• Keine Ergebnisse gefunden

Entropy dissipation methods for diffusion equations

N/A
N/A
Protected

Academic year: 2022

Aktie "Entropy dissipation methods for diffusion equations"

Copied!
129
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Entropy dissipation methods for diffusion equations

Ansgar J¨ungel

Vienna University of Technology, Austria

www.jungel.at.vu

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 1 / 129

(2)

Contents

1 Introduction

2 Entropies

3 Fokker-Planck equations Bakry-Emery approach Extensions

4 Systematic integration by parts

5 Cross-diffusion systems

Examples from physics and biology Derivation, gradient flows

Boundedness-by-entropy method Extensions

6 Uniqueness of weak solutions

7 Towards discrete entropy methods Time-continuous Markov chains Time-discrete entropy methods

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 2 / 129

(3)

Literature

Main references

A. J¨ungel. Entropy dissipation methods for nonlinear partial differential equations. Lecture Notes, Bielefeld, 2012.

A. J¨ungel. The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28 (2015), 1963-2001.

D. Matthes. Entropy methods and related functional inequalities.

Lecture Notes, 2008.

A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. PDEs26 (2001), 43-100.

J.A. Carrillo, A. J¨ungel, P. Markowich, G. Toscani, and A. Unterreiter.

Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monats. Math. 133 (2001), 1-82.

L. Evans. Entropy & partial differential equations. Lect. Notes, 2001.

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 3 / 129

(4)

What mathematics skills are needed?

Entropy methods are intradisciplinary!

Partial differential equations: Fokker-Planck equations, parabolic equations, Sobolev spaces

Functional analysis: Lemma of Lax-Milgram, fixed-point theorems, compactness

Stochastics: Markov processes, Markov chain theory

Numerics: Finite-difference methods, finite-volume methods

Differential geometry: Geodesic convexity of entropy (not convered in these lectures)

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 4 / 129

(5)

Entropy in physics

Entropy = measure of molecular disorder or energy dispersal Introduced by Clausius (1865) in thermodynamics (measure of irreversibility)

Statistical definition by Boltzmann, Gibbs, Maxwell (1870s)

S =−kBX

i

pilogpi, pi : probability of ith microstate Von Neumann (1927): Quantum mechanical entropy

Bekenstein, Hawking (1970s): Black hole entropy (to satisfy second law of thermodynamics), entropy∼radius2: description of volume encoded on its boundary

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 5 / 129

(6)

Entropy in information theory

1

1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1

Shannon 1948: Concept of information entropy (measure of information density)

Information content: I(p) =−log2p,p: probability of event Rationale: I(1) = 0: no information content of sure events,

I(p1p2) =I(p1) +I(p2): information of independent events additive Entropy = expected information content

S =X

iΣ

piI(pi) =−X

iΣ

pilog2pi

Applications: Redundancy in language structure, data compression (entropy coding, idea: minimize entropy)

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 6 / 129

(7)

Entropy in mathematics

Mathematical entropy isnonincreasing, i.e. negative physical entropy Hyperbolic conservation laws(Lax 1971):

tu+∂xf(u) = 0, u ∈Rn

h is an entropy if∃q:q(u) =f(u)h(u) and entropy inequality:

th(u) +xq(u)≤0

Kinetic equations: entropy h(f) =R

Rdf logf dx gives a priori estimates for Boltzmann equation (DiPerna/Lions 1989), large-time behavior of solutions (Desvillettes/Villani 1990, Mouhot 2006)

Large-time behavior for stochastic processes (Bakry/Emery 1985) and parabolic equations (Toscani 1997)

Regularity for parabolic equations (Nash 1958)

Relations to gradient flows in metric spaces (Ambrosio, Otto, Savar´e...), functional inequalities (Gross, Arnold et al., Dolbeault...)

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 7 / 129

(8)

Entropy in literature

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 8 / 129

(9)

Entropy and partial differential equations

Generally: Entropy S(E,X1, . . . ,Xn) is function of internal energyE and state variables Xi (e.g. density, volume) such that

S is concave, ∂E∂S >0, S homogeneous of order one.

Def. temperature 1θ = ∂E∂S, chem. potentialµ=−θ∂S∂ρ (ρ: mass density) Euler equations in thermodynamics:

tρ+ div(ρv) = 0,

t(ρv) + div(ρv⊗vT) = 0,

t(ρe) + div(ρve+q) =T :∇v

wherev: velocity,T: stress tensor,e: internal energy, q: heat flux Energy balance:

d dt

Z

Rd

ρ

2|v|2+ρe

dx = 0 Monoatomic ideal gas: energy densityρe = 32ρθ, entropy densityρs =−ρlog(ρ/θ3/2)⇒ ∂(ρs)∂(ρe) = 1θ >0

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 9 / 129

(10)

Aims of lecture course

To introduce into several entropy methods for partial differential equations (PDEs)

To use entropy methods to prove the qualitative behavior of solutions to PDEs (large-time asymptotics, existence analysis,L bounds) To prove functional inequalities (convex Sobolev inequalities) To relate entropy methods to physical principles and the theory of stochastic processes

To introduce into the theory of cross-diffusion systems

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 10 / 129

(11)

Overview

1 Introduction

2 Entropies

3 Fokker-Planck equations Bakry-Emery approach Extensions

4 Systematic integration by parts

5 Cross-diffusion systems

Examples from physics and biology Derivation, gradient flows

Boundedness-by-entropy method Extensions

6 Uniqueness of weak solutions

7 Towards discrete entropy methods Time-continuous Markov chains Time-discrete entropy methods

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 11 / 129

(12)

Example: Heat equation

tu = ∆u, u(0) =u0 ≥0 inTd (torus), t>0 Steady state: u=R

Tdu0dx =R

Tdu(t)dx, meas(Td) = 1 Question: u(t)→u as t→ ∞ in which sense and how fast?

Define the functionalH2[u] =R

Td(u−u)2dx Compute time derivative:

dH2

dt [u] = 2 Z

Td

(u−u)∂tudx =−2

entropy production z }| { Z

Td|∇u|2dx ≤0 Poincar´e inequality: H2[u] =kuuk2L2CPk∇uk2L2

Combining expressions:

dH2

dt =−2k∇uk2L2 ≤ −2CP1H2[u]

By Gronwall’s inequality, ku(t)uk2L2e2CP1tku0uk2L2

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 12 / 129

(13)

Example: Heat equation

tu = ∆u, u(0) =u0 ≥0 inTd (torus), t>0 Conclusion: ku(t)ukL2eCP1tku0ukL2

Same result with spectral theory: CP1= first eigenvalue of −∆ Since spectral analysis gives the same result: What is the benefit?

First answer: Different “distances” admissible Entropy functional H1[u] =R

Tdulog(u/u)dx ≥0 dH1

dt [u] = Z

Td

log u

u+ 1

tudx =−4 Z

Td|∇√ u|2dx Logarithmic Sobolev ineq.: R

Tdulog(u/u)dx ≤CLR

Td|∇√ u|2dx By Gronwall inequality,

dH1

dt [u]≤ −4CL1H1[u] ⇒ H1[u(t)]≤e4CL1tH1[u0], t≥0

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 13 / 129

(14)

Example: Heat equation

Second answer: Method applicable to nonlinear equations Quantum diffusion equation: ∂tu=−div(u∇uu) in Td Occurs in quantum semiconductor modeling,u: electron density Entropy functional: H1[u] =R

Tdulog(u/u)dx Entropy production:

dH1

dt [u] =− Z

Td

div

u∇∆√u

u

logudx =− Z

Td

∆√u

u ∆udx

≤−κ Z

Td

(∆√

u)2dx ≤ − κ CP

Z

Td|∇√

u|2dx ≤ − κ CPCL

H1[u]

Exponential decay of u(t) to u with explicit rate:

H1[u(t)]≤eκt/(CPCL)H1[u0], t ≥0

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 14 / 129

(15)

Strategy

tu+A(u) = 0, t >0, u(0) =u0 Strategy:

Given an entropy H[u], compute entropy production:

dH/dt =hA(u),H[u]i

Find relation between entropy and entropy production:

H[u]ChA(u),H[u]i ⇒ dH/dt ≤ −CH

By Gronwall’s inequality, conclude exponential decay:

H[u(t)]eCtH[u0]

Entropy methods can do much more:

Self-similar asymptotics

A priori estimates and global-in-time existence analysis

Proof of functional inequalities (like logarithmic Sobolev ineq.) Positivity of solutions and L bounds (no maximum principle!) Uniqueness of weak solutions

Stability of numerical discretizations (structure-preservation)

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 15 / 129

(16)

Definitions

Setting:

A:D(A)XX operator, consider ∂tu+A(u) = 0,t >0, u(0) =u0

Steady state: uD(A) solves A(u) = 0 Definitions:

Lyapunov functional: H:D(A)→R such that dHdt[u(t)]≤0, t≥0 Entropy: H :D(A)→Rconvex Lyapunov functional such that

ΦC0(R): Φ(0) = 0 and

d(u,u)Φ(H[u]H[u]) foruD(A) and some metricd. Entropy production: EP[u(t)] =−dHdt[u(t)]

Entropy of kth order: containskth-order partial derivatives No clear definition of (mathematical) entropy in the literature!

Examples: F1: Fisher information Hα[u] =

Z

(uαuα)dx, Fα[u] = Z

|∇uα/2|2dx, α≥1

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 16 / 129

(17)

Heat equation revisited

tu = ∆u, u(0) =u0 ≥0 inTd (torus), t>0 Claim: H1[u] =R

Tdulog(u/u)dx is an entropyfor the heat equation Proof:

Lyapunov functional: dHdt1[u] =−R

Td|∇√

u|2dx ≤0 Convexity: u 7→H1[u] is convex

Csisz´ar-Kullback inequality for Φ(s) =Cφ

s,d(f,g) =kfgkL1: d(u,u)≤Cφ(H1[u]−H1[u])1/2 using H1[u] = 0

Lemma (Csisz´ar-Kullback-Pinsker)

Let φ∈C2(R) be strictly convex, φ(1) = 0, and R

Tdfdx =R

Tdgdx = 1.

Then, for some Cφ>0,

kfgk2L1Cφ Z

Td

φ f

g

gdx

Proof: Taylor expansion of φaround 1

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 17 / 129

(18)

Overview

1 Introduction

2 Entropies

3 Fokker-Planck equations Bakry-Emery approach Extensions

4 Systematic integration by parts

5 Cross-diffusion systems

Examples from physics and biology Derivation, gradient flows

Boundedness-by-entropy method Extensions

6 Uniqueness of weak solutions

7 Towards discrete entropy methods Time-continuous Markov chains Time-discrete entropy methods

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 18 / 129

(19)

Linear Fokker-Planck equation

tu = div(∇u+uV) in Rd, t >0, u(u) =u0 ≥0 Assumptions: R

Rdu0dx = 1, lim|x|→∞V(x) =∞ (confinement) Steady state: 0 =∇u+uV =u∇(logu+V) ⇒ u=ceV, wherec is such thatR

Rdudx = 1 Entropy: Let φ∈C4 be convex

Hφ[u] = Z

Rd

φ u

u

udx−φ Z

Rd

udx

Theorem (Bakry/Emery ’85, Arnold/Markowich/Toscani/Unterreiter ’01) Let u0logu0L1(Rd),∇2V ≥λ >0,1/φ′′ concave. Then

ku(t)−ukL1eλtCφ1/2Hφ[u0]1/2, t >0

Example➊:φ(s) =s(logs−1) + 1,φ(s) =sα−1−α(s−1) (1< α≤2) Example ➋:φ(s) =slogs,V(x) = 12|x|2 then λ= 1 (optimal!)

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 19 / 129

(20)

Proof: First time derivative

tu= div(∇u+uV) = div

uu u

, u=ceV First time derivative: Hφ[u] =R

Rdφ(u/u)udx−φ(1), set ρ:= uu dHφ

dt = Z

Rd

φ(ρ)∂tudx =− Z

Rd

φ′′(ρ)|∇ρ|2udx ≤0 Second time derivative: (key idea!)

d2Hφ

dt2 [u] =− Z

Rd

φ′′′(ρ)∂tu|∇ρ|2+ 2φ′′(ρ)∇ρ· ∇∂tρu

dx =−I1I2 First integral:

I1 =− Z

Rd∇ φ′′′(ρ)|∇ρ|2

·(u∇ρ)dx

=− Z

Rd

φ′′′′(ρ)|∇ρ|4+ 2φ′′′(ρ)∇ρ∇2ρ∇ρ udx

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 20 / 129

(21)

Proof: Second time derivative

d2Hφ

dt2 [u] =−I1I2, I1 =− Z

Rd

φ′′′′(ρ)|∇ρ|4+ 2φ′′′(ρ)∇ρ∇2ρ∇ρ udx Second integral: compute∇∂tρ=∇∆ρ− ∇2ρ· ∇V − ∇2V∇ρ,ρ= uu

I2 = 2 Z

Rd

φ′′(ρ)∇ρ· ∇∂tρudx

= 2 Z

Rd

φ′′(ρ) ∇ρ· ∇∆ρ− ∇ρ∇2ρ∇V

λ|∇ρ|2

z }| {

∇ρ∇2V∇ρ dx

≤2 Z

Rd

φ′′(ρ) div(∇2ρ∇ρ)− |∇2ρ|2− ∇ρ∇2ρ∇V −λ|∇ρ|2 udx

= 2 Z

Rd−φ′′′∇ρ∇2ρ∇ρu−φ′′∇ρ∇2ρ

z =0}| {

(∇u+uV)−φ′′|∇2ρ|2u dx

−2λ Z

Rd

φ′′(ρ)|∇ρ|2udx, note:

Z

Rd

φ′′(ρ)|∇ρ|2udx = dHφ dt

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 21 / 129

(22)

Proof: Second time derivative

Add both integralsI1 and I2 and useφ convex, 1/φ′′ concave:

d2Hφ

dt2 [u] = Z

Rd

φ′′′′|∇ρ|4+ 4φ′′′∇ρ∇2ρ∇ρ+ 2φ′′|∇2ρ|2

udx−2λdHφ

dt

= Z

Rd

′′2ρ+φ′′′

φ′′∇ρ⊗ ∇ρ2

| {z }

0

+

φ′′′′−2(φ′′′)2 φ′′

| {z }

=′′)2(1/φ′′)′′0

|∇ρ|4

udx

−2λdHφ

dtd2Hφ

dt2 [u]≥ −2λdHφ dt Integrate over (t,∞):

slim→∞

dHφ dt [u(s)]

| {z }

=0

dHφ

dt [u(t)]≥ −2λ lim

s→∞Hφ[u(s)]

| {z }

=0

+2λHφ[u(t)]

Gronwall lemma and Csisz´ar-Kullback inequality:

ku(t)uk2L1CφHφ[u(t)]≤Cφe2λtH[u0]

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 22 / 129

(23)

Bakry-Emery: Remarks

Theorem (Bakry/Emery ’85, Arnold/Markowich/Toscani/Unterreiter ’01) Let u0logu0L1(Rd),∇2V ≥λ >0,φconvex,1/φ′′ concave. Then

ku(t)ukL1eλtCφ1/2Hφ[u0]1/2 Exponential L1 decay with (optimal) rate λ

Difficult part of proof: justify computations for weak solutions Proof yields convex Sobolev inequality for all (smooth) u (ρ= uu):

Hφ[u] = Z

Rd

φ(ρ)udx−φ(1)≤ − 1 2λ

dHφ

dt [u] = 1 2λ

Z

Rd

φ′′(ρ)|∇ρ|2udx Example: V(x) = 12|x|2,φ(s) =s(logs−1) + 1, thenλ= 1

Z

Rd

ulogudx +d

2 log(2π) +d ≤ 1 2

Z

Rd

|∇u|2 u dx,

Z

Rd

udx = 1 Benefit: Simultaneous proof of deacy rate and convex Sobolev ineq.

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 23 / 129

(24)

Bakry-Emery for Markov processes

Given Markov process (Xt)t>0, semigroupStf(x) =E[f(Xt)|X0 =x], infinitesimal generatorLf = limt0(Stff)/t

Example: Lf = ∆f −x· ∇f onRd (Fokker-Planck-type), Stf0 is solution to∂tf =Lf,f(0) =f0

Assume: ∃ invariant measureπ: R

fdπ=R Stfdπ Carr´e-du-champ operator: Γ(f,g) = 12(L(fg)−fLggLf) Example: Γ(f,g) =∇f · ∇g

Gamma-deux operator: Γ2(f,g) = 12(LΓ(f,g)−Γ(Lf,g)−Γ(f,Lg)) Example: Γ2(f,f) =|∇2f|2+|∇f|2 ⇒ Γ2(f,f)≥Γ(f,f)

Theorem (Bakry/Emery 1985)

Let φ∈C2 be convex,1/φ′′ concave, and∃λ >0: Γ2(f,f)≥λΓ(f,f) for all f ≥0. Then for probability density functionsρ,

Z

Rd

φ(ρ)dπ−φ Z

Rd

ρdπ

≤ 1 2λ

Z

Rd

φ′′(ρ)Γ(ρ, ρ)dπ

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 24 / 129

(25)

Bakry-Emery for Markov processes

Example: Fokker-Planck-type equation

We have Γ(ρ, ρ) =|∇ρ|2 anddπ=udx withu=ceV Choose ρ=u/u: R

Rdρdπ=R

Rdudx

Relation to previous convex Sobolev inequality:

Z

Rd

φ(ρ) |{z}dπ

=udx

−φ Z

Rd

ρdπ

|{z}

=udx

≤ 1 λ

Z

Rd

φ′′(ρ) Γ(ρ, ρ)

| {z }

=|∇ρ|2

dπ

|{z}

=udx

Example ➊:φ(s) =s(logs−1) gives logarithmic Sobolev inequality Z

Rd

ρlogρdπ− Z

Rd

ρdπlog Z

Rd

ρdπ ≤ 1 2λ

Z

Rd

Γ(ρ, ρ) ρ dπ Example ➋:φ(s) =s2 gives Poincar´e inequality

Z

Rd

ρ−

Z

Rd

udx 2

dπ ≤ 1 λ

Z

Rd

Γ(ρ, ρ)dπ Benefit: Abstract framework for convex Sobolev inequalities

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 25 / 129

(26)

Extensions of the Bakry-Emery method

➊ More on convex Sobolev inequalities: Compare Poincar´e, logarithmic Sobolev, and Beckner inequalities

➋ Isoperimetric inequality for entropy: Relation to information theoretical approach (entropy power)

➌ Relaxation to self-similarity: Analyze intermediate asymptotics of solution of heat equation

➍ Linear Fokker-Planck equations with variable diffusion matrix

➎ Nonlinear Fokker-Planck equations

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 26 / 129

(27)

➊ More on convex Sobolev inequalities

Z

Rd

φ(ρ)udx−φ Z

Rd

ρudx

≤ 1 2λ

Z

Rd

φ′′(ρ)|∇ρ|2udx Logarithmic Sobolev inequality: φ(s) =slogs (forR

Rdρudx = 1) Z

Rd

ρlogρudx ≤ 2 λ

Z

Rd|∇ρ1/2|2udx Poincar´e inequality: φ(s) =s2

Z

Rd

ρ2udx− Z

Rd

ρudx 2

≤ 1 λ

Z

Rd|∇ρ|2udx Beckner inequality: φ(s) =sα, 1< α <2

1 α−1

Z

Rd

ραudx − Z

Rd

ρudx α

≤ 2 αλ

Z

Rd|∇ρα/2|2udx

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 27 / 129

(28)

Relations between functional inequalities

1 α−1

Z

Rd

ραudx− Z

Rd

ρudx α

≤ 2 αλ

Z

Rd|∇ρα/2|2udx α→1 in Beckner gives logarithmic Sobolev inequality since

1 α−1

Z

Rd

α1−1)ρudx → Z

Rd

ρlogρudx α→2 in Beckner gives Poincar´e inequality

Logarithmic Sobolev implies Poincar´e (useρ= 1 +εg with R

Rdgudx and ε→0) and Beckner (Latala/Oleszkiewicz 2000) Beckner (a)

Poincaré logarithmic

Sobolev

a = 2 a g 1

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 28 / 129

(29)

➋ Isoperimetric inequality for entropy

Aim: Relation between logarithmic Sobolev ineq. and isoperimetric ineq.

Entropy: H[u] =R

Rdulogudx Fisher information: I[u] = 4R

Rd|∇u1/2|2dx Entropy power: N[u] = exp(2dH[u]) Theorem (Isoperimetric inequality for entropy)

For all probability density functions u, N[u]I[u]≥2πed.

Equivalent formulation: 4πexp(d2H[u])ed8 R

Rd|∇u1/2|2dx Compare with isoperimetric inequality on R2: 4πA≤L2 for closed curve with lengthL and enclosed areaA

Approximating ezz giveslogarithmic Sobolev inequality:

2 d

Z

Rd

ulogudx = 2

dH[u]≤ 2 πed

Z

Rd|∇u1/2|2dx

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 29 / 129

(30)

Isoperimetric inequality for entropy

Theorem (Isoperimetric inequality for entropy)

For all probability density functions u, N[u]I[u]≥2πed.

Proof:

N[u] is concave (Costa 1985, Villani 2000) since d2N

dt2 = 2

d 2

N dH

dt 2

d 2

d2H dt2

≤0 Let v solve ∂tv = ∆v,v(0) =u:

d

dt(N[v]I[v]) = 2 dN

I2+d

2 dI dt

= 2 dN

dH dt

2

d 2

d2H dt2

≤0 N[v(t)]I[v(t)] reaches minimum as t→ ∞ ⇒ N[v(t)]I[v(t)]≥m Scaling argument: m=N[M]I[M], whereM(x) = (2πt)1d/2exp(−|x2t|2) Conclusion: N[u]I[u] =N[v(0)]I[v(0)]N[M]I[M] = 2πed

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 30 / 129

(31)

➌ Relaxation to self-similarity

Consider heat equation in whole space:

tu = ∆u in Rd, t>0, u(0) =u0, Z

Rd

u0dx = 1 Explicit solution:

u(x,t) = (4πt)d/2R

Rdexp(−|xy|2/(4t))u0(y)dy, thus u(t)→0 inL ast → ∞

Entropy is decreasing but H1[u(t)] =

Z

Rd

ulogudx ≤ Z

Rd

u(t)dxlogku(t)kL → −∞ (t→ ∞) Entropy method fails! Problem: u= 0 has not unit mass

Solution: Analyze u(t)U(t)→0, where self-similar solution U(x,t) = 1

(2π(2t+ 1))d/2 exp

− |x|2 2(2t+ 1)

Idea: Transform variables to makeU stationary: y =x/√ 2t+ 1, s = log√

2t+ 1, and v(y,s) =edsu(esy,12(e2s−1))

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 31 / 129

(32)

Relaxation to self-similarity

tu = ∆u in Rd, v(y,s) =edsu(esy,12(e2s −1)) Function v solves ∂sv = divy(∇yv+yv) in Rd

Self-similar solution becomes

M(y) = (2t+ 1)d/2U(x,t) = (2π)d/2exp(−|y|2/2) Bakry-Emery shows:

kv(s)−Mk2L1≤2e2sH1[u0], s >0 Back-transformation:

kv(s)Mk2L1 =ku(t)−U(t)k2L1, 2e2s = 2(2t+ 1)1 Theorem

Let R

Rdu0dx = 1, u solves ∂tu= ∆u in Rd, u(0) =u0, and U(x,t) = (2π(2t+ 1))d/2exp(−|x|2/(2(2t+ 1))). Then

ku(t)U(t)kL1 ≤(2t+ 1)1/2(2H1[u(0)])1/2t1/2 (t → ∞)

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 32 / 129

(33)

➍ Variable diffusion matrix

tu = div(D(x)(∇u+uV)) = div(D(x)u∇ρ) inRd, D(x)∈Rd×d Steady state: u=ceV,ρ= uu

Assumptions: D(x) pos. definite, lim|x|→∞V(x) =∞,R

Rdudx = 1 Entropy: H[u] =R

Rdφ(ρ)udx,φ convex,φ(1) = 0, 1/φ′′ concave Entropy production: dH

dt [u] =− Z

Rd

φ′′(ρ)∇ρD∇ρudx ≤0 Theorem (Arnold/Markowich/Toscani/Unterreiter 2001)

Assume H[u(0)]<∞ and

D(x) =const.,2V ≥λD1 or D(x) =a(x)I,

1 2d4

1

aa⊗ ∇a+12(∆a− ∇a· ∇V)I +a2V + 12(∇V ⊗ ∇a+∇a⊗ ∇D)≥λI Then

H[u(t)]e2λtH[u(0)], t ≥0

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 33 / 129

(34)

Nonsymmetric Fokker-Planck equations

tu = div[D(x)(∇u+u(V +F(x)))] in Rd,

Assume: div(DFu) = 0 in Rdu=ceV is still steady state Operator div(D(∇u+uV)) = div(Du∇(u/u)) symm. inL2(u1) Operator div(DuF) is skew-symmetric inL2(u1)

⇒ evolution = symmetric + skew-symmetric Entropy production: (some computations needed)

dH

dt [u] =− Z

Rd

φ(ρ)∇ρD∇ρudx− Z

Rd

φ(ρ) div(DFu)

| {z }

=0

dx

Entropy and entropy production are independent of F Prove as before that ddt2H2 + 2λdHdt ≥0

Implies exponential decay for non-symmetric equation

Bolley/Gentil 2010: Assumption div(DFu) = 0 not necessary

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 34 / 129

(35)

Degenerate Fokker-Planck equations

tu = div(D∇u+Cxu) inRd, u(0) =u0 Matrix D∈Rd×d constant anddegenerate,C ∈Rd×d

Assumption➊:∀v: CvCvv 6∈ker(D)

Consequence: u0L1uC(R+×Rd) (hypoellipticity) Assumption➋:∀λC eigenvalues ofC: Re(λC)>0

Consequence: Drift towards x = 0 due to confinement potential Theorem (Erb/Arnold 2014)

Let assumptions hold,µ= min{Re(λC)}. Thenc0>0:

H[u(t)]≤c0e2µtH[u0], t >0

if all λ∈σ(C) with Re(λ) =µare non-defective (i.e. geometric = algebraic multiplicity), otherwise reduced rate 2(µ−ε),ε >0.

Idea of proof: dHdt[u] = 0 foru 6=u possible, thus use modified functional I[u] =

Z

Rd

φ′′(ρ)∇ρP∇ρudx, P positive definite

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 35 / 129

(36)

Generalized Beckner inequalities

1 α−1

Z

Rd

uαµdx − Z

Rd

uµdx α

≤ 2 αλ

Z

Rd

D(x)|∇uα/2|2µdx Valid for uα/2H1(Rd;µ)∩L2/α(Rd;µ), 1< α≤2

Ifµ(x) =e−|x|2/2,D(x) = 1 then λ= 1 for all 1< α≤2

Question: Determine λfor D(x)6= const.? (Matthes/A.J./Toscani ’11) Example: Linearized fast-diffusion eq. ∂tu =D(x)∆ux· ∇u

D(x) =α22|x|2

µ(x) =C22|x|2)11/(2β2) β >0: no Sobolev inequality and λ→0 asα→1

Pointwise Bakry-Emery approach (Γ2 ≥λΓ) does not work

Idea: Use integral expressions Figure: p= 2/α,Cp= 2/(αλ)

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 36 / 129

(37)

➎ Nonlinear Fokker-Planck equations

Aim: Extend Bakry-Emery method to

tu = div(∇f(u) +uV) in Ω, t >0, u(0) =u0 ≥0 where Ω =Rd or Ω bounded (with no-flux boundary cond.). Assume

fC3 strictly increasing, f(0) = 0, f(s)≤ dd1sf(s),f′′(0)>0 Ω convex, ∇2V ≥λ>0, infV = 0

Example: f(s) =sm (m≥ dd1),V(x) = λ2|x|2 for x∈Rd Steady state: u(x) = (N−m2m1|x|2)1/(m+ 1),N >0 Relative entropy: H[u] =H[u]H[u], where

H[u] = Z

Rd

(Φ(u) +uV(x))dx, Φ′′(u) = f(u) u Theorem (Carrillo/A.J./Markowich/Toscani/Unterreiter 2001) Let H[u0]<∞. Then, for t >0,ku(t)ukL1eλtC(H[u0]).

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 37 / 129

(38)

Proof

(f(u) =um,V(x) =λ2|x|2)

Theorem (Carrillo/A.J./Markowich/Toscani/Unterreiter 2001) Let H[u0]<∞. Then, for t >0,ku(t)ukL1eλtC(H[u0]).

Step 1. First time derivative (entropy production) dH

dt [u] =− Z

Rd

u|∇(h(u) +V)|2dx ≤0, h(u) = m

m−1um1 Step 2. Second time derivative

d2H

dt2 [u] =−2λdH

dt [u]−2R(t) R(t) =

Z

Rd

um (m−1)(∆(h(u) +V))2+|∇2(h(u) +V)|2 dx ≥0

d2H

dt2 [u]≥ −2λdH dt [u]

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 38 / 129

(39)

Proof

(f(u) =um,V(x) =λ2|x|2) d2H

dt2 [u]≥ −2λdH dt [u]

Step 3. Functional inequality: integrate, use limt→∞ dH

dt [u(t)] = 0 dH

dt [u(t)]≤ −2λH[u0] ⇒H[u(t)]≤e2λtH[u0] Step 4. Csisz´ar-Kullback inequality: introducebu =αu1{|x|≤R}

kuukL1 ≤ ku−bukL1

| {z }

H[u]1/2

+kbuukL1

| {z }

Ceλt

Ceλt

Question: Does entropy production ineq. relate to functional ineq.? Yes:

Gagliardo-Nirenberg inequality: Let 1<p <2,uH1(Rd)∩Lp(Rd):

kukLp/2+1Ck∇ukθL1kuk1Lpθ, θ= (2+p)(d(2d(2p)p)+2p) Proof: Show R

RdvmdxAR

Rd|∇vm1/2|2dx+B(R

Rdvdx)γ,m= p+22p

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 39 / 129

(40)

Summary

Let u(t) solvetu+A(u) = 0, let u solveA(u) = 0.

Define entropy H[u]. Entropy method:

ComputedH/dt andd2H/dt2

Show that d2H/dt2+κdH/dt ≥0⇒ H[u(t)]eκtH[u(0)]

Csisz´ar-Kullback inequality gives exponentialL1 decay rate:

ku(t)ukL1e(κ/2)tC(H[u(0)]), t>0 Also yields convex Sobolev inequalitywith explicit constant:

entropy =H[u]≤κ1dHdt[u]

1×entropy production Applies toMarkov processes (see book of Bakry/Gentil/Ledoux ’14) Also yields intermediate asymptoticsof typeku(t)−U(t)kL1Ctγ Very robust for nonsymm./degenerate/nonlineardiffusion equations Problem: Many integration by parts are needed – make them systematic!

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 40 / 129

(41)

Overview

1 Introduction

2 Entropies

3 Fokker-Planck equations Bakry-Emery approach Extensions

4 Systematic integration by parts

5 Cross-diffusion systems

Examples from physics and biology Derivation, gradient flows

Boundedness-by-entropy method Extensions

6 Uniqueness of weak solutions

7 Towards discrete entropy methods Time-continuous Markov chains Time-discrete entropy methods

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 41 / 129

(42)

Systematic integration by parts: Motivation

Second time derivative d2H/dt2 requires well chosen integrations by parts.

Aim: Make the integrations by parts systematic.

Motivation: Consider thin-film equation

tu =−(uβuxxx)x in T(torus), t>0, u(0) =u0≥0 Models the flow of thin liquid along surface with film height u(x,t) Entropy Hα[u] = α(α11)R

Tuαdx: For which α >1 isHα an entropy?

dHα

dt [u] = 1 α−1

Z

T

uα1tudx = Z

T

uα+β2uxxxuxdx

=−(α+β−2) Z

T

uα+β3u2xuxxdx− Z

T

uα+β2uxx2 dx, ux2uxx = 1 3(ux3)x

=−1

3(α+β−2)(α+β−3) Z

T

uαβ4ux4dx− Z

T

uα+β2uxx2 dx≤0

if 2≤α+β ≤3 but 32 ≤α+β ≤3 is optimal!

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 42 / 129

(43)

Idea of method

Example: Thin-film equation∂tu =−(uβuxxx)x on torus T Entropy production forHα[u] = α(α11)R

Tuαdx dHα

dt [u] = 1 α−1

Z

T

uα1tudx = Z

T

uα+β2uxuxxxdx =:−EP[u]≤0 ? Standard integration by parts:

EP[u] =− Z

T

uα+β2uxuxxxdx = Z

T

uα+β1

α+β−1uxxxxdx Formalization of integration by parts:

I3 = Z

T

uα+β

(α+β−1)ux

u uxxx

u +uxxxx

u

dx

= Z

T

(uα+β1uxxx)xdx = 0

EP[u] =EP[u] +cI3 with c = α+β11

Ansgar J¨ungel (TU Wien) Entropy dissipation methods www.jungel.at.vu 43 / 129

Referenzen

ÄHNLICHE DOKUMENTE

From the ADC values measured with MRI and the true diffusion constant (D t ) the correction value ( ␣ ) was determined for each of the six principle gradient directions (as given

Because these materials were independently gathered and analyzed, the statistical results of our investigation are directly comparable to the previous analysis done by Baayen et

The problems considered above differ in terms of the data needed on distributions over the interactions, origins, and destinations. Let us introduce a classification of data

The following maple code now computes the exact solution, which is plotted to the variable a using a black solid line, the Euler solution (plotted to b gray solid),

Keywords Contour integral methods · Weighted pseudospectra · Inverse Laplace transform · Convection-diffusion equations · Elliptic contour · Parabolic contour · Hyperbolic contour

Strongly nonlinear parabolic system, cross-diffusion, segrega- tion, existence of weak solutions, uniqueness of solutions, entropy-type estimates.. 1991 Mathematics

Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods.. Les Fontaines Publiques de la Ville

Firstly, as expected the POD-greedy basis computed with normal weights performed worse than the POD-greedy basis computed with uniform weights. When trying to approximate the