• Keine Ergebnisse gefunden

Entropy methods for diffusion equations

N/A
N/A
Protected

Academic year: 2022

Aktie "Entropy methods for diffusion equations"

Copied!
47
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Entropy methods for diffusion equations

Ansgar J¨ungel

Vienna University of Technology, Austria www.asc.tuwien.ac.at/∼juengel

1 Introduction

2 Derivation

3 Existence analysis

4 Further topics

Version without figures (because of copyright reasons)

(2)

Multi-species systems

Examples:

Animal populations: observing, predicting, harvesting

Fluid mixtures: heliox (diving, asthma), biofilm reactors, air pollution Cell dynamics: tumor growth, ion transport through membranes Electrolysis: lithium-ion batteries, production of hydrogen from water

Nature is generally composed of multi-species systems!

Modeling: diffusion equations

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 2 / 47

(3)

Literature

Needed prerequisites:

Partial differential equations (PDEs)

Sobolev spaces, basics of functional analysis

Optional: basics of probability theory, nonlinear PDEs Main reference

A. J¨ungel. Entropy methods for diffusive partial differential equations. Chap. 4, Springer Briefs, 2016.

A. J¨ungel. The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity, 2015.

A. J¨ungel. Cross-diffusion systems with entropy structure. Proceedings of Equadiff 2017.

X. Chen, E. Daus. A. J¨ungel. Global existence analysis of cross-diffusion population systems for multiple species.

Arch. Ration. Mech. Anal., 2018.

(4)

Diffusion equations

Heat equation:

tu−∆u= 0 in Ω, t>0, initial & boundary conditions Strongly regularizing: u(0)∈L2(Ω)⇒ u(t)∈C(Ω)

Preserves nonnegativity: u(0)≥0 ⇒u(t)≥0 Reaction-diffusion equations:

tui −div(Di∇ui) =fi(u) in Ω, t >0, Di >0

Still regularizing and nonnegativity preserving (if fi ≤0 atui = 0) Global existence of weak solutions if fi at most quadratic growth Global existence of classical solutions not always guaranteed!

Problem:

Flux Di∇ui only depends on∇ui (Fick’s law)

In multicomponent systems, flux may depend on all∇uj

⇒ cross-diffusion systems

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 4 / 47

(5)

What are cross-diffusion systems?

tui−div n

X

j=1

Aij(u)∇uj

=fi(u) in Ω, t >0, i = 1, . . . ,n Systems of quasilinear parabolic equations

Initial and (no-flux) boundary conditions What makes these systems special?

Adding (cross-) diffusion, constant equilibria may become unstable even if equilibria of associated ODE system linearly stable

May lead to physically desired pattern formation (Turing 1952) Uphill diffusion: diffusion flux in higher concentration area

Segregation: supp(ui(t))∩supp(uj(t)) =∅ ∀t (Bertsch et al. 1985) Blow-up inL norm in finite time possible (Star´a-John 1995) Aim: Develop mathematical theory onlyfor systems from applications

(6)

➊ Multicomponent gas mixtures

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Volume fractions of gas components u1,u2,u3 = 1−u1−u2 Diffusion matrix: δ(u) =d1d2(1−u1−u2) +d0(d1u1+d2u2)

A(u) = 1 δ(u)

d2+ (d0−d2)u1 (d0−d1)u1

(d0−d2)u2 d1+ (d0−d1)u2

Application: Patients with airway obstruction inhale Heliox to speed up diffusion

Proposed by Maxwell 1866/Stefan 1871 Duncan-Toor 1962: Fick’s law (Ji ∼ ∇ui) not sufficient, include cross-diffusion terms Derivation: Boudin-Grec-Salvarani 2015 A(u) not symm., generally not pos. definite

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 6 / 47

(7)

➋ Segregating populations

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

u = (u1,u2) andui models population density ofith species Diffusion matrix: (aij0)

A(u) =

a10+a11u1+a12u2 a12u1 a21u2 a20+a21u1+a22u2

Suggested by Shigesada-Kawasaki- Teramoto 1979 to model segregation Lotka-Volterra functions:

fi(u) = (bi0−bi1u1−bi2u2)ui

Diffusion matrix is not symmetric, generally not positive definite

Figure: Black residential segregation in Milwaukee (blue dots) US Census Bureau 2002

(8)

Difficulties and objectives

tu−div(A(u)∇u) =f(u) in Ω, t >0, u(0) =u0 Main features:

Diffusion matrixA(u) nondiagonal(cross-diffusion)

Matrix A(u) may be neithersymmetric norpositive definite Variables ui expected to bebounded from below and/or above Objectives:

Derivation of equations (formal or rigorous) Global-in-time existence of weak solutions

Positivity and boundedness of solution (if physically expected) Large-time behavior, uniqueness & regularity of solutions Mathematical difficulties:

No general theory for diffusion systems

Generally no maximum principle, no regularity theory Lack of positive definiteness⇒ global existence nontrivial

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 8 / 47

(9)

Overview

Introduction Derivation

Existence analysis Further topics

(10)

Derivation of cross-diffusion systems

From random-walk lattice models: Taylor expansion of transition rates and cell size h→0

→ Shigesada-Kawasaki-Teramoto (SKT) model From stochastic differential equations: many particle & small interaction limit

→ Shigesada-Kawasaki-Teramoto (SKT) model

From fluid models: high-friction limit and forces proportional to velocity differences

→ Maxwell-Stefan model

From kinetic transport equationsfor distribution function f(x,v,t):

mean-free path limit in momentsR

f(x,v,t)φ(v)dv close to equilib.

→ Maxwell-Stefan model

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 10 / 47

(11)

➊ From lattice random walk to cross diffusion

Single species: one space dimension to simplify

Master equation: time variation = incoming −outgoing

tu(xi) =p(u(xi−1) +u(xi+1))−2pu(xi) Taylor expansion: (h = grid size, xi =ih)

u(xi±1)−u(xi) =±h∂xu(xi) +12h2x2u(xi) +O(h3) Diffusion scaling: t7→t/h2 ⇒ ∂t h2t

h2tu(xi) =p(u(xi−1)−u(xi)) +p(u(xi+1)−u(xi))

=ph2x2u(xi) +O(h3)

Limith→0 gives ∂tu(x) =p∂x2u(x)(heat equation)

Rigorous limit: De Masi, Lebowitz, Sinai, Spohn etc. (from 1980s on)

(12)

➊ From lattice random walk to cross diffusion

Multiple species:

Master equation for particle number uj(xi) atith cell:

tuj(xi) =p+j,iuj(xi−1) +pj,i+1uj(xi+1)−(p+j,i+pj,i)uj(xi) Transition rates: pj±,i =pi(u(xj))qi(un(xj±1))

Taylor expansion, diffusion scaling and limith→0 leads to system

tuj =∂x

n X

k=1

Ajk(u)∂xuk

, j = 1, . . . ,n Multi-dimensional case analogous

Example: qi = 1,pi(u) =ai0+Pn

k=1aikuk

Aij(u) =pi(u) +ui

∂pi

∂uj(u) =δijai0ij

Xn

k=1

aikuk+aijui

→ n-species generalization of SKT population model

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 12 / 47

(13)

➋ From SDEs to cross diffusion

Aim: Many-particle limits insingle-species particle system in Rd dXk =−1

N XN

j=1,j6=k

∇B(Xk −Xj)dt+√

2σdWk(t), k = 1, . . . ,N Xk(t) stochastic processes (“random position”),Wk(t) independent Wiener processes,B interaction potential, σ >0

Expectation for many-particle limit N→ ∞: 1

N X

j

∇B(x−Xj)∼E(∇B) = Z

Rd∇B(x−y)u(y)dy =∇B∗u Limit eq. for probability density u(x,t): ∂tu =σ∆u+ div(u∇B∗u) (Oelschl¨ager 1989, Sznitman 1991, M´el´eard 1996)

Localization limit B→δ0: ∂tu =σ∆u+ div(u∇u)

Goal: extend to multi-species case, expect cross-diffusion div(uj∇ui)

(14)

➋ From SDEs to cross diffusion

First attempt: Stochastic processesXik(t) solve SDE dXik =−

Xn j=1

1 N

XN ℓ=1, ℓ6=k

∇Bijη(Xik−Xj)dt+√

idWik(t) inRd Species index i = 1, . . . ,n, particle index k= 1, . . . ,N

Wik independent Wiener processes,σi >0 Interaction potential: Bijη(x) =η−dBij(|x|/η),R

RdBijdx =aij ⇒ kBijηkL1(Rd)=kBijkL1(Rd), Bijη →aijδ0 in D asη→0 Limit: N → ∞ leads to “nonlocal” SDE, η→0 leads to local SDE with probability density ui satisfying PDE (by Itˆo’s lemma)

Rigorous limit (L. Chen-Daus-A.J. 2019):

tui = div σi∇ui +ui∇pi(u)

, pi(u) = Xn k=1

aikuk This is notthe SKT population system ∂tui = ∆(σiui +uipi(u))

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 14 / 47

(15)

➋ From SDEs to cross diffusion

Second attempt: Xik(t) stochastic processes, i = 1, . . . ,n,k = 1, . . . ,N dXik =q

i+ 2FNη(X)dWik(t) inRd FNη(X)=

Xn j=1

1 N

XN ℓ=1

Bijη(Xik−Xj) Wik independent Wiener processes,σi >0 constants Interaction potential: as before, withBijη →aijδ0 asη→0 LimitN → ∞,η→0 with η−2d−3 ≤δlogN for “small” δ >0 (L. Chen-Daus-Holzinger-A.J. 2020)

Density functionui solves SKT population model

tui = ∆ σiui +uipi(u)

, pi(u) = Xn k=1

aik∇uk

(16)

➌ From fluid models to cross diffusion

Mass and momentum balance equations: (Huo-A.J. Tzavaras 2019)

tui + div(uivi) = 0, i = 1, . . . ,n

t(uivi) + div(uivi ⊗vi) +∇ui = 1 ε

Xn

j=1

bijuiuj(vj −vi)

Rigorous high-friction limitε→0: expandui =ui0+εui1+O(ε2), etc.

Simplify (for presentation only): Pn

i=1ui = 1, barycentr. velocity zero Equations up to order O(ε2), i.e. for u0i +εui1, etc.

Maxwell-Stefan equations: set Ji :=uivi,bij symmetric

tui + divJi = 0, ∇ui =− Xn

j=1

bij(ujJi−uiJj), Xn

i=1

uivi = 0 Invert relationJi ↔ ∇ui: problemP

iJi = 0 ⇒ invert on span{1} Result: Ji =−Pn−1

j=1 Aij(u)∇uj

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 16 / 47

(17)

➍ From kinetic models to cross diffusion

Boltzmann equation: fi =fi(x,v,t) (Boudin-Grec-Salvarani 2015) ε∂tfi +v· ∇xfi = 1

εQi(fi,fi) +1 ε

X

j6=i

Qij(fi,fj), i = 1, . . . ,n Qi mono-species,Qij bi-species collision operators

Collisions are elastic & conserve mass: R

R3(Qi +P

j6=iQij)dv = 0 Particle density: ui =R

R3fidv, flux: εuivi =R

R3fivdv Ansatz: fi close to equilibrium:

fi(x,v,t) = ui(x,t) (2π)3/2exp

−1

2|v−εvi(x,t)|2

Insert into Boltzmann eq., integrate, limitε→0→ Maxwell-Stefan

tui + div(uivi) = 0, ∇ui =− Xn j=1

bijuiuj(vi −vj) Rigorous derivation for small initial data: Briant-Grec 2020

(18)

Overview

Introduction Derivation

Existence analysis Further topics

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 18 / 47

(19)

State of the art

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Aim: Develop existence theory (uniqueness, regularity)

Ladyˇzenskaya et al. 1968: growth conditions on nonlinearities needed Many results for small cross diffusion (Kim 1984, Deuring 1987,...) Alt-Luckhaus 1983: global solutions if Onsager matrix unif. pos. def.

Kawashima-Shizuta 1988: hyperbolic-parabolic systems, entropies Amann 1990: parabolic in the sense of Petrovskii⇒ ∃! local classical solution; bounds inW1,p(Ω), p>d ⇒ ∃global classical solution D. Le 2016: BMO bound & condition on A(u) ⇒ classical solution Burger et al. 2010: globalbounded weak solutions for special model Novelty of approach: degeneracies allowed, global L solutions

Key idea: exploit formal gradient-flow / entropy structure

(20)

Gradient-flow or entropy structure

Main assumption

tu−div(A(u)∇u) =f(u) possesses formal gradient-flow structure

tu−div

B∇δH(u) δu

=f(u), where Onsager matrixB is pos. semi-definite,H(u) =R

h(u)dx entropy Equivalent formulation: δH(u)/δu ≃h(u) =:w (entropy variable)

tu(w)−div(B(w)∇w) =f(u(w)), B(w) =A(u(w))h′′(u(w))−1 Consequences:

1 H is Lyapunov functional if f = 0:

dH dt =

Z

tu·h(u)

| {z }

=w

dx =− Z

∇w :B∇wdx ≤0

2 L bounds for u: Leth :D→Rn (D ⊂Rn) be invertible⇒ u(x,t) = (h)−1(w(x,t))∈D (no maximum principle needed!)

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 20 / 47

(21)

Gradient-flow and thermodynamic structure

tui(w)−div n−1

X

j=1

Bij(w)∇wj

=fi(u(w)), i = 1, . . . ,n−1 Gradient-flow structure: write equations as

tui −div n−1

X

j=1

Bij∇δH δuj

= 0, wi = δH δui

Entropy H=R

h(u)dx

Gradient flow: ∂tu =−K[u]gradH|u on differential manifold, where K[u]w =−div(B∇w) Onsager operator

Thermodynamic structure:

Mathematical entropy densityh =−s physical entropy density Entropy variable = chemical potential wi =∂h/∂ui

Onsager reciprocal relations: B is symmetric Entropy production: −dHdt =R

∇w :B∇wdx ≥0

→ expresses second law of thermodynamics

(22)

➊ Maxwell-Stefan models

tu−div(A(u)∇u) = 0 in Ω, t >0 A(u) = 1

δ(u)

d2+ (d0−d2)u1 (d0−d1)u1 (d0−d2)u2 d1+ (d0−d1)u2

Entropy: H(u) =R

h(u)dx,u ∈D={u:ui >0,u1+u2<1} ⊂R2 h(u) =u1(logu11) +u2(logu21) + (1u1u2

| {z }

=u3

)(log(1u1u2)1) Entropy production:

dH dt +c

Z

X3

i=1

|∇√ui|2dx ≤0 Entropy variables: w =h(u)∈R2 or u= (h)−1(w)

wi = ∂h

∂ui

= log ui

u3, ui = ewi

1 +ew1+ew2∈D Consequences: gradient estimate for √ui,ui(x,t) is bounded

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 22 / 47

(23)

➋ Population model

tu−div(A(u)∇u) =f(u) in Ω, t >0, u(0) =u0, no-flux b.c.

A(u) =

a10+a11u1+a12u2 a12u1 a21u2 a20+a21u1+a22u2

, aij ≥0 Lotka-Volterra terms: fi(u) = (bi0−bi1u1−bi2u2)ui,i = 1,2 Entropy: h(u) =a21u1(logu1−1) +a12u2(logu2−1), D= (0,∞)2 Entropy production:

dH dt +C

X2

i=1

Z

ai0|∇√

ui|2+aii|∇ui|2

dx ≤Cf

Entropy variables: wi =∂h/∂ui = logui ⇒ ui = exp(wi)>0

Consequences: gradient estimates for √ui ifai0 >0 and ui ifaii >0, nonnegativity forui

(24)

Intermediate summary

Multicomponent systems omnipresent in applications, leads to cross-diffusion systems

Diffusion matrix generally neither symmetric nor positive semidefinite Generally, no full regularity, no maximum principle

Derivation from

diffusion limit for random walks on lattices many-particle limit in interacting particle systems high-friction limit in Euler equations

diffusion limit in system of Boltzmann equations

Mathematical theory based on formal gradient-flow / entropy structure

Structure inspired from thermodynamics

Next lecture: global existence analysis, uniqueness of solutions, large-time asymptotics, regularity of solutions

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 24 / 47

(25)

Existence analysis

tui −div n

X

j=1

Aij(u)∇uj

=fi(u), i = 1, . . . ,n

where A(u) = (Aij(u)) generally neither symm. nor positive semidefinite Main assumption

tu−div(A(u)∇u) =f(u) possesses formal gradient-flow structure

tu−div(B∇w) =f(u), w =∇h(u) where Onsager matrixB is pos. semi-definite,H(u) =R

h(u)dx entropy Consequences:

1 H is Lyapunov functional if f = 0: dH/dt+R

∇w :B∇wdx = 0

2 L bounds for u: Leth :D→Rn (D ⊂Rn) be invertible⇒ u(x,t) = (h)−1(w(x,t))∈D (no maximum principle needed!)

(26)

Boundedness-by-entropy method

tu(w)−div(B(w)∇w) =f(u(w)) in Ω, u(0) =u0, no-flux b.c.

d dt

Z

h(u)dx+ Z

∇u:h′′(u)A(u)∇udx = Z

f(u)·h(u)dx Assumptions:

1 ∃ convex entropyh∈C2(D; [0,∞)), h invertible on D ⊂Rn

2 “Degenerate” positive definiteness: for allu ∈D, zh′′(u)A(u)z ≥c

Xn

i=1

ui2mi−2zi2, mi ≥ 1

2 ⇒ estimate for|∇uimi|2

3 Acontinuous on D,∃C >0 :∀u ∈D: f(u)·h(u)≤C(1 +h(u)) Theorem (A.J. 2015)

Let the above assumptions hold, let D ⊂Rn be bounded,R

h(u0)<∞, ui0(x)∈D. Then ∃ global weak solution such that u(x,t)∈D and

u∈L2loc(0,∞;H1(Ω)), ∂tu ∈L2loc(0,∞;H1(Ω))

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 26 / 47

(27)

Boundedness-by-entropy method

Theorem (A.J. 2015)

Let the above assumptions hold, let D ⊂Rn be bounded,R

h(u0)<∞, ui0(x)∈D. Then ∃ global weak solution such that u(x,t)∈D and

u∈L2loc(0,∞;H1(Ω)), ∂tu ∈L2loc(0,∞;H1(Ω)) Remarks:

Result valid for rather general model class

YieldsL boundswithout using a maximum principle

Boundedness assumption onD is strong but can be weakened in some cases; see SKT model below

Main assumptions: existence of entropy h, pos. def. of h′′(u)A(u) How to find entropy functionsh? Physical intuition, trial and error Yields immediately global existence for Maxwell-Stefan (mi = 12)

(28)

Proof of existence theorem

tu−div(A(u)∇u) =f(u) or ∂tu(w)−div(B(w)∇w) =f(u(w)) Key ideas:

Discretize in time: replace ∂tu(w) by (u(wk)−u(wk−1))/τ, τ >0 Benefit: avoid issues with time regularity

Regularize in space by adding “ε(−∆)mwk”,ε >0

Benefit: yields solutions wk ∈Hm(Ω)⊂L(Ω) ifm>d/2 (note that div(B(w)∇w) not uniformly elliptic)

Solve problem inwk by fixed-point argument

Benefit: elliptic problem in w-formulation (not true foru-formulation) Perform limit (ε, τ)→0, obtain solutionu(t) = limu(wk)

Benefit: compactness comes from entropy estimate; Lbounds coming from u(wk)∈D ⇒ u ∈D

Strategy: problem inu → solve inw → limit solves problem in u

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 28 / 47

(29)

Existence proof: more details

Approximate problem: Given wk−1∈L(Ω), solve for φ∈Hm(Ω), 1

τ Z

(u(wk)−u(wk−1))·φdx+ Z

∇φ:B(wk)∇wkdx +ε

Z

X

|α|=m

Dαwk·Dαφ+wk ·φ

dx = Z

f(u(wk))·φdx Linearized system: S :L(Ω)×[0,1]→L(Ω),S(y, δ) =wk and wk solves linearproblem (by Lax-Milgram)

Fixed-point argument: show that S compact, entropy estimate for all fixed points ⇒ ∃wk ∈Hm(Ω): S(wk,1) =wk (by Leray-Schauder)

δ Z

h(uk)dx +τ Z

∇wk :B∇wkdx+ετkwkk2Hm(Ω)

≤δ Z

h(uk−1)dx+ Cτ

|{z}<1

δ Z

(1 +h(uk))dx, uk :=u(wk) Limit (ε, τ)→0: Aubin-Lions compactness lemma

(30)

Aubin-Lions lemma

Estimates uniform in (τ, ε): setu(τ)(·,t) =u(wk),t ∈((k−1)τ,kτ] k(ui(τ))mikL2(0,T;H1)+√

εkw(τ)kL2(0,T;Hm)≤C τ−1ku(τ)(t)−u(τ)(t−τ)kL2(τ,T;(Hm))≤C Lemma (Aubin-Lions 1963/69)

Let ku(τ)kL2(0,T;H1)+k∂tu(τ)i kL2(0,T;Hm(Ω))≤C .

Then exists subsequence u(τ)→u strongly in L2(0,T;L2).

Problem: discrete time derivative and nonlinear estimate Lemma (Discrete Aubin-Lions; Simon 1987)

Let X ֒→B compact and B ֒→Y continuous, 1≤p<∞, and ku(τ)kLp(0,T;X)≤C, sup

τ >0

h→0limku(τ)(t)−u(τ)(t−h)kL1(τ,T;Y)= 0 Then (u(τ)) is relatively compact in Lp(0,T;B).

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 30 / 47

(31)

Aubin-Lions lemma

Lemma (Discrete Aubin-Lions; Dreher-A.J., 2012) If additionally,(u(τ))piecewise constant in time, and

ku(τ)kLp(0,T;X)−1ku(τ)(t)−u(τ)(t−τ)kL1(τ,T;Y) ≤C Then (u(τ)) is relatively compact in Lp(0,T;B).

Benefit: studyu(τ)(t)−u(τ)(t−τ), not allu(τ)(t)−u(τ)(t−h) Theorem (Nonlinear Aubin-Lions lemma, Chen-A.J.-Liu 2014) Let (u(τ)) be piecewise constant in time, k∈N,s ≥ 12, and

k(u(τ))skL2(0,T;H1)−1ku(τ)(t)−u(τ)(t−τ)kL1(τ,T;(Hk))≤C Then exists subsequence u)→u strongly in L2s(0,T;L2s)

Remark: Alt-Luckhaus 1983: s = 1, Maˆıtre 2003: nonlinear version of Simon 1987, Moussa 2016: monotone nonlinearities

(32)

SKT population model

Diffusion matrix: (aij0) A(u) =

a10+a11u1+a12u2 a12u1 a21u2 a20+a21u1+a22u2

Entropy H(u) =R

h(u)dx,h(u) =P2

i=1ui(logui −1) for u ∈D = (0,∞)2 butno L bound

Positivity: ui = exp(wi)>0 and entropy inequality:

dH dt +C1

X2

i=1

Z

(ai0|∇√u1|2+aii|∇ui|2)dx ≤C2 aii >0: Gagliardo-Nirenbergui ∈L2+2/dx,t → enough to treatui∇uj ai0 >0: more sophisticated estimates sinceui ∈L1+1/dx,t only Theorem (L. Chen-A.J. 2004/2006)

Let H(u0)<∞. Then ∃solution (u1,u2)with u1, u2 ≥0 in Ωand ai0>0 : √

ui ∈L2loc(0,∞;H1(Ω)), aii >0 : ui ∈L2loc(0,∞;H1(Ω))

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 32 / 47

(33)

Generalization 1: nonlinear coefficients

Macroscopic limit of random walk on lattice:

A(u) = p1(u) +u1∂p∂u1

1(u) u1∂p∂u1

2(u) u2∂p∂u2

1(u) p2(u) +u2∂p∂u2

2(u)

!

pi linear: Chen-A.J. 2004

pi sublinear: Desvillettes-Lepoutre-Moussa 2014 pi superlinear: pi(u) =ai0+ai1us1+ai2us2 (i = 1,2), entropy density: hs(u) =a21u1s+a12u2s,s >1 Theorem (A.J. 2015)

Let 1<s <4 and(1−1s)a12a21≤a11a22, H(u0)<∞. Then ∃ nonnegative weak solution uis/2 ∈L2loc(0,∞;H1(Ω)) Idea of proof: use entropy hs(u) +εP

iui(logui −1)

pi superlinear,s >1: Desvillettes-Lepoutre-Moussa-Trescases 2015

(34)

Generalization 2: more than two species

Aij(u) = (ai0+ai1u1+· · ·+ainunij +aijui Entropy: H(u) =R

h(u)dx =R

Pn

i=1πiui(logui−1) Key assumption: πiaijjaji (detailed balance),πi >0 Why detailed balance?

Detailed balance⇔ (πi) reversible measure ⇔h′′(u)A(u) symmetric

⇒ entropyH(u(t)) decreases∀t

Detailed balancenot satisfied: aii “large” ⇒H(u(t)) decreases, otherwise ∃u(0) such that H(u(t))increases

Theorem (X. Chen-Daus-A.J. 2018)

Let aij >0and detailed balance hold. Then ∃ nonnegative weak solution ui ∈L2loc(0,∞;H1(Ω)), i = 1, . . . ,n

Nonlinear coefficients: Chen-Daus-A.J. 2018, Lepoutre-Moussa 2017

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 34 / 47

(35)

Overview

Introduction Derivation

Existence analysis Further topics

(36)

➊ Entropy structure and normal ellipticity

tu−div(A(u)∇u) =f(u) (∗)

Definition: A(u) normally elliptic = A(u) positively stable = eigenvalues of A(u) have positive real parts = (∗) parabolic in sense of Petrovskii

Theorem (X. Chen-A.J. 2019)

If(∗)has entropy structure then A(u) normally elliptic

⇒ local existence of smooth solutions by Amann 1990

If A(u) normally elliptic & h′′(u)A(u) symmetricthen (∗) has an entropy structure and A(u) diagonalizable with positive eigenvalues symmetry of h′′(u)A(u) corresponds to Onsager relations

If A=A0 constant: A normally elliptic⇔ (∗)has entropy structure A(u) =A0+nonlinear perturbation⇒ ∃entropy structure

Proof: Use Lyapunov theorem and matrix factorization

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 36 / 47

(37)

Entropy structure

Application: Keller-Segel model with additionalcross-diffusion

tui = div(∇ui−ui∇c), i = 1, . . . ,n

tc = ∆c+δ Xn

j=1

∆uj + Xn

j=1

bijuj−c, no-flux b.c.

ui: cell density ofith species,c: concentration of chemical signal δ >0: strength of additional cross-diffusion, avoids blow-up Diffusion matrixA(u) is normally elliptic

Factorization: A(u) =A1A2,A1 symm. pos. def.,A2 pos. def.

A1 =





u1 0 0

. .. ...

0 un 0

0 · · · 0 δ





, A2 =





1/u1 0 −1

. .. ...

0 1/un −1

1 · · · 1 1/δ





Set h′′(u) =A−11 , thenA2 =A−11 A(u) =h′′(u)A(u) pos. def.

Compute entropy: h(u) =Pn

i=1ui(logui −1) +u22/(2δ)

(38)

➋ Uniqueness of weak solutions

Alt-Luckhaus 1983: linear elliptic operator, ∂tui ∈L1

Gajewski 1994: elliptic Onsager operator monotone in special sense Berendsen et al. 2020: weak-strong uniqueness for special system Result based on entropy method:

tui = div n

X

j=1

Aij(u)∇uj

, Aij(u) =p(u0ij +ajuiq(u0) u0=

Xn i=1

aiui, initial & no-flux boundary conditions ui: species’ concentrations,u0: solvent concentration Example: ion transport in membrane and nanopore Theorem (X. Chen-A.J. 2018)

Let p(s)≥0, p(s) +sq(s)≥0. Then uniqueness in class of functions p(u0)1/2∇ui,|q(u0)|1/2∇ui ∈L2,∂tui ∈L2(0,T;H1(Ω)).

Idea of proof: combineH−1 method and entropy technique of Gajewski

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 38 / 47

(39)

Uniqueness of weak solutions

tui = div n

X

j=1

Aij(u)∇uj

, Aij(u) =p(u0ij +ajuiq(u0) Step ➊:H−1(Ω) method

Sum equations fori = 1, . . . ,n, useu0=Pn j=1ajuj

tu0 = div (p(u0) +u0q(u0))∇u0

= ∆Q(u0), no-flux b.c.

whereQ(z) =p(z) +zq(z)≥0 (assumption)⇒ Q monotone Let u0,v0 be two weak solutions, let ξ solve −∆ξ =u0−v0 & b.c.

1 2

d dt

Z

|∇ξ|2dx =− Z

t(∆ξ)ξdx = Z

∆(Q(u0)−Q(v0))ξdx

=− Z

(Q(u0)−Q(v0))(u0−v0)dx ≤0, ξ(0) = 0

Implies thatξ(t) = 0 and hence (u0−v0)(t) = 0 ⇒uniqueness foru0

(40)

Uniqueness of weak solutions

tu0 = ∆Q(u0), ∂tui = div(p(u0)∇ui +uiq(u0)∇u0) Step ➋:Define Gajewski’s semimetric

G(u,v) = Xn

i=1

Z

h(ui) +h(vi)−2h

ui +vi 2

dx, h(s) =s(logs−1) Compute time derivative

dG

dt (u,v) =−4 Xn

i=1

Z

p(u0) |∇√ui|2+|∇√vi|2−|∇√

ui +vi|2 dx ≤0 Test function ∂h/∂ui = logui requires to regularizeh(u)

G(u(0),v(0)) = 0 implies thatG(u(t),v(t)) = 0 andu(t) =v(t) Theorem (X. Chen-A.J. 2018)

Let p(s)≥0, p(s) +sq(s)≥0. Then uniqueness of weak solutions satisfying p

p(u0)∇ui,p

|q(u0)|∇ui ∈L2(Ω×(0,T)).

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 40 / 47

(41)

Weak-strong uniqueness of renormalized solutions

tui = div Xn

j=1

Aij(u)∇uj +fi(u), i = 1, . . . ,n Aij(u) = (ai0+ai1u1+· · ·+ainunij +aijui Theorem (X. Chen-A.J. 2019)

u: renormalized solution, v : strong solution to SKT model. Then u=v . Renormalized solution: Use test function (∂ξ/∂uii, where ξ∈C with ξ ∈C0; needed since no growth condition for fi(u) supposed

Idea of proof: use relative entropyH(u|v) =R

h(u|v)dx with h(u|v) =h(u)−h(v)−h(v)·(u−v), h(u) =

Xn

i=1

ui(logui −1) Aim: Show thatdH/dt ≤CH ⇒ H(u(t)|v(t)) = 0 ⇒u(t) =v(t) Several cutoffs required (J. Fischer 2017), very technical

Relative entropy related to Gajewski’s semimetric

(42)

➌ Large-time asymptotics

tu+A(u) =f(u), t >0, u(0) =u0 Entropy production:

dH

dt +hA(u),H(u)i=hf(u),H(u)i Assume: hf(u),H(u)i ≤0 and hA(u),H(u)i ≥λH. Then

dH

dt +λH≤0 ⇒ H(u(t))≤H(u0)e−λt ⇒ u(t)→0 Convex Sobolev inequality: hA(u),H(u)i ≥λH

Example: SKT population model dH

dt +C1 Xn

i=1

Z

|∇√

ui|2dx ≤0, H(u) = Xn

i=1

Z

ui(logui −1) Use logarithmic Sobolev inequality:

Z

ui(logui−1)dx ≤CS Z

|∇√ui|2dx ⇒ dH dt + C1

CSH≤0

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 42 / 47

(43)

Large-time asymptotics for reactive mixtures

tu+A(u) =f(u), t >0, u(0) =u0 Question: What happens if we donothave hf(u),H(u)i ≤0?

Example: Maxwell-Stefan systems and mass action kinetics fi(u) =

XN a=1

ai −αai) kfauαa−kbauβa

, i = 1, . . . ,n kfa: forward reaction rate, kba: backward reaction rate αaiia: stoichiometric coefficients, uαa:=Qn

j=1uα

a j

j

Conservation of total mass: Pn

i=1fi(u) = 0

Aim: Show that u(t)→u as t→ ∞, use relative entropyH[u|u] Entropy inequality: dHdt +P[u]≤0,we needP[u]≥λH[u|u]

P[u] = Z

∇w :B∇wdx+ XN

a=1

Z

kfauαa−kbauβa

logkfauαa kbauβa ≥0

(44)

Large-time asymptotics for reactive mixtures

P[u] = Z

∇w :B∇wdx+ Xa a=1

Z

kfauαa−kbauβa

logkfauαa kbauβa ≥0 Homogeneous equilibrium: ∇w = 0 ⇒ u=u(w) constant Detailed-balance equilibrium u: kfauαa =kbauβa (there are many!) Wegscheider matrix: W = (βia−αai)ia,q1, . . . ,qm basis of ker(W), Q = (q1, . . . ,qm)

Conservation laws: ∂tQR

u(t)dx =R

Qf(u)dx = 0,t >0 Theorem (Daus-A.J.-Tang 2020)

∃ unique detailed-balance equilibrium u satisfying conserv. laws

∃ λ >0: P[u]≥λH[u|u]

Exponential convergence to equilibrium for 1≤p<∞: ku(t)−u kLp(Ω)≤C(u0)e−λt/(2p), t >0

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 44 / 47

(45)

➍ Regularity of solutions

tu−div(A(u)∇u) =f(u) in ΩT = Ω×(0,T), u(0) =u0 Negative result:

Star´a-John 1995: ∃ A∈L: u(t) H¨older blows up att = 1 in L Full regularity:

Amann 1990: u(t) bounded in W1,p(Ω), p>d ⇒u classical solution D. Le 2017: A(u) has polynomial growth of order ≤5,u(t)∈BMO

⇒ u classical solution (“Bounded Mean Oscillation”,LBMOLploc) Partial regularity:

Giaquinta-Struwe 1982 (A(u) pos. def.): u is H¨older continuous in ΩT \S, whereHd−ε(S) = 0 for some ε >0

Braukhoff-Raithel-Zamponi 2020 (h′′(u)A(u) pos. def.): u bounded

⇒ u is H¨older continuous in ΩT \S,Hd−ε(S) = 0

Idea: Use relative entropyh(u|v) =h(u)−h(v)−h(v)·(u−v) and h(u|v)∼ |u−v|2 for ui far from zero, Aij(u) diagonal forui →0

(46)

Summary

iu−div(A(u)∇u) =f(u), t >0, u∈Rn Boundedness-by-entropy method:

Gives global existence of boundedweak solutions

Compared to Alt-Luckhaus: degeneracies allowed, bounded solutions Compared to Amann: “easy-to-verify” conditions for global results Main ingredient: ∃ entropyh(u) such thath′′(u)A(u) pos. semidef.

Relation to thermodynamics: w =h(u) are chemical potentials Entropy methods are used to prove:

Global existence of bounded weak solutions: for volume-filling models Uniqueness of weak solutions, weak-strong uniqueness

Large-time asymptotics: exponential decay to equilibrium Regularity of solutions: only partial results, problem mainly open

Ansgar J¨ungel (TU Wien) Entropy methods asc.tuwien.ac.at/∼juengel 46 / 47

(47)

Perspectives

tu−div(A(u)∇u) =f(u), t>0, u ∈Rn Further topics:

Numerical schemes preserving entropy structure: finite volumes, finite elements, finite differences (A.J.-Zurek 2020)

Cross-diffusion systems with stochastic noise (Dhariwal-Huber-A.J.-Kuehn-Neamtu 2020) Open problems:

Existence of global weak solutions to n-species SKT population model without detailed balance, for all aij >0

Size of class of diffusion systems having an entropy structure Generalization of relative entropy for weak-strong uniqueness Analysis of models for nonisothermal, compressible fluid mixtures Derivation of noise terms for cross-diffusion systems

Referenzen

ÄHNLICHE DOKUMENTE

Abstract: Triangulated categories developed initially as a tool in homological alge- bra with applications in the study of coherent sheaves, Lagrangian submanifolds, and

Chosen the number of edges, entropy is smaller for graphs with large cliques and short paths, i.e., graphs in which the vertices form an highly connected cluster.. The remainder of

Keywords Classical properties · Measurement problem · Interpretation of quantum mechanics · Entropy · Partition function..

It is well known that weak solutions are in genreral not unique in this setting. We are able to prove an L 1 -contraction and comparison principle and to show existence and

4 Berry (1994) noticed the explicit inversion of the nested logit demand and used inversion of market shares to estimate utility parameters using standard regression

An important step is the derivation of the entropy–entropy dissipation inequality, which was easy in the case of the heat equation, but which is rather involved for the

The problems considered above differ in terms of the data needed on distributions over the interactions, origins, and destinations. Let us introduce a classification of data

Although the power exponent −ð1=νÞ does not change with N, the “inverse tem- perature” β increases with N (Fig. 1C, Inset), which shows that the process becomes more persistent