• Keine Ergebnisse gefunden

Entropy methods and cross-diffusion systems

N/A
N/A
Protected

Academic year: 2022

Aktie "Entropy methods and cross-diffusion systems"

Copied!
76
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Entropy methods and cross-diffusion systems

Ansgar J¨ungel

Vienna University of Technology, Austria

asc.tuwien.ac.at/∼juengel

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 1 / 76

(2)

Contents

1 Introduction

2 Examples

3 Derivation

From kinetic models to cross diffusion From lattice random walk to cross diffusion From fluid models to cross diffusion From SDEs to cross diffusion

4 Analysis

Boundedness-by-entropy method Examples revisited

Uniqueness of weak solutions Large-time asymptotics

Structure-preserving numerical schemes

5 Nonstandard examples Van der Waals fluids

Partial averaging in economics Biofilm models

Semicondurctor energy-transport equations

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 2 / 76

(3)

Introduction

Literature

Main reference

A. J¨ungel. Entropy methods for diffusive partial differential equations. BCAM Springer Briefs, Springer, 2016.

A. J¨ungel. The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity28 (2015), 1963-2001.

A. J¨ungel. Cross-diffusion systems with entropy structure.

Proceedings of Equadiff 2017, Bratislava, pp. 181-190.

N. Zamponi and A. J¨ungel. Analysis of degenerate cross-diffusion population models with volume filling. Ann. Inst. H. Poincar´e – AN 34 (2017), 1-29. (Erratum: 34 (2017), 789-792.)

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 3 / 76

(4)

Introduction

Multi-species systems

Examples:

Wildlife populations Tumor growth Gas mixtures

Lithium-ion batteries Population herding Nature is composed of multi-species systems

+oxygen graphite

Li+ Li+

Al Cu

separator

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 4 / 76

(5)

Introduction

How to model multi-species systems?

Microscopic models:

Discrete-time Markov chains:

matrix-based models

Continuous-time Markov chains: species move to neighboring cells with transition ratep±j (ui)

Particle models: Newton’s laws with interactions for each individual Continuum models:

Stochastic differential equations: Brownian motion represents erratic motion

Kinetic equations: distribution function depends on phase-space variables (and trait parameters like age, size, maturity)

Diffusive equations: deterministic dynamics for particle densities

→ considered here

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 5 / 76

(6)

Introduction

Parabolic partial differential equations

Heat equation:

tu−∆u= 0 in Ω, t>0, initial & boundary conditions Strongly regularizing: u(0)∈L2(Ω)⇒ u(t)∈C(Ω)

Preserves nonnegativity: u(0)≥0 ⇒u(t)≥0 Reaction-diffusion equations:

tui −div(Di∇ui) =fi(u) in Ω, t >0, Di >0

Still regularizing and nonnegativity preserving (if fi ≤0 atui = 0) Global existence of weak solutions if fi at most quadratic growth Global existence of classical solutions not always guaranteed!

Problem:

Flux Di∇ui only depends onui (Fick’s law)

In multicomponent systems, flux may depend on all∇uj

⇒ cross-diffusion systems

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 6 / 76

(7)

Introduction

Cross-diffusion systems

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Meaning: div(A(u)∇u)i =Pn

j=1div(Aij(u)∇uj),A∈Rn×n,u ∈Rn Diagonal diffusion matrix: Aij(u) = 0 fori 6=j

Cross-diffusion matrix: generallyAij(u)6= 0 fori 6=j Why study cross-diffusion systems?

They arise in many applications from physics, biology, chemistry...

Diffusion-induced instabilities may arise

Cross-diffusion may allow for pattern formation

They may exhibit an unexpected gradient-flow/entropy structure

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 7 / 76

(8)

Introduction

Overview

1 Introduction

2 Examples

3 Derivation

4 Analysis

5 Nonstandard examples

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 8 / 76

(9)

Examples

Example ➊ : Cross-diffusion population dynamics

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

u = (u1,u2) andui models population density ofith species Diffusion matrix: (aij0)

A(u) =

a10+a11u1+a12u2 a12u1 a21u2 a20+a21u1+a22u2

Suggested by Shigesada- Kawasaki-Teramoto 1979 to model population segregation Lotka-Volterra functions:

fi(u) = (bi0−bi1u1−bi2u2)ui

Diffusion matrix is not symmetric, generally not positive definite

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 9 / 76

(10)

Examples

Example ➋ : Ion transport through nanopores

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Central in biological processes such as neural signal transmission and electrical excitability of muscles

(u1, . . . ,uN) ion volume fractions, uN = 1−PN−1 j=1 uj

Diffusion matrix forN = 4:

A(u) =

D1(1−u2−u3) D1u1 D1u1 D2u2 D2(1−u1−u3) D2u2 D3u3 D3u3 D3(1−u2−u3)

Derived by Burger-Schlake-Wolfram 2012 from lattice model Electric field neglected to simplify

Diffusion matrix generally not positive definite – expect that

0≤ui ≤1 +

+

+ +

+

+ + +

positive neutral

avidin

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 10 / 76

(11)

Examples

Example ➌ : Tumor-growth modeling

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Volume fractions of tumor cells u1, extracellular matrix u2, nutrients/wateru3= 1−u1−u2

Diffusion matrix: (β,θ: pressure parameters) A(u) =

2u1(1−u1)−βθu1u22 −2βu1u2(1 +θu1)

−2u1u2+βθu22(1−u2) 2βu2(1−u2)(1 +θu1)

Derived by Jackson-Byrne 2002 from continuum fluid model Describes avascular growth of symmetric tumor

Diffusion matrix generally not positive definite – expect that 0≤ui ≤1

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 11 / 76

(12)

Examples

Example ➍ : Multicomponent gas mixtures

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Volume fractions of gas components u1,u2,u3 = 1−u1−u2 Diffusion matrix: δ(u) =d1d2(1−u1−u2) +d0(d1u1+d2u2)

A(u) = 1 δ(u)

d2+ (d0−d2)u1 (d0−d1)u1 (d0−d2)u2 d1+ (d0−d1)u2

Application: Patients with airway obstruction inhale Heliox to speed up diffusion

Proposed by Maxwell 1866/Stefan 1871 Duncan-Toor 1962: Fick’s law (Ji ∼ ∇ui) not sufficient, include cross-diffusion terms Boudin-Grec-Salvarani 2015: Derivation from Boltzmann equation for simple mixtures

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 12 / 76

(13)

Examples

Difficulties and objectives

tu−div(A(u)∇u) =f(u) in Ω, t >0, u(0) =u0 Main features:

Diffusion matrixA(u) non-diagonal(cross-diffusion)

Matrix A(u) may be neithersymmetric norpositive definite Variables ui expected to bebounded from below and/or above Objectives:

Derivation of equations (formal or rigorous)

Global-in-time existence and uniqueness of weak solutions Positivity and boundedness of solution (if physically expected) Large-time behavior, design of stable numerical schemes Mathematical difficulties:

No general theory for diffusion systems

Generally no maximum principle, no regularity theory Lack of positive definiteness⇒ global existence nontrivial

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 13 / 76

(14)

Examples

Overview

1 Introduction

2 Examples

3 Derivation

4 Analysis

5 Nonstandard examples

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 14 / 76

(15)

Derivation

Derivation of cross-diffusion systems

From random-walk lattice models: Taylor expansion of transition rates and cell size h→0

→ population dynamics & ion transport models From fluid models: diffusion scale in balance equations and force proportional to velocity differences

→ tumor-growth & Maxwell-Stefan models

From kinetic transport equationsfor distribution function f(x,v,t):

mean-free path limit in momentsR

f(x,v,t)φ(v)dv,

→ Maxwell-Stefan equations

From stochastic differential equations: large-number limit, Ito formula

→ cross-diffusion models for multi-species systems

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 15 / 76

(16)

Derivation From kinetic models to cross diffusion

➊ From kinetic models to cross diffusion

Due to Boudin-Grec-Salvarani 2015

Boltzmann transport equation for fi(x,v,t) in diffusion scaling ε∂tfi +v· ∇xfi = 1

εQi(fi,fi) +1 ε

X

j6=i

Qij(fi,fj), i = 1, . . . ,n

Qi mono-species,Qij bi-species collision operators Collisions are elastic, conserve mass: R

R3(Qi+P

j6=iQij)dv = 0 Particle densities and fluxes:

ρi(x,t) = Z

R3

fi(x,v,t)dv, Xn

i=1

ρi(x,t) = 1, ερi(x,t)vi(x,t) =

Z

R3

fi(x,v,t)vdv

Ansatz: fi(x,v,t) =Mi := (2π)−3/2ρi(x,t) exp(−|v−εvi(x,t)|2/2) (justification: fi close to equilibriumMi,fi =Mi+O(ε))

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 16 / 76

(17)

Derivation From kinetic models to cross diffusion

➊ From kinetic models to cross diffusion

ε∂tfi +v· ∇xfi−1Qi(fi,fi) +ε−1X

j6=i

Qij(fi,fj)

1 Ansatz: fi(x,v,t) =Mi := (2π)−3/2ρi(x,t) exp(−|v−vi(x,t)|2/2)

2 Insert into Boltzmann equation, multiply by (1,v), and integrate:

tρi + divxivi) = 0, ε∂tivi) + divx

Z

R3

fiv⊗vdx =ε−1X

j6=i

Z

R3

Qij(fi,fj)vdv

3 Compute integrals:

ε∂tivi) +εdivxivi⊗vi) +ε−1∇ρi−1X

j6=i

Dijρiρj(vj −vi)

4 Limitε→0 gives Maxwell-Stefan system:

tρi + div(ρivi) = 0, ∇ρi =X

j6=i

Dijρiρj(vj −vi), i = 1, . . . ,n

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 17 / 76

(18)

Derivation From kinetic models to cross diffusion

Maxwell-Stefan system

tρi −divJi =fi(ρ), ∇ρi =X

j6=i

DijjJi −ρiJj) =: (CJ)i, i = 1, . . . ,n

Volume fractions of gas components ρi,Pn

i=1ρi = 1 Can we write this as ∂tρi = div(Pn−1

j=1 Aij∇ρi)? Yes!

Invert ∇ρ=CJ on ker(C), ker(C) ={1}:

tρi−divJi =fi(ρ), Ji = Xn−1

j=1

Aij∇ρj, i = 1, . . . ,n−1 Matrix (Aij) generally not symm. positive

definite →use entropy variables Local existence analysis: Bothe 2011, Herberg-Meyries-Pr¨uss-Wilke 2017

Global existence analysis: Giovangigli 1999, A.J.-Stelzer 2013

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 18 / 76

(19)

Derivation From lattice random walk to cross diffusion

➋ From lattice random walk to cross diffusion

Single species: one space dimension to simplify

Master equation: time variation = incoming −outgoing

tu(xi) =p(u(xi−1) +u(xi+1))−2pu(xi) Taylor expansion: (h = grid size)

u(xi±1)−u(xi) =±h∂xu(xi) +12h2x2u(xi) +O(h3) Diffusion scaling: t7→t/h2 ⇒ ∂t h2t

h2tu(xi) =p(u(xi−1)−u(xi)) +p(u(xi+1)−u(xi))

=ph2x2u(xi) +O(h3)

Limith→0 gives ∂tu(x) =p∂x2u(x)(heat equation)

Rigorous limit: De Masi, Lebowitz, Sinai, Spohn etc. (from 1980s on)

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 19 / 76

(20)

Derivation From lattice random walk to cross diffusion

➋ From lattice random walk to cross diffusion

Multiple species:

Master equation for particle number uj(xi) atith cell:

tuj(xi) =p+j,iuj(xi−1) +pj,i+1uj(xi+1)−(p+j,i+pj,i)uj(xi) Transition rates: pj±,i =pi(u(xj))qi(un(xj±1))

Taylor expansion, diffusion scaling and limith→0 leads to system of diffusion equations

tuj =∂x

n

X

k=1

Ajk(u)∂xuk

, j = 1, . . . ,n

Multi-dimensional case analogous Examples:

qi = 1: Aij(u) = ∂u

j(uipi(u)) gives population dynamics models pi = 1: Aij(u) =δijqi(un) +ui d

dunq(un) gives volume-filling models

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 20 / 76

(21)

Derivation From lattice random walk to cross diffusion

Population dynamics & ion transport models

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Population dynamics model: qi(u) = 1

u = (u1, . . . ,un) andui models population density ofith species Diffusion coefficients for pi(u) =ai0+ai1u1+· · ·+ainun:

Aij(u) = ∂

∂uj(uipi(u)) =δijai0ij

Xn

k=1

aikuk+aijui

Global existence: Kim 1984, Amann 1989, Chen-A.J. 2004 Ion transport model: pi(u) = 1

Ion concentration ui, solvent concentration un,Pn

j=1uj = 1 Diffusion coefficients for qi(un) =Diun:

Aij(u) =δijqi(un) +uiq(un) =δijDiun+Diui

Global existence: Burger et al. 2012, A.J. 2015, Zamponi-A.J. 2015

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 21 / 76

(22)

Derivation From fluid models to cross diffusion

➌ From fluid models to cross diffusion

Mass and force balance equations:

tui+ div(uivi) = 0, i = 1, . . . ,n ε ∂t(uivi) + div(uivi ⊗vi)

−divTi−p∇ui =fi Force terms: fi =Pn

j=1kij(vj−vi)uiuj Properties: Pn

i=1ui = 1, Pn

i=1uivi = 0,Pn

i=1fi = 0

Interphase pressure: p∇ui,p: phase pressure (Drew-Segel 1971) Assumptions:

Inertia approximation: ε= 0 Stress tensor: Ti =ui(pId +Pi) Pressures: Pi =Pi(u),Pn= 0,k :=kij Consequences:

k :=kij implies thatfi =−kuivi

Pressure: −divTi−p∇ui =ui∇p+ div(uiPi)

tui + div(uivi) = 0, ui∇p+ div(uiPi) =−kuivi

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 22 / 76

(23)

Derivation From fluid models to cross diffusion

From fluid models to cross diffusion

tui + div(uivi) = 0, ui∇p+ div(uiPi) =−kuivi

Aim: eliminatep andvi

Add all force balance equations:

0 =−k Xn

i=1

uivi = Xn

i=1

ui∇p+ div(uiPi)

=∇p+

n−1X

i=1

div(uiPi) Replace∇p and expand divPi =Pu−1

j=1 ∂Pi

∂uj∇uj:

tui+

n−1X

j=1

div(Aij(u)∇uj) = 0, i = 1, . . . ,n−1 Diffusion coefficients:

Aii = (1−ui)

Pi+ui

∂Pi

∂ui

−ui

X

j6=i

uj

∂Pj

∂ui, Aij =ui(1−ui)∂Pi

∂uj −uiPj−ui

X

k6=i

uk

∂Pk

∂uj , j 6=i.

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 23 / 76

(24)

Derivation From fluid models to cross diffusion

Tumor-growth & Maxwell-Stefan models

Tumor-growth model:

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Volume fractions of tumor cells u1, extracellular matrix u2,

nutrients/wateru3 = 1−u1−u2, describes avascular growth of tumor Diffusion matrix forn= 3, P1 =u1,P2 =βu2(1 +θu1):

A(u) =

2u1(1−u1)−βθu1u22 −2βu1u2(1 +θu1)

−2u1u2+βθu22(1−u2) 2βu2(1−u2)(1 +θu1)

Maxwell-Stefan systems:

General limit diffusion model:

tui + div(uivi) = 0, ui∇p+ div(uiPi) =− Xn

j=1

kij(vj −vi)uiuj p = 0 (no phase pressure),Pi = 1

tui + div(uivi) = 0, ∇ui =− Xn

j=1

kij(vj −vi)uiuj

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 24 / 76

(25)

Derivation From SDEs to cross diffusion

➍ From SDEs to cross diffusion

dXik =− Xn

j=1

1 N

XN

ℓ=1

∇Vijη(Xik −Xj)dt+√

idWik, Xik(0) =ξik Interacting particles with numbers N=N1, . . . ,N =Nn, trajectories Xik (i = 1, . . . ,n,k= 1, . . . ,N)

Potential: Vijη(x) =η−dVij(x/η), η >0,

Given i.i.d. random variables ξki and∇Vijη bounded Lipschitz

⇒ ∃! i.i.d. solutionXik with common lawµi Aim: limitN → ∞,η→0

Expected result: (L. Chen-Daus-A.J., in progress) µi →µi in measure as N→ ∞,µi with densityui

tui = div

σi∇ui + Xn

j=1

aijui∇uj

, aij = Z

Vij(|x|)dx Open question: How to derive, e.g., population model?

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 25 / 76

(26)

Derivation From SDEs to cross diffusion

Overview

1 Introduction

2 Examples

3 Derivation

4 Analysis

5 Nonstandard examples

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 26 / 76

(27)

Analysis

Local existence analysis

tu−div(A(u)∇u) =f(u) in Ω⊂Rd, t >0, u(0) =u0 Theorem (Amann 1990)

Let aij, fi smooth, A(u) normally elliptic, u0 ∈W1,p(Ω;Rn) with p>d . Then ∃ unique local solution u

u∈C0([0,T);W1,p(Ω)), u ∈C(Ω×[0,T);Rn), 0<T ≤ ∞ A(u) normally elliptic = all eigenvalues have positive real parts Linear algebra: If H(u) symmetric positive definite such that H(u)A(u) positive definite then A(u) normally elliptic

Application: Let h(u) convex and set H(u) :=h′′(u). Then, iff = 0, d

dt Z

h(u)dx = Z

h(u)·∂tudx =− Z

∇u:h′′(u)A(u)∇u

| {z }

≥0 ifh′′(u)A(u) pos. def.

dx Aim: find a Lyapunov functional (entropy) h(u)

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 27 / 76

(28)

Analysis

State of the art

tu−div(A(u)∇u) =f(u) in Ω⊂Rd, t>0 Global existence if . . .

Growth conditions on nonlinearities (Ladyˇzenskaya ... 1988) Control onW1,p(Ω) norm withp >d (Amann 1989) Invariance principle holds (Redlinger 1989, K¨ufner 1996) Positivity, mass control, diagonal A(u) (Pierre-Schmitt 1997) Unexpected behavior:

Finite-time blow-up of H¨older solutions (Star´a-John 1995) Weak solutions may exist after L blow-up (Pierre 2003)

Cross-diffusion may lead to pattern formation (instability) or may avoid finite-time blow-up (Hittmeir-A.J. 2011)

Special structure needed for global existence theory:

gradient-flow orentropy structure

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 28 / 76

(29)

Analysis

Entropy and gradient flows

Entropy: Measure of molecular disorder or energy dispersal Introduced by Clausius (1865) in thermodynamics Boltzmann, Gibbs, Maxwell: statistical interpretation Shannon (1948): concept of information entropy Entropy in mathematics: ∼convex Lyapunov functional

Hyperbolic conservation laws (Lax), kinetic theory (Lions) Relations to stochastic processes (Bakry, Emery) and optimal transportation (Carrillo, Otto, Villani)

Gradient flow: ∂tu=−gradH|u on differential manifold Example: Rd with Euclidean structure ⇒ ∂tu =−H(u) H(u) is Lyapunov functional since∂tH(u) =−|H(u)|2 Gradient flow of entropy w.r.t. Wasserstein distance (Otto) Entropy H(u) =R

ulogudx: ∂tu = div(u∇H(u)) = ∆u

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 29 / 76

(30)

Analysis

Gradient flows: Cross-diffusion systems

Main assumption

tu−div(A(u)∇u) =f(u) possesses formal gradient-flow structure

tu−div B∇gradH(u)

=f(u), where B is positive semi-definite,H(u) =R

h(u)dx entropy Equivalent formulation: gradH(u)≃h(u) =:w (entropy variable)

tu−div(B∇w) =f(u), B =A(u)h′′(u)−1 Consequences:

1 H is Lyapunov functional if f = 0:

dH dt =

Z

tu·h(u)

| {z }

=w

dx =− Z

∇w :B∇wdx ≤0

2 L bounds for u: Leth :D→Rn (D ⊂Rn) be invertible⇒ u = (h)−1(w)∈D (no maximum principle needed!)

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 30 / 76

(31)

Analysis

Example: Maxwell-Stefan systems for n = 3

Volume fractions of gas components u1,u2,u3 = 1−u1−u2

tu−div(A(u)∇u) = 0 in Ω, t >0, u(0) =u0, no-flux b.c.

A(u) = 1 δ(u)

d2+ (d0−d2)u1 (d0−d1)u1 (d0−d2)u2 d1+ (d0−d1)u2

Entropy: H(u) =R

h(u)dx, where

h(u) =u1(logu11) +u2(logu21) + (1u1u2)(log(1u1u2)1)

Entropy variables: w =h(u)∈R2 or u= (h)−1(w) wi = ∂h

∂ui = logui

u3, ui = ewi

1 +ew1+ew2∈(0,1) Entropy production:

dH

dt (u) =− Z

2

X

i=1

di|∇ui|2

ui +d0u1u2|∇u3|2 u3

dx ≤0

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 31 / 76

(32)

Analysis

Relation to nonequilibrium thermodynamics

Chemical potential: µi =−∂ρ∂si,s: physical entropy density,ρi: mass density of ith species

Entropy variables: wi = ∂ρ∂h

i,h =−s: mathematical entropy Mixture of ideal gases: µi0i + logρi0i = const. ⇒

wi =−∂s

∂ρi

0i + logρi or ρi =ewi−µ0i Non-ideal gases: µi = logai,aiiρi: thermodynamic activity Example: volume-filling case, γi = 1 +Pn−1

j=1 aj

ρi = ai γi

= ai

1 +Pn−1 j=1 ai

= exp(µi) 1 +Pn−1

j=1 exp(µi)

→ exactly the expression for the ion-transport model!

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 32 / 76

(33)

Analysis Boundedness-by-entropy method

Boundedness-by-entropy method

tu(w)−div(B(w)∇w) =f(u(w)) in Ω, t >0, u|t=0 =u0, no-flux b.c.

d dt

Z

h(u)dx = Z

h(u)

| {z }

=w

·∂tudx =− Z

∇w :B(w)∇wdx+ Z

f(u)·wdx Assumptions:

1 ∃ entropy densityh∈C2(D; [0,∞)), h invertible on D ⊂Rn Example: h(u) =ulogu for u∈D= (0,∞),

u = (h)−1(w) =ew ∈D

2 “Degenerate” positive definiteness: h′′(u)A(u)≥diag(ai(ui)2)

∇wB(w)∇w =∇uh′′(u)A(u)∇u ≥ Xn

i=1

ai(ui)2|∇ui|2 Gives estimate for|∇αi(ui)|2, where αi(ui) =ai(ui)∼uimi−1

3 Acontinuous on D,∃C >0 :∀u ∈D: f(u)·h(u)≤C(1 +h(u)) Needed to control reaction termf(u)

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 33 / 76

(34)

Analysis Boundedness-by-entropy method

Boundedness-by-entropy method

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Assumptions:

1 ∃ convex entropyh∈C2(D; [0,∞)), h invertible on D ⊂Rn

2 “Degenerate” positive definiteness: for allu ∈D, zh′′(u)A(u)z ≥

Xn

i=1

ai(u)2zi2, ai(u)∼uimi−1

3 Acontinuous on D,∃C >0 :∀u ∈D: f(u)·h(u)≤C(1 +h(u)) Theorem (A.J.,Nonlinearity 2015)

Let the above assumptions hold, let D ⊂Rn bebounded, u0∈L1(Ω)∩D.

Then ∃ global weak solution such that u(x,t)∈D and

u∈L2loc(0,∞;H1(Ω)), ∂tu ∈L2loc(0,∞;H1(Ω))

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 34 / 76

(35)

Analysis Boundedness-by-entropy method

Boundedness-by-entropy method

Theorem (A.J.,Nonlinearity 2015)

Let the above assumptions hold, let D ⊂Rn be bounded, u0∈L1(Ω)∩D.

Then ∃ global weak solution such that u(x,t)∈D and

u∈L2loc(0,∞;H1(Ω)), ∂tu ∈L2loc(0,∞;H1(Ω)) Remarks:

Result valid for rather general model class

YieldsL boundswithout using a maximum principle

Boundedness assumption onD is strong but can be weakened in some cases; see examples below

Main assumptions: existence of entropy h, pos. def. of h′′(u)A(u) How to find entropy functionsh? Physical intuition, trial and error Yields immediately global existence for Maxwell-Stefan

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 35 / 76

(36)

Analysis Boundedness-by-entropy method

Proof of existence theorem

tu−div(A(u)∇u) =f(u) or ∂tu(w)−div(B(w)∇w) =f(u(w)) Key ideas:

Discretize in time: replace ∂tu(w) by approximation involvingu(wk) Benefit: avoid issues with time regularity

Regularize in space by adding “ε(−∆)mwk”,ε >0

Benefit: since div(B(w)∇w) is not uniformly elliptic; yields solutions wk ∈Hm(Ω)⊂L(Ω) ifm>d/2

Solve problem inwk by fixed-point argument

Benefit: problem in w-formulation is elliptic (not true for u-formulation)

Perform limit (ε, τ)→0, obtain solutionu(t) = limu(wk) Benefit: compactness comes from entropy estimate; Lbounds coming from u(wk)∈D ⇒ u ∈D

Strategy: problem inu → solve inw → limit solves problem in u

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 36 / 76

(37)

Analysis Boundedness-by-entropy method

Proof of existence theorem

tu−div(A(u)∇u) =f(u) or ∂tu(w)−div(B(w)∇w) =f(u(w)) More details:

Implicit Euler: Replace∂tu(tk) by τ1(u(wk)−u(wk−1)),tk =kτ to obtain elliptic problems, wk: entropy variable

Regularization: Add ε(−1)mP

|α|=mDw +εw, where Hm(Ω)⊂L(Ω) uniform ellipticity

Solve approximate problem using Leray-Schauder fixed-point theorem Derive estimates uniform in (τ, ε) from entropy production estimate Use compactness to perform the limit (τ, ε)→0

Approximate problem: Given wk−1∈L(Ω), solve 1

τ Z

(u(wk)−u(wk−1))·φdx+ Z

∇φ:B(wk)∇wkdx +ε

Z

X

|α|=m

Dαwk ·Dαφ+wk·φ

dx = Z

f(u(wk))·φdx

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 37 / 76

(38)

Analysis Boundedness-by-entropy method

Step ➊ : Lax-Milgram argument

DefineS :L(Ω)×[0,1]→L(Ω), S(y, δ) =wk andwk solves linearproblem:

a(wk, φ) = Z

∇φ:B(y)∇wkdx+ε Z

X

|α|=m

Dαwk ·Dαφ+wk·φ

dx

=−δ τ

Z

(u(y)−u(wk−1))·φdx+δ Z

f(u(y))·φdx =F(φ) Lax-Milgram lemma gives solution wk ⇒ S well defined

Properties: S(y,0) = 0,S compact (since Hm֒→L compact) Theorem (Leray-Schauder)

Let B Banach space, S :B×[0,1]→B compact, S(y,0) = 0for y ∈B,

∃C >0 :∀y ∈B, δ ∈[0,1] : S(y, δ) =y ⇒ kykB ≤C. Then S(·,1)has a fixed point.

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 38 / 76

(39)

Analysis Boundedness-by-entropy method

Step ➋ : Leray-Schauder argument

Discrete entropy estimate: choose test fct. wk,τ ≪1, use h convex δ

Z

h(u(wk))dx+τ Z

∇wk :B∇wkdx+ετCkwkk2Hm

≤ Cτ

|{z}

<1

δ Z

(1 +h(u(wk)))dx+ δ

|{z}

≤1

Z

h(u(wk−1))dx YieldskwkkL ≤CkwkkHm ≤C(ε, τ) ⇒ estimate uniform in (wk, δ) Leray-Schauder: ∃ solution wk ∈Hm(Ω)

Sum discrete entropy estimate (slightly simplified):

Z

h(u(wk))dx+Cτ Xk

j=1

Xn

i=1

Z

|∇ui(wk)mi|2dx +ετC

Xk

k=1

kwjk2Hm ≤C Idea: derive estimates foru =u(w), not forw

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 39 / 76

(40)

Analysis Boundedness-by-entropy method

Step ➌ : uniform estimates

Estimates uniform in (τ, ε): setu(τ)(·,t) =u(wk),t ∈((k−1)τ,kτ] k(ui(τ))mikL2(0,T;H1)+√

εkw(τ)kL2(0,T;Hm)≤C τ−1ku(τ)(t)−u(τ)(t−τ)kL2(τ,T;(Hm))≤C Lemma (Aubin-Lions 1963/69)

Let ku(τ)kL2(0,T;H1)+k∂tu(τ)i kL2(0,T;Hm(Ω))≤C .

Then exists subsequence u(τ)→u strongly in L2(0,T;L2).

Problem: discrete time derivative and nonlinear estimate Lemma (Discrete Aubin-Lions; Simon 1987)

Let X ֒→B compact and B ֒→Y continuous, 1≤p<∞, and ku(τ)kLp(0,T;X)≤C, sup

τ >0

h→0limku(τ)(t)−u(τ)(t−h)kL1(τ,T;Y)= 0 Then (u(τ)) is relatively compact in Lp(0,T;B).

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 40 / 76

(41)

Analysis Boundedness-by-entropy method

Step ➌ : uniform estimates

Lemma (Discrete Aubin-Lions; Dreher-A.J., 2012) If additionally,(u(τ))piecewise constant in time, and

ku(τ)kLp(0,T;X)−1ku(τ)(t)−u(τ)(t−τ)kL1(τ,T;Y) ≤C Then (u(τ)) is relatively compact in Lp(0,T;B).

Benefit: studyu(τ)(t)−u(τ)(t−τ), not allu(τ)(t)−u(τ)(t−h) Theorem (Nonlinear Aubin-Lions lemma, Chen/A.J./Liu 2014) Let (u(τ)) be piecewise constant in time, k∈N, s ≥ 12, and

τ−1ku(τ)(t)−u(τ)(t−τ)kL1(τ,T;(Hk))+k(u(τ))skL2(0,T;H1)≤C Then exists subsequence u)→u strongly in L2s(0,T;L2s)

Remark: Result can be generalized to (u(τ))s ∈Lp(0,T;W1,q) and φ(u(τ))∈L2(0,T;H1) if (u(τ)) bounded in L,φmonotone

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 41 / 76

(42)

Analysis Boundedness-by-entropy method

Step ➍ : limit ( τ, ε ) → 0

1 τ

Z T 0

Z

(u(τ)(t)−u(τ)(t−τ))·φdxdt+ Z T

0

Z

∇φ:A(u(τ))∇u(τ)dxdt +ε

Z T 0

Z

X

|α|=m

Dαw(τ)·Dαφ+w(τ)·φ

dxdt = Z T

0

Z

f(u(τ))·φdxdt Nonlinear Aubin-Lions lemma:

u(τ)→u strongly inL2(0,T;L2) εw(τ)→0 strongly inL2(0,T;Hm) A(u(τ))∇u(τ)⇀A(u)∇u weakly inL2(0,T;L2) Limit (τ, ε)→0 in weak formulation ⇒u solves diffusion system u satisfies initial datum: Show that linear interpolant of (u(τ)) is bounded in C0([0,T]; (Hm)) ⇒u(·,0) =u0 defined in Hm(Ω) Boundary conditions: Contained in weak formulation

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 42 / 76

(43)

Analysis Boundedness-by-entropy method

Summary of existence analysis

Theorem (A.J. 2014)

Let the above assumptions hold, let D ⊂Rn be bounded, u0 ∈L1(Ω)∩D.

Then ∃ global weak solution such that u(x,t)∈D and

u∈L2loc(0,∞;H1(Ω)), ∂tu ∈L2loc(0,∞;H1(Ω)) Strategy of the proof:

Implicit Euler discretization and (−∆)m regularization Entropy formulation gives a priori estimates and L bounds Compactness from nonlinear Aubin-Lions lemma

Benefits:

General global existence theorem

Yields bounded weak solutions without a maximum principle Limitations:

Boundedness of domain D, how to find entropy density h?

Particular positive definiteness condition onh′′(u)A(u)

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 43 / 76

(44)

Analysis Examples revisited

➊ Tumor-growth model

tu−div(A(u)∇u) =f(u) in Ω, t>0, u(0) =u0, no-flux b.c.

Volume fractions of tumor cells u1, extracellular matrix (ECM) u2, nutrients/wateru3= 1−u1−u2, one space dimension

Diffusion matrix: (β,θ: pressure parameters) A(u) =

2u1(1−u1)−βθu1u22 −2βu1u2(1 +θu1)

−2u1u2+βθu22(1−u2) 2βu2(1−u2)(1 +θu1)

Entropy: H(u) =R

h(u)dx, where

h(u) =u1(logu1−1)+u2(logu2−1)+(1−u1−u2)(log(1−u1−u2)−1) Entropy production inequality:

dH

dt [u] +Cθ Z

(∂xu1)2+ (∂xu2)2

dx ≤C(f) andCθ>0if θ <4/√

β

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 44 / 76

(45)

Analysis Examples revisited

Tumor-growth model

Theorem (A.J./Stelzer, M3AS 2012) Let θ <4/√

β, H(u0)<∞ ⇒ ∃bounded weak solution with 0≤u1,u2≤1

Question: What happens forθ >4/√ β?

Partial answer: Numerical results show “peaks” in ECM fraction

0 0.2 0.4 0.6 0.8 1

0 0.05 0.1 0.15 0.2 0.25

Spatial position

Tumor cells

0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5 0.6

Spatial position

Extracellular matrix

Tumor front spreads from left to right (production ratef(u) = 0 ) Tumor causes increase of ECM (encapsulation of tumor)

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 45 / 76

(46)

Analysis Examples revisited

➋ Maxwell-Stefan model

tui −divJi =fi(u), ∇ui =X

j6=i

cij(ujJi −uiJj) =: (CJ)i

ui(0) =ui0, i = 1, . . . ,n, no-flux b.c.

Volume fractions ui, fluxes Ji

Problem: need to invert relation∇ui ↔Ji but not invertible since Pn

i=1ui = 1 ⇒ Pn

i=1∇ui = 0

Solution: solve ∇u =CJ on ker(C) using Perron-Frobenius theorem

⇒ J =C0−1∇u, whereu= (u1, . . . ,un−1),J = (J1, . . . ,Jn−1) Entropy structure: h(u) =Pn

i=1ui(logui −1), un= 1−Pn−1 i=1 ui

Equations: ∂tu−div(B(w)∇w) =f(u(w))

Difficulty: show thatB(w) =C0−1h′′(u(w))−1 positive definite Boundedness-by-entropy theorem applies with D= (0,1)n−1:

∃ global weak solutionui1/2 ∈L2(0,T;H1), 0≤ui ≤1,Pn−1

i=1 ui ≤1

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 46 / 76

(47)

Analysis Examples revisited

➌ Population model of Shigesada-Kawasaki-Teramoto

tu−div(A(u)∇u) = 0 in Ω, t >0, u(0) =u0, no-flux b.c.

A(u) =

a10+a11u1+a12u2 a12u1 a21u2 a20+a21u1+a22u2

Entropy: H(u) =R

h(u)dx =R

P2

i=1ui(logui −1) defined on unbounded domainD = (0,∞)2

Entropy production: for some C >0, iff(u) = Lotka-Volterra term dH

dt [u]≤ −C X2

i=1

Z

(ai0+aiiu1)|∇√u1|2+|∇√u1u2|2 dx+C Main difficulty: We do not have (ui) bounded in L(Ω) but only (√ui) bounded in L6(Ω) (if space dimension≤3)

Theorem (Chen-A.J.,SIMA 2004-2006)

Let ai0 >0or aii >0. Then ∃nonnegative weak solution(u1,u2)

Ansgar J¨ungel (TU Wien) Cross-diffusion systems asc.tuwien.ac.at/juengel 47 / 76

Referenzen

ÄHNLICHE DOKUMENTE

The development of a machine condition monitoring system based on acoustic signals points out a way to develop software for a real-time hardware platform with help of Simulink

Several components along the work-flow of a typical QA system were identified: a Unit Alignment component in cross-language envi- ronments and a Query Expansion compo-

described in our data bank into two parts: heavy machinery (non- electrical machinery and transportation equipment) and precision production (electrical machinery

Strongly nonlinear parabolic system, cross-diffusion, segrega- tion, existence of weak solutions, uniqueness of solutions, entropy-type estimates.. 1991 Mathematics

We group countries in two categories, low and high income countries, and show that the Internet diffusion process is well characterized by an S-shape curve for both groups..

Self-organization of multipotential vascular mesenchymal cells (VMCs) is predicted by a reaction-diffusion model Successful identification of the specific morphogens Model

Reaction diffusion equations using Cattaneo’s system are derived for prisoner’s dilemma (PD) and hawk-dove (HD) games. Nonlinear wave solutions are derived for them. As expected

In the complex K-user multicarrier MIMO IFC-TIN with constraints on the complex per-carrier noise covariance matrices, the worst-case noise is proper and CN if the transmit signals