological concepts of MSW utilization are associated with energy reco- very; therefore, dealing with this issue should always be conceived in relation to the real conditions of the state energy sector, or with the possibility of heat recovery.

What is the new challenge of Waste 4.0?

• By the year 2024, all MSW, or bulky waste production has to be disposed of in other ways than through landfilling.

• The whole MSW production has to be used at home.

• Solutions must be coordinated between a number of agents (cities and munici- palities) and by the selected operator.

• Solutions must be sustainable and acceptable to the population.

All of these can offer big potential for W4.0.

Utilization of domestic MSW abroad

One possibility, which is confirmed by the interest of foreign, is exporting MSW for energy recovery abroad. This possibility is based on a certain surplus capacity of incinerators in those countries.

This is also a challenge – you need to arrange the logistic for transport, storage, etc., but this is probably one of the worst scenarios of waste management, because it would not only mean exporting valuable energy resources, but in the long term, there would be an outflow of funds from the population and ultimately the companies producing the concerned waste. Moreover, there is a conflict with the legislation and the principle that everything that is produced as a by-product in this country should be processed here as well.

Waste management has changed considerably over the past years in the whole Europe. Today, it is a complex cycle that requires a high level of organization and administration. What has already become a reality in other industries with industry 4.0 now also helps to efficiently co-operate with all stakeholders (producers, trans- porters, waste disposal companies, recycling companies, authorities, etc.) in waste management. Waste Management 4.0 optimizes the processes to ensure that they run digitally through powerful digital equipment.

2. Interesting projects

In the meantime, garbage trucks are part of everyday life and are nowadays no longer the vehicles, where waste is dumped and transported to the rubbish dump as before.

Today, they are computer-controlled high-tech machines that work in an environ- mentally friendly manner and offer their operators a clean and ergonomic workplace.

A smart waste management solution has already been implemented in Barcelona.

Garbage containers automatically send signals that they are over eighty percent full and need to be emptied. Via the mobile network, the signals are transmitted to a

(3)

Waste Management 4.0 at the North/South/West/East Viewpoint

Policies/Strategies

web-based software application, which is used by the waste disposal company. Level sensor is based on ultrasonic technology. Waste vehicles only drive the containers that have to be emptied.

Smart waste management in the Czech Kolin, sixty kilometres east of Prague – the core of the system is a sensor and a special label attached to each refuse bin.

A battery-operated device in the lid of the waste container measures the filling level by ultrasound and sends it automatically to the control centre. A label with integrated NFC chip and printed QR code – an intelligent product from smart-TEC – also sticks to the refuse bin. Employees of the city and the garbage collectors can thus record the filling level and the location of the waste containers with their smartphone and forward them to the central office.

In Boston, the Big Belly Solar was developed and exported from there worldwide.

The solar-powered garbage compacting system is a world novelty. It presses with a compression of 1:7 and has a pressing force of 780 kg. The capacity is 700 litres.

A radio connection permanently informs about the filling level of the container so that the emptying takes place at the right moment.

In Sweden, the system of waste disposal via vacuum systems has been known since the early 1960s and has been established to this day. A Swedish manufacturer there- fore offers high-tech versions of the waste pipe mail: With the help of vacuum, the waste passes through a pipe system at a speed of 60 to 70 km/h to a collecting point at the edge of the block of houses picked up. The steel tubes have a diameter of 50 centimetres. The distance between the longest entry point and the end station may be up to two kilometres. The waste tunnels save the residents from the noise of garbage vehicles circulating in the district and smells. More than sixhundred refuse collection systems are currently active in thirty countries.

Also the waste separation in sorting factories is economically and ecologically sen- sible. Test runs show that machine waste can now be separated better and cheaper than humans. There are a variety of different sensors used for the identification and sorting of waste.

3. Outlook and summary

The objective of the digitalized circulation system 4.0 is to link all areas – from the extraction of raw materials through production to recycling – via computer simula- tions and optimization models, while at the same time optimizing them in a material and energy-efficient manner. In addition to the efficient use of primary raw materials during production, the reuse of substances as well as the material and energetic uti- lization of waste form the decisive basis for a flourishing recycling industry.

Today, 3.5 million tonnes of waste are lost every day. By the year 2025, this volume will increase further to 6 million tonnes despite the complex recycling processes and up to the year 2100, even more than 11 million tonnes of waste per day will be handled in the solids sector alone.

(4)

Dagmar Juchelková, Klaus Koppe, Helena Raclavská

78

Policies/Strategies

With the help of digitalization and the life-cycle orientation in the complete recy- cling of materials, the cycle management creates a basis for the material-efficient and therefore cost-effective production as well as a consistent resource saving throughout the entire value chain. In addition to the associated cost reduction, the emission of climate-damaging substances (such as CO2) in production is reduced, thus contributing to achieving the targets of global climate protection [1].

It should be borne in mind that in many countries waste is collected in unsuitable conditions, it has a high proportion of biological waste and can not yet be considered for the W4.0.

The digitalization of processes can bring many advantages to the company concerned.

Which are the details, depends strongly on the goals of the company and its products.

The opportunities and risks must be thoroughly analysed.

4. Sources

[1] Bundesministerium für Wirtschaft und Energie (BMWi) (Ed.): Fortschreibung der Anwen- dungsszenarien der Plattform Industrie 4.0. Ergebnispapier. Berlin 2016. 48 pages

[2] http://bigbelly.com/

[3] http://www.envac.se/

[4] https://signature.rathgeber.eu/technik/smart-tec-muelltonne/

[5] https://www.pepperl-fuchs.com/global/de/27019.htm

Dorfstraße 51 D-16816 Nietwerder-Neuruppin Tel. +49.3391-45.45-0 • Fax +49.3391-45.45-10 E-Mail: tkverlag@vivis.de

Order now: www. .de

TK Verlag Karl Thomé-Kozmiensky

Waste-to-Energy Plants

– Germany –

This book carries forward the survey of waste-to-energy plants in the Federal Republic of Germany which started in the 1990´s. This edition comprises:

• 52 plants that treat municipal solid waste.

• 1 plant that treats hazardous waste.

The investigation provides extensive information about the installed technology and the environmental impact of the waste-to-energy plants. The quality of the inquiry has been extended in terms of the technical data.

Existing gaps regarding the data were partially filled, as a comparison with the survey of 1994 reveals. This is the result from the considerable assistance of numerous plant operators. The publication on hand shall be seen as an interims report. The work on the data acquisition will be continued. For this reason we ask plant operators and manufactures to critically review the release data.

The further investigations will be extended to the missing German waste-to-energy plants as well as to plants in other countries.

Elisabeth Thomé-Kozmiensky

112 1.5. Generalunternehmer

(Planung und Ausführung) Deutsche Babcock Anlagen GmbH

Kesselerneuerung Von Roll Inova, resp. HITACHI Zosen Inova Turbinenerneuerung

1.6. Genehmigungsbehörde Regierung von Oberfranken Ludwigstraße 20 95444 Bayreuth

1.7. Aufsichtsführende Behörde Bayerisches Landesamt für Umweltschutz Bürgermeister Ullrich-Straße 160 86179 Augsburg 1.8. Inbetriebnahme

1978: Linien 1 + 2 und

Klärschlammbehandlung

1981: Linie 3

1982: Erweiterung um Stromerzeugung 1982-1988: Fernwärmeauskopplung und -verteilung 1990: Feuerraumoptimierung, 1. Erweiterung der Abgasreinigungsanlage 1996: Abgasreinigungsanlage2. Erweiterung der

Bild 3: Abwasserbehandlung und Schlammentwässerung

Löschwasserbecken Notstrom- aggregate 3+4 Katalysatoren

(SCR)

Gewebefilter Öl- tank

Waage Zentral-lager Grundstücksgrenze

Ausdehnungs- gefäß

Energieteil Abwärmenutzung Heizwerk 1 Abfall- bunker lieferungAn- Klärschlamm- Stapelbehälter

Kessel- hausElektro-

filter

Teich Luftkondensator Maschinenhaus für neue Turbine/Generator Wertstoffhof

Stadt Bamberg

Kompostieranlage Kläranlagengelände

AVA Augsburg

103 3. Abfallaufkommen

Abfallarten

Hausmüll: 131.103 t

hausmüllähnlicher Gewerbemüll: 81.835 t

Sperrmüll: 14.204 t

Krankenhausabfälle: 3.363 t

insgesamt: 230.505 t

4. Kapazität, Durchsatz und Geometrie Kapazität (Auslegung) 255.000 t/a davon

• Siedlungsabfälle: 251.500 t/a

• Krankenhausabfälle: 3.500 t/a bei einem Heizwert von 9,2 MJ/kg Durchsatz (Siedlungsabfälle)

Durchsatz 2014: 238.224 t

Durchsatz 2013: 236.693 t

Durchsatz 2012: 233.888 t

Durchsatz (Krankenhausabfälle)

Durchsatz 2014: 3.363 t

Durchsatz 2013: 3.097 t

Durchsatz 2012: 3.257 t

Abmessungen des Baukörpers 235.000 m2

Bauhöhe ohne Kamin: 38 m

5. Anlieferung und Lagerung Abfallanlieferungen mit: LKW

~ 35.000 Anlieferungen/Jahr 5.1. Waage Hersteller:

Bauart: Brückenwaage

Anzahl: 3

5.2. Anlieferungshalle/Entladestation Anzahl der Abkippstellen: 12 5.3. Bunker für feste Abfälle Abfallart: Siedlungsabfälle Maße (l x b x h) 55 m x 13 m x 25 m nutzbares Volumen: 10.000 m3

Nutzmasse: ~ 5.000 t

Anzahl der Abkippstellen: 12 Abfallart: Krankenhausabfälle nutzbares Volumen: 5.000 m3 5.4. Bunker für Schlacken nutzbares Volumen: ~ 500 m3

5.5. Betriebsmittellagerung

Heizöl: ~ 80 m3

Ammoniakwasser: ~ 60 m3

Kalksilo: ~ 50 m3

Natronlauge: ~ 50 m3

Bild 4: Müllfahrzeuge beim Abkippen von Abfall in Müllbunker

Bild 5: Schlackehalle der AVA Augsburg

ABFALLVERBRENNUNGSANLAGEN – Deutschland – 2014 | 2015

Editor: Elisabeth Thomé-Kozmiensky Released: 2016

ISBN: 978-3-944310-26-8 Hardcover: 581 pages Price: 68.00 EUR Language: German

ABFALLVERBRENNUNGSANLAGEN – Deutschland –

2014 | 2015 Elisabeth Thomé-Kozmiensky Anlagendoku_engl.pdf 1 03.07.17 13:54

(5)

Dorfstraße 51 D-16816 Nietwerder-Neuruppin

Order now: www. .de

Waste-to-Energy Plants

– Germany –

This book carries forward the survey of waste-to-energy plants in the Federal Republic of Germany which started in the 1990´s. This edition comprises:

• 52 plants that treat municipal solid waste.

• 1 plant that treats hazardous waste.

The investigation provides extensive information about the installed technology and the environmental impact of the waste-to-energy plants. The quality of the inquiry has been extended in terms of the technical data.

Existing gaps regarding the data were partially filled, as a comparison with the survey of 1994 reveals. This is the result from the considerable assistance of numerous plant operators. The publication on hand shall be seen as an interims report. The work on the data acquisition will be continued. For this reason we ask plant operators and manufactures to critically review the release data.

The further investigations will be extended to the missing German waste-to-energy plants as well as to plants in other countries.

Elisabeth Thomé-Kozmiensky

1.5. Generalunternehmer (Planung und Ausführung) Deutsche Babcock Anlagen GmbH

Kesselerneuerung Von Roll Inova, resp. HITACHI Zosen Inova Turbinenerneuerung

1.6. Genehmigungsbehörde Regierung von Oberfranken Ludwigstraße 20 95444 Bayreuth

1.7. Aufsichtsführende Behörde Bayerisches Landesamt für Umweltschutz Bürgermeister Ullrich-Straße 160 86179 Augsburg 1.8. Inbetriebnahme

1978: Linien 1 + 2 und

Klärschlammbehandlung

1981: Linie 3

1982: Erweiterung um Stromerzeugung 1982-1988: Fernwärmeauskopplung und -verteilung 1990: Feuerraumoptimierung, 1. Erweiterung der Abgasreinigungsanlage 1996: Abgasreinigungsanlage2. Erweiterung der

Löschwasserbecken Notstrom- aggregate 3+4 Katalysatoren

(SCR)

Gewebefilter Öl- tank Grundstücksgrenze

Ausdehnungs- gefäß

Energieteil Abwärmenutzung Heizwerk 1 Abfall- bunker lieferungAn-

Kessel- hausElektro-

filter Luftkondensator Maschinenhaus für neue Turbine/Generator Wertstoffhof

Stadt Bamberg

AVA Augsburg

3. Abfallaufkommen Abfallarten

Hausmüll: 131.103 t

hausmüllähnlicher Gewerbemüll: 81.835 t

Sperrmüll: 14.204 t

Krankenhausabfälle: 3.363 t

insgesamt: 230.505 t

4. Kapazität, Durchsatz und Geometrie Kapazität (Auslegung) 255.000 t/a davon

• Siedlungsabfälle: 251.500 t/a

• Krankenhausabfälle: 3.500 t/a bei einem Heizwert von 9,2 MJ/kg Durchsatz (Siedlungsabfälle)

Durchsatz 2014: 238.224 t

Durchsatz 2013: 236.693 t

Durchsatz 2012: 233.888 t

Durchsatz (Krankenhausabfälle)

Durchsatz 2014: 3.363 t

Durchsatz 2013: 3.097 t

Durchsatz 2012: 3.257 t

Abmessungen des Baukörpers 235.000 m2

Bauhöhe ohne Kamin: 38 m

5. Anlieferung und Lagerung Abfallanlieferungen mit: LKW

~ 35.000 Anlieferungen/Jahr 5.1. Waage Hersteller:

Bauart: Brückenwaage

Anzahl: 3

5.2. Anlieferungshalle/Entladestation Anzahl der Abkippstellen: 12 5.3. Bunker für feste Abfälle Abfallart: Siedlungsabfälle Maße (l x b x h) 55 m x 13 m x 25 m nutzbares Volumen: 10.000 m3

Nutzmasse: ~ 5.000 t

Anzahl der Abkippstellen: 12 Abfallart: Krankenhausabfälle nutzbares Volumen: 5.000 m3 5.4. Bunker für Schlacken nutzbares Volumen: ~ 500 m3

ABFALLVERBRENNUNGSANLAGEN – Deutschland – 2014 | 2015

Editor: Elisabeth Thomé-Kozmiensky Released: 2016

ISBN: 978-3-944310-26-8 Hardcover: 581 pages Price: 68.00 EUR Language: German

ABFALLVERBRENNUNGSANLAGEN – Deutschland –

2014 | 2015 Elisabeth Thomé-Kozmiensky Anlagendoku_engl.pdf 1 03.07.17 13:54

(6)

Dorfstraße 51

D-16816 Nietwerder-Neuruppin

Tel. +49.3391-45.45-0 • Fax +49.3391-45.45-10 E-Mail: tkverlag@vivis.de

Order now: www. .de

TK Verlag Karl Thomé-Kozmiensky

Strategy • Planning

Environmental legislation

Planung und Umweltrecht, Volume 1 – 6 plus Strategie Planung Umweltrecht, Volume 7 – 11

Package Price 170.00 EUR

save 85.00 EUR

Planung und Umweltrecht, Volume 4 (2010) ISBN: 978-3-935317-47-4 15.00 EUR Planung und Umweltrecht, Volume 5 (2011) ISBN: 978-3-935317-62-7 15.00 EUR Planung und Umweltrecht, Volume 6 (2012) ISBN: 978-3-935317-79-5 15.00 EUR Planung und Umweltrecht, Volume 1 (2008) ISBN: 978-3-935317-33-7 15.00 EUR Planung und Umweltrecht, Volume 2 (2008) ISBN: 978-3-935317-35-1 15.00 EUR Planung und Umweltrecht, Volume 3 (2009) ISBN: 978-3-935317-38-2 15.00 EUR

Strategie Planung Umweltrecht, Volume 10 (2016) ISBN: 978-3-944310-25-1 50.00 EUR Strategie Planung Umweltrecht, Volume 8 (2014) ISBN: 978-3-944310-07-7 25.00 EUR Strategie Planung Umweltrecht, Volume 9 (2015) ISBN: 978-3-944310-19-0 25.00 EUR Strategie Planung Umweltrecht, Volume 7 (2013) ISBN: 978-3-935317-93-1 15.00 EUR Editors: Karl J. Thomé-Kozmiensky, Stephanie Thiel, Elisabeth Thomé-Kozmiensky and Andrea Versteyl

Strategie Planung Umweltrecht, Volume 11 (2017) ISBN: 978-3-944310-33-6 50.00 EUR

Uwe Zickert

184

Neue Anlagen in Europa

2. Abfallheizkraftwerk Plymouth – Projektziele und -entwicklung Im britischen Plymouth wurde mit South West Devon Waste Partnership (SWDWP), Devon, ein 25 Jahre laufender Dienstleistungsvertrag, zur Verwertung von kommunalen Siedlungsabfällen abgeschlossen.

Einheit Mannheim Leuna Plymouth Offenbach Liberec Korbach Gersthofen

D D UK D CZ D D

Brennstoff Abfall Abfall Abfall Abfall Abfall EBS EBS

Kapazität t/a 700.000 390.000 245.000 250.000 96.000 76.000 90.000

Ofenlinien 3 2 1 3 1 1 1

Inbetriebnahme 1965 2005 2015 1970 1999 2008 2009

Strom, netto GWh/a 250 190 163 37 7 12 25

Wärme GWh/a 400 300 76 200 170 123 210

Abfall 1,85 Millionen t/a Strom 684 GWh/a Wärme 1.479 GWh/a

Torridge North Devon

Mid Devon

East Devon Exeter Teignbridge Torbay West Devon

DEVON

South Hams Plymouth

Zur Erfüllung des Vertrags wurde von MVV Umwelt O&M als Generalunternehmer eine Abfallverbrennungsanlage auf dem Gelände des Verteidigungsministeriums (Mi- Zuverlässigkeit zu erreichen.

185 Konzept und Betriebserfahrungen der Abfallverbrennungsanlage Plymouth

Neue Anlagen in Europa

Bild 3:

Nach drei Jahren Bauzeit verwertet die Anlage pro Jahr 245.000 Tonnen Abfälle aus - stunden Strom und 76.000 Megawattstunden Prozessdampf. Der Dampf wird an die Damit werden jährlich 73.000 Tonnen CO2-Emissionen eingespart.

Die Investitionskosten für die Errichtung der einlinigen Anlage belaufen sich auf etwa 200 Millionen Pfund Sterling. Dem gegenüber stehen über die Vertragslaufzeit Einnahmen aus dem Behandlungsentgelt für Siedlungs- und Gewerbeabfälle, sowie aus Verkäufen von Strom und Dampf.

Das realisierte Abfallverwertungskonzept erfüllt weitere besondere Anforderungen:

-

misch behandelt,

um weniger als 5 dB(A),

• Geruchsbelästigungen in angrenzenden Wohngebieten werden vermieden und

8 9

9

10

10

Planung

Band 11 herausgegeben von

Umweltrecht

Karl J. Thomé-Kozmiensky Stephanie Thiel Elisabeth Thomé-Kozmiensky

Strategie Planung und Umweltrecht_Engl.pdf 2 03.07.17 13:13

(7)

Vorwort

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar

Thomé-Kozmiensky, K. J.; Thiel, S.; Thomé-Kozmiensky, E.;

Winter, F.; Juchelková, D. (Eds.): Waste Management, Volume 7 – Waste-to-Energy – ISBN 978-3-944310-37-4 TK Verlag Karl Thomé-Kozmiensky

Copyright: Elisabeth Thomé-Kozmiensky, M.Sc., Dr.-Ing. Stephanie Thiel All rights reserved

Publisher: TK Verlag Karl Thomé-Kozmiensky • Neuruppin 2017

Editorial office: Dr.-Ing. Stephanie Thiel, Elisabeth Thomé-Kozmiensky, M. Sc.

Janin Burbott-Seidel and Claudia Naumann-Deppe

Layout: Sandra Peters, Anne Kuhlo, Ginette Teske, Claudia Naumann-Deppe, Janin Burbott-Seidel, Gabi Spiegel and Cordula Müller

Printing: Universal Medien GmbH, Munich

This work is protected by copyright. The rights founded by this, particularly those of translation, reprinting, lecturing, extraction of illustrations and tables, broadcasting, micro- filming or reproduction by other means and storing in a retrieval system, remain reserved, even for exploitation only of excerpts. Reproduction of this work or of part of this work, also in individual cases, is only permissible within the limits of the legal provisions of the copyright law of the Federal Republic of Germany from 9 September 1965 in the currently valid revision. There is a fundamental duty to pay for this. Infringements are subject to the penal provisions of the copyright law.

The repeating of commonly used names, trade names, goods descriptions etc. in this work does not permit, even without specific mention, the assumption that such names are to be considered free under the terms of the law concerning goods descriptions and trade mark protection and can thus be used by anyone.

Should reference be made in this work, directly or indirectly, to laws, regulations or guide- lines, e.g. DIN, VDI, VDE, VGB, or these are quoted from, then the publisher cannot ac- cept any guarantee for correctness, completeness or currency. It is recommended to refer to the complete regulations or guidelines in their currently valid versions if required for ones own work.

Referenzen

ÄHNLICHE DOKUMENTE

Nevertheless, to practice this type of circularity, cities must implement measures and specific frameworks such as Ecological public procurement policies, Local production,

The continuity of environmental controls, inadequate though early laws may appear by the standards of modern waste management legislation, has been a major factor

 National authorities pass a legislative framework on local strategic plan- ning to provide guidance on how to develop SEDS.  LPA2 creates a strategic planning

The explanation we can give to the relationship between SME activity and production of waste at each wilaya is that this activity is characterized by the type of activity performed

The European Commission expects that a full implementation of the existing Waste Framework Directive by 2020 will increase the average recycling rate (material recovery

• update national and regional (voivodship) waste management plans, integrating a cohe- rent investment approach for MSW treatment facilities that aims to meet EU targets for

It is important that the correct heating values of the waste fuel(s) be accurately deter- mined to ensure proper design and continuous operation of the Facility. Waste fuel

The main market is still the source segregated organic household waste, so called bio- waste, but especially under the influence of European subsidies many facilities have been