• Keine Ergebnisse gefunden

Lecture 7: Details of the Acoustic Oscillation

N/A
N/A
Protected

Academic year: 2022

Aktie "Lecture 7: Details of the Acoustic Oscillation"

Copied!
55
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Lecture 7: Details of the Acoustic Oscillation

1

(2)

2

(3)

What did the stones represent?

A stone is dropped when a fluctuation

“enters the horizon”.

In a decelerating Universe, we can see more of the Universe as time goes by.

New, longer wavelength

fluctuations keep entering the

horizon, perturbing the photon-baryon fluid.

10 Gpc today 1 Gpc today 100 Mpc today

10 Mpc today 1 Mpc today

“enter the horizon”

Radiation Era Matter Era

today’s scale factor

[c/H(a)]

<latexit sha1_base64="Dk5Da7ZtW1pW9M5lXDMH7zaYW3Q=">AAACGHicdVDLSgNBEJz1GeMr6tHLYDDESzK7JDE5CKIXjwrGBLJJmJ1MzJDZBzO9QljyGV78FS8eFPHqzb9x8hBUtKChqOqmu8uLpNBAyIe1sLi0vLKaWkuvb2xubWd2dm90GCvG6yyUoWp6VHMpAl4HAZI3I8Wp70ne8IbnE79xx5UWYXANo4i3fXobiL5gFIzUzRRzNA9HbqTCCEIMncQuOmPXTed63Qtj4BPsMPiyacfpZrKkUKtWSMnBpEBI1SEVQ8rErtk1bBtlgiya47KbeXd7IYt9HgCTVOuWTSJoJ1SBYJKP026seUTZkN7ylqEB9bluJ9PHxvjQKD3cD5WpAPBU/T6RUF/rke+ZTp/CQP/2JuJfXiuGfrWdiCCKgQdstqgfSzzJwKSEe0JxBnJkCGVKmFsxG1BFGZgs0yaEr0/x/+TGKdjlArkqZU/P5nGk0D46QHlko2N0ii7QJaojhu7RI3pGL9aD9WS9Wm+z1gVrPrOHfsB6/wT2/p3i</latexit>

a(t) / t

1/2

d

H

(t) = 2ct / a

2

a(t) / t

2/3

d

H

(t) = 3ct / a

3/2

3

(4)

4

Fluctuations

Entering the Horizon

• The initial impact for a

given wavelength.

(5)

Three Regimes

Super-horizon scales [q < aH]

Only gravity is important

Evolution differs from Newtonian: We need GR

Sub-horizon but super-sound-horizon [aH < q < aH/cs]

Only gravity is important

Evolution similar to Newtonian

Sub-sound-horizon scales [q > aH/cs]

Hydrodynamics important -> Sound waves

5

(6)

Part I: Super-horizon Scale:

Conserved Curvature Perturbation

6

(7)

The Stone, “ ζ

Conserved quantity on the super-horizon scale, q << aH

• For the adiabatic initial condition, there exists a useful quantity, ζ, which remains constant on large scales (super-horizon scales, q << aH)

regardless of the contents of the Universe.

• ζ is conserved regardless of whether the Universe is radiation-dominated, matter-dominated, or whatever.

Derivation: Energy conservation for q << aH:

Bardeen, Steinhardt & Turner (1983);

Weinberg (2003); Lyth, Malik & Sasaki (2005)

7

(8)

The “ ζ

Conserved quantity on the super-horizon scale, q << aH

• If pressure is a function of the energy density only, i.e.,

Bardeen, Steinhardt & Turner (1983);

Weinberg (2003); Lyth, Malik & Sasaki (2005)

Integrate

integration constant

8

(9)

The “ ζ

Conserved quantity on the super-horizon scale, q << aH

• If pressure is a function of the energy density only, i.e.,

Bardeen, Steinhardt & Turner (1983);

Weinberg (2003); Lyth, Malik & Sasaki (2005)

integration constant

For the adiabatic initial

condition, all species share the same value of ζ α , i.e., ζ α =ζ

9

(10)

q EQ

The wavenumber of the fluctuation that entered the horizon during the equality time

• Which fluctuation entered the horizon before the matter-radiation equality?

q

EQ

= a

EQ

H

EQ

~ 0.01 (Ω

M

h

2

/0.14) Mpc

–1

• At the last scattering surface, this subtends the multipole of

l EQ = q EQ r L ~ 140

10

100 Mpc today

(11)

Entered the horizon during the radiation era

11

(12)

What determines the

locations and the heights of the acoustic peaks?

Does the sound-wave solution explain them?

12

(13)

Part II: Locations of the Acoustic Peaks

13

(14)

Peak Locations?

VERY roughly speaking, the angular power spectrum Cl is given by

[

] 2

with q -> l/rL.

Question: What determines the integration constants, A and B?

Answer: They are determined by the initial conditions; namely, adiabatic or not.

For the adiabatic initial condition, A >> B when q is large.

High-frequency solution, for q >> aH

[We will show this later.]

14

(15)

Peak Locations?

VERY roughly speaking, the angular power spectrum Cl is given by

[

] 2

with q -> l/rL.

If A>>B, the locations of peaks are determined by qrs(tL) = nπ (n=1,2,…):

High-frequency solution, for q >> aH

15

(16)

16

The simple estimates do not match!

This is because these angular scales do not satisfy q >> aH, i.e, the oscillations are not pure

cosine even for the

adiabatic initial condition.

We need a better solution.

16

(17)

A Better Solution in the Radiation-dominated Era

In the radiation-dominated era, R << 1 as

Convenient to change the independent variable from the time (t) to

Going back to the original tight-coupling equation:

17

(18)

A Better Solution in the Radiation-dominated Era

18

Then the equation simplifies to

where

In the radiation-dominated era, R << 1.

Convenient to change the independent variable from the time (t) to

(19)

A Better Solution in the Radiation-dominated Era

19

The solution is

We rewrite this using the formula for trigonometry:

sin(' '

0

) = sin(') cos('

0

) cos(') sin('

0

)

<latexit sha1_base64="DurnUGb/bp0JcYqiyolGaYVoUhg=">AAACN3icbVDLSgMxFM34rPU16tLNYJF2Fi0zIuhGKLpxJRXsAzpDyaRpG5pJhiRTKEP/yo2/4U43LhRx6x+YtoOMrRdCTs45l5t7gogSqRznxVhZXVvf2Mxt5bd3dvf2zYPDhuSxQLiOOOWiFUCJKWG4roiiuBUJDMOA4mYwvJnqzREWknD2oMYR9kPYZ6RHEFSa6ph3niSs5I2giAaknN5F+ypL2x7isvSrlbNPO2ss2h2z4FScWVnLwE1BAaRV65jPXpejOMRMIQqlbLtOpPwECkUQxZO8F0scQTSEfdzWkMEQSz+Z7T2xTjXTtXpc6MOUNWOzHQkMpRyHgXaGUA3kojYl/9Pasepd+glhUawwQ/NBvZhailvTEK0uERgpOtYAIkH0Xy00gAIipaPO6xDcxZWXQeOs4joV9/68UL1O48iBY3ACSsAFF6AKbkEN1AECj+AVvIMP48l4Mz6Nr7l1xUh7jsCfMr5/APUrq/A=</latexit><latexit sha1_base64="DurnUGb/bp0JcYqiyolGaYVoUhg=">AAACN3icbVDLSgMxFM34rPU16tLNYJF2Fi0zIuhGKLpxJRXsAzpDyaRpG5pJhiRTKEP/yo2/4U43LhRx6x+YtoOMrRdCTs45l5t7gogSqRznxVhZXVvf2Mxt5bd3dvf2zYPDhuSxQLiOOOWiFUCJKWG4roiiuBUJDMOA4mYwvJnqzREWknD2oMYR9kPYZ6RHEFSa6ph3niSs5I2giAaknN5F+ypL2x7isvSrlbNPO2ss2h2z4FScWVnLwE1BAaRV65jPXpejOMRMIQqlbLtOpPwECkUQxZO8F0scQTSEfdzWkMEQSz+Z7T2xTjXTtXpc6MOUNWOzHQkMpRyHgXaGUA3kojYl/9Pasepd+glhUawwQ/NBvZhailvTEK0uERgpOtYAIkH0Xy00gAIipaPO6xDcxZWXQeOs4joV9/68UL1O48iBY3ACSsAFF6AKbkEN1AECj+AVvIMP48l4Mz6Nr7l1xUh7jsCfMr5/APUrq/A=</latexit><latexit sha1_base64="DurnUGb/bp0JcYqiyolGaYVoUhg=">AAACN3icbVDLSgMxFM34rPU16tLNYJF2Fi0zIuhGKLpxJRXsAzpDyaRpG5pJhiRTKEP/yo2/4U43LhRx6x+YtoOMrRdCTs45l5t7gogSqRznxVhZXVvf2Mxt5bd3dvf2zYPDhuSxQLiOOOWiFUCJKWG4roiiuBUJDMOA4mYwvJnqzREWknD2oMYR9kPYZ6RHEFSa6ph3niSs5I2giAaknN5F+ypL2x7isvSrlbNPO2ss2h2z4FScWVnLwE1BAaRV65jPXpejOMRMIQqlbLtOpPwECkUQxZO8F0scQTSEfdzWkMEQSz+Z7T2xTjXTtXpc6MOUNWOzHQkMpRyHgXaGUA3kojYl/9Pasepd+glhUawwQ/NBvZhailvTEK0uERgpOtYAIkH0Xy00gAIipaPO6xDcxZWXQeOs4joV9/68UL1O48iBY3ACSsAFF6AKbkEN1AECj+AVvIMP48l4Mz6Nr7l1xUh7jsCfMr5/APUrq/A=</latexit><latexit sha1_base64="DurnUGb/bp0JcYqiyolGaYVoUhg=">AAACN3icbVDLSgMxFM34rPU16tLNYJF2Fi0zIuhGKLpxJRXsAzpDyaRpG5pJhiRTKEP/yo2/4U43LhRx6x+YtoOMrRdCTs45l5t7gogSqRznxVhZXVvf2Mxt5bd3dvf2zYPDhuSxQLiOOOWiFUCJKWG4roiiuBUJDMOA4mYwvJnqzREWknD2oMYR9kPYZ6RHEFSa6ph3niSs5I2giAaknN5F+ypL2x7isvSrlbNPO2ss2h2z4FScWVnLwE1BAaRV65jPXpejOMRMIQqlbLtOpPwECkUQxZO8F0scQTSEfdzWkMEQSz+Z7T2xTjXTtXpc6MOUNWOzHQkMpRyHgXaGUA3kojYl/9Pasepd+glhUawwQ/NBvZhailvTEK0uERgpOtYAIkH0Xy00gAIipaPO6xDcxZWXQeOs4joV9/68UL1O48iBY3ACSsAFF6AKbkEN1AECj+AVvIMP48l4Mz6Nr7l1xUh7jsCfMr5/APUrq/A=</latexit>

where

(20)

A Better Solution in the Radiation-dominated Era

The solution is

where

20

where

{

(21)

Einstein’s Equations

Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ.

Einstein’s equations - let’s look up any text books:

21

<latexit sha1_base64="oj3sVaZOgwocRZi4rXRqn1vRAe0=">AAACCHicbVC7SgNBFJ2NrxhfUUsLB4NgFXZDRBshaKFlBPOAbAx3J7PZIbMzy8ysEEJKG3/FxkIRWz/Bzr9x8ig08cCFwzn3cu89QcKZNq777WSWlldW17LruY3Nre2d/O5eXctUEVojkkvVDEBTzgStGWY4bSaKQhxw2gj6V2O/8UCVZlLcmUFC2zH0BAsZAWOlTv7QFxBwuC/51YjhC1z2E4av/S7lBnwVyU6+4BbdCfAi8WakgGaodvJffleSNKbCEA5atzw3Me0hKMMIp6Ocn2qaAOlDj7YsFRBT3R5OHhnhY6t0cSiVLWHwRP09MYRY60Ec2M4YTKTnvbH4n9dKTXjeHjKRpIYKMl0Uphwbicep4C5TlBg+sASIYvZWTCJQQIzNLmdD8OZfXiT1UtE7Lbq35ULlchZHFh2gI3SCPHSGKugGVVENEfSIntErenOenBfn3fmYtmac2cw++gPn8wfpaZik</latexit>

r

2

= 4⇡ G ⇢

C.f., Newtonian (Poisson equation)

( )

(22)

Einstein’s Equations

Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ.

Einstein’s equations - let’s look up any text books:

22

?

(23)

Einstein’s Equations

Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ.

Einstein’s equations - let’s look up any text books:

Will come back to this later.

For now, let’s ignore any viscosity.

23

(24)

Einstein’s Equations

Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ.

Einstein’s equations - let’s look up any text books:

Will come back to this later.

For now, let’s ignore any viscosity.

24

(25)

Einstein’s Equations

in the Radiation-dominated Era

Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ.

Combine Einstein’s equations:

“non-adiabatic” pressure

25

Decompose the total

pressure perturbation into the total energy density perturbation and the rest.

(26)

Einstein’s Equations

in the Radiation-dominated Era

Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ.

Choose the adiabatic solution!

“non-adiabatic” pressure

We shall ignore this

26

Decompose the total

pressure perturbation into the total energy density perturbation and the rest.

(27)

Adiabatic Solution in the Radiation-dominated Era

Low-frequency limit (super-sound-horizon scales, qrs << 1)

ΦADI -> –2ζ/3 = constant

High-frequency limit (sub-sound-horizon scales, qrs >> 1)

ΦADI -> 2ζ

ADI

where

27

Kodama & Sasaki (1986, 1987)

The potential decays -> The integrated Sachs-Wolfe Effect

(28)

Adiabatic Solution in the Radiation-dominated Era

Low-frequency limit (super-sound-horizon scales, qrs << 1)

ΦADI -> –2ζ/3 = constant

High-frequency limit (sub-sound-horizon scales, qrs >> 1)

ΦADI -> 2ζ

ADI

where

Poisson Equation

& oscillation solution for radiation

28

(29)

Sound Wave Solution in the Radiation-dominated Era

The solution is

where

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

29

(30)

Sound Wave Solution in the Radiation-dominated Era

The solution is

where

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

(31)

Sound Wave Solution in the Radiation-dominated Era

The solution is

where

i.e., ADI ADI

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

(32)

Sound Wave Solution in the Radiation-dominated Era

The complete adiabatic solution is

with

Therefore, the solution is a pure cosine

only in the high-frequency limit!

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

(33)

33

(34)

Roles of viscosity

Neutrino viscosity: Gravitational Impact

Modify potentials:

Photon viscosity: Hydrodynamical Impact

Viscous photon-baryon fluid: damping of sound waves

Silk (1968) “Silk damping”

34

(35)

Part III: Damping of the Sound Waves

35

(36)

Photon Viscosity

Origin of the Silk damping

• In the tight-coupling approximation, the photon viscosity damps exponentially.

• To take into account a non-zero photon viscosity, we need go higher order in the tight-coupling approximation.

36

(37)

The previous lecture: The 1st-order Tight-coupling Approximation

When the Thomson scattering is efficient, photons and baryons 


“move together”; thus, their relative velocity is small. We write

[d is an arbitrary dimensionless variable]

And take (*). We obtain

(*) In this limit, viscosity πγ is exponentially suppressed. This result comes from the Boltzmann equation but we do not derive it here. It makes sense physically.

Peebles & Yu (1970)

(38)

Today: The 2nd-order

Tight-coupling Approximation

[d2 is an arbitrary dimensionless variable]

38

When the Thomson scattering is efficient, photons and baryons 


“move together”; thus, their relative velocity is small. We write

[the 1st-order solution]

And take . We obtain

(39)

The 2nd-order

Tight-coupling Approximation

Eliminating d2 and using the fact that R is proportional to the scale factor, we obtain

Getting πγ requires an approximate solution of the Boltzmann equation in the 2nd-order tight coupling. We do not derive it here. The answer is

= 32 45

¯

T n ¯ e @ i @ j u

<latexit sha1_base64="x5ZMo5o+00rukqRjQKKKVd9YinM=">AAACQ3icbZDLSiQxFIZTOjNqO5dWl7MJ0whubKrUQTeC6MalA7bKdJriVPpUd8YkVSQpoSnq3dz4Au58ATcuFHErTKq7GbzMgcCf/z8nly/JpbAuDG+CmdkPHz/NzS80Fj9/+fqtubR8YrPCcOzwTGbmLAGLUmjsOOEknuUGQSUST5Pzgzo/vUBjRaaP3SjHnoKBFqng4LwVN3/vrrPUAC83N6py62c12bAEDDPDLGYDUAqqklkxUBCXjIOkx1WdUx1jxXIwToCMxT/1h/VROqBF3GyF7XBc9L2IpqJFpnUUN69ZP+OFQu24BGu7UZi7XlmfyyVWDVZYzIGfwwC7XmpQaHvlmEFFV73Tp2lm/NKOjt2XEyUoa0cq8Z0K3NC+zWrzf1m3cOlOrxQ6LxxqPrkoLSR1Ga2B0r4wyJ0ceQHcCP9WyofgKTqPveEhRG+//F6cbLSjsB392mrt7U9xzJPv5AdZIxHZJnvkkByRDuHkktySe/IQXAV3wWPwNGmdCaYzK+RVBc9/AUcjsvA=</latexit><latexit sha1_base64="x5ZMo5o+00rukqRjQKKKVd9YinM=">AAACQ3icbZDLSiQxFIZTOjNqO5dWl7MJ0whubKrUQTeC6MalA7bKdJriVPpUd8YkVSQpoSnq3dz4Au58ATcuFHErTKq7GbzMgcCf/z8nly/JpbAuDG+CmdkPHz/NzS80Fj9/+fqtubR8YrPCcOzwTGbmLAGLUmjsOOEknuUGQSUST5Pzgzo/vUBjRaaP3SjHnoKBFqng4LwVN3/vrrPUAC83N6py62c12bAEDDPDLGYDUAqqklkxUBCXjIOkx1WdUx1jxXIwToCMxT/1h/VROqBF3GyF7XBc9L2IpqJFpnUUN69ZP+OFQu24BGu7UZi7XlmfyyVWDVZYzIGfwwC7XmpQaHvlmEFFV73Tp2lm/NKOjt2XEyUoa0cq8Z0K3NC+zWrzf1m3cOlOrxQ6LxxqPrkoLSR1Ga2B0r4wyJ0ceQHcCP9WyofgKTqPveEhRG+//F6cbLSjsB392mrt7U9xzJPv5AdZIxHZJnvkkByRDuHkktySe/IQXAV3wWPwNGmdCaYzK+RVBc9/AUcjsvA=</latexit><latexit sha1_base64="x5ZMo5o+00rukqRjQKKKVd9YinM=">AAACQ3icbZDLSiQxFIZTOjNqO5dWl7MJ0whubKrUQTeC6MalA7bKdJriVPpUd8YkVSQpoSnq3dz4Au58ATcuFHErTKq7GbzMgcCf/z8nly/JpbAuDG+CmdkPHz/NzS80Fj9/+fqtubR8YrPCcOzwTGbmLAGLUmjsOOEknuUGQSUST5Pzgzo/vUBjRaaP3SjHnoKBFqng4LwVN3/vrrPUAC83N6py62c12bAEDDPDLGYDUAqqklkxUBCXjIOkx1WdUx1jxXIwToCMxT/1h/VROqBF3GyF7XBc9L2IpqJFpnUUN69ZP+OFQu24BGu7UZi7XlmfyyVWDVZYzIGfwwC7XmpQaHvlmEFFV73Tp2lm/NKOjt2XEyUoa0cq8Z0K3NC+zWrzf1m3cOlOrxQ6LxxqPrkoLSR1Ga2B0r4wyJ0ceQHcCP9WyofgKTqPveEhRG+//F6cbLSjsB392mrt7U9xzJPv5AdZIxHZJnvkkByRDuHkktySe/IQXAV3wWPwNGmdCaYzK+RVBc9/AUcjsvA=</latexit><latexit sha1_base64="x5ZMo5o+00rukqRjQKKKVd9YinM=">AAACQ3icbZDLSiQxFIZTOjNqO5dWl7MJ0whubKrUQTeC6MalA7bKdJriVPpUd8YkVSQpoSnq3dz4Au58ATcuFHErTKq7GbzMgcCf/z8nly/JpbAuDG+CmdkPHz/NzS80Fj9/+fqtubR8YrPCcOzwTGbmLAGLUmjsOOEknuUGQSUST5Pzgzo/vUBjRaaP3SjHnoKBFqng4LwVN3/vrrPUAC83N6py62c12bAEDDPDLGYDUAqqklkxUBCXjIOkx1WdUx1jxXIwToCMxT/1h/VROqBF3GyF7XBc9L2IpqJFpnUUN69ZP+OFQu24BGu7UZi7XlmfyyVWDVZYzIGfwwC7XmpQaHvlmEFFV73Tp2lm/NKOjt2XEyUoa0cq8Z0K3NC+zWrzf1m3cOlOrxQ6LxxqPrkoLSR1Ga2B0r4wyJ0ceQHcCP9WyofgKTqPveEhRG+//F6cbLSjsB392mrt7U9xzJPv5AdZIxHZJnvkkByRDuHkktySe/IQXAV3wWPwNGmdCaYzK+RVBc9/AUcjsvA=</latexit>

γ γ

39

Kaiser (1983)

(40)

The 2nd-order

Tight-coupling Approximation

Eliminating d2 and using the fact that R is proportional to the scale factor, we obtain

Getting πγ requires an approximate solution of the Boltzmann equation in the 2nd-order tight coupling. We do not derive it here. The answer is

= 32 45

¯

T n ¯ e @ i @ j u

<latexit sha1_base64="x5ZMo5o+00rukqRjQKKKVd9YinM=">AAACQ3icbZDLSiQxFIZTOjNqO5dWl7MJ0whubKrUQTeC6MalA7bKdJriVPpUd8YkVSQpoSnq3dz4Au58ATcuFHErTKq7GbzMgcCf/z8nly/JpbAuDG+CmdkPHz/NzS80Fj9/+fqtubR8YrPCcOzwTGbmLAGLUmjsOOEknuUGQSUST5Pzgzo/vUBjRaaP3SjHnoKBFqng4LwVN3/vrrPUAC83N6py62c12bAEDDPDLGYDUAqqklkxUBCXjIOkx1WdUx1jxXIwToCMxT/1h/VROqBF3GyF7XBc9L2IpqJFpnUUN69ZP+OFQu24BGu7UZi7XlmfyyVWDVZYzIGfwwC7XmpQaHvlmEFFV73Tp2lm/NKOjt2XEyUoa0cq8Z0K3NC+zWrzf1m3cOlOrxQ6LxxqPrkoLSR1Ga2B0r4wyJ0ceQHcCP9WyofgKTqPveEhRG+//F6cbLSjsB392mrt7U9xzJPv5AdZIxHZJnvkkByRDuHkktySe/IQXAV3wWPwNGmdCaYzK+RVBc9/AUcjsvA=</latexit><latexit sha1_base64="x5ZMo5o+00rukqRjQKKKVd9YinM=">AAACQ3icbZDLSiQxFIZTOjNqO5dWl7MJ0whubKrUQTeC6MalA7bKdJriVPpUd8YkVSQpoSnq3dz4Au58ATcuFHErTKq7GbzMgcCf/z8nly/JpbAuDG+CmdkPHz/NzS80Fj9/+fqtubR8YrPCcOzwTGbmLAGLUmjsOOEknuUGQSUST5Pzgzo/vUBjRaaP3SjHnoKBFqng4LwVN3/vrrPUAC83N6py62c12bAEDDPDLGYDUAqqklkxUBCXjIOkx1WdUx1jxXIwToCMxT/1h/VROqBF3GyF7XBc9L2IpqJFpnUUN69ZP+OFQu24BGu7UZi7XlmfyyVWDVZYzIGfwwC7XmpQaHvlmEFFV73Tp2lm/NKOjt2XEyUoa0cq8Z0K3NC+zWrzf1m3cOlOrxQ6LxxqPrkoLSR1Ga2B0r4wyJ0ceQHcCP9WyofgKTqPveEhRG+//F6cbLSjsB392mrt7U9xzJPv5AdZIxHZJnvkkByRDuHkktySe/IQXAV3wWPwNGmdCaYzK+RVBc9/AUcjsvA=</latexit><latexit sha1_base64="x5ZMo5o+00rukqRjQKKKVd9YinM=">AAACQ3icbZDLSiQxFIZTOjNqO5dWl7MJ0whubKrUQTeC6MalA7bKdJriVPpUd8YkVSQpoSnq3dz4Au58ATcuFHErTKq7GbzMgcCf/z8nly/JpbAuDG+CmdkPHz/NzS80Fj9/+fqtubR8YrPCcOzwTGbmLAGLUmjsOOEknuUGQSUST5Pzgzo/vUBjRaaP3SjHnoKBFqng4LwVN3/vrrPUAC83N6py62c12bAEDDPDLGYDUAqqklkxUBCXjIOkx1WdUx1jxXIwToCMxT/1h/VROqBF3GyF7XBc9L2IpqJFpnUUN69ZP+OFQu24BGu7UZi7XlmfyyVWDVZYzIGfwwC7XmpQaHvlmEFFV73Tp2lm/NKOjt2XEyUoa0cq8Z0K3NC+zWrzf1m3cOlOrxQ6LxxqPrkoLSR1Ga2B0r4wyJ0ceQHcCP9WyofgKTqPveEhRG+//F6cbLSjsB392mrt7U9xzJPv5AdZIxHZJnvkkByRDuHkktySe/IQXAV3wWPwNGmdCaYzK+RVBc9/AUcjsvA=</latexit><latexit sha1_base64="x5ZMo5o+00rukqRjQKKKVd9YinM=">AAACQ3icbZDLSiQxFIZTOjNqO5dWl7MJ0whubKrUQTeC6MalA7bKdJriVPpUd8YkVSQpoSnq3dz4Au58ATcuFHErTKq7GbzMgcCf/z8nly/JpbAuDG+CmdkPHz/NzS80Fj9/+fqtubR8YrPCcOzwTGbmLAGLUmjsOOEknuUGQSUST5Pzgzo/vUBjRaaP3SjHnoKBFqng4LwVN3/vrrPUAC83N6py62c12bAEDDPDLGYDUAqqklkxUBCXjIOkx1WdUx1jxXIwToCMxT/1h/VROqBF3GyF7XBc9L2IpqJFpnUUN69ZP+OFQu24BGu7UZi7XlmfyyVWDVZYzIGfwwC7XmpQaHvlmEFFV73Tp2lm/NKOjt2XEyUoa0cq8Z0K3NC+zWrzf1m3cOlOrxQ6LxxqPrkoLSR1Ga2B0r4wyJ0ceQHcCP9WyofgKTqPveEhRG+//F6cbLSjsB392mrt7U9xzJPv5AdZIxHZJnvkkByRDuHkktySe/IQXAV3wWPwNGmdCaYzK+RVBc9/AUcjsvA=</latexit>

Given by the

spatial gradient of the velocity field

- a well-known result in fluid dynamics

γ γ

40

Kaiser (1983)

(41)

Damped Oscillator

Using the energy conservation to replace δuγ with δργγ, we obtain, for q >> aH,

New term, giving damping!

41

where

(42)

Damped Oscillator

Using the energy conservation to replace δuγ with δργγ, we obtain, for q >> aH,

Important for high frequencies (large multipoles)

42

New term, giving damping!

where

(43)

Damped Oscillator

Using the energy conservation to replace δuγ with δργγ, we obtain, for q >> aH,

43

New term, giving damping!

Exponential dampling!

The new solution is

⇡ exp q 2 / T n ¯ e H

<latexit sha1_base64="RUibAPBZ1AdJB7LbQmlyRbMp6vk=">AAACIHicbVBNTxsxEPVCy0daINAjF4uoEj007KJKcET0whEkAkhxWM06s4mF1+vas4holZ/CpX+llx5aVfRWfg1OyIECTxrp6b0ZzczLrFae4vhfNDf/5u3C4tJy4937ldW15vrGmS8rJ7EjS126iww8amWwQ4o0XliHUGQaz7OrrxP//BqdV6U5pZHFXgEDo3IlgYKUNvcEWOvKGy7wxgqNOW1//na5uyO8GhSQ1kKC5qdjkYHjJkV+JJwaDOlT2mzF7XgK/pIkM9JiMxynzb+iX8qqQENSg/fdJLbUq8GRkhrHDVF5tCCvYIDdQA0U6Hv19MEx/xiUPs9LF8oQn6pPJ2oovB8VWegsgIb+uTcRX/O6FeX7vVoZWxEa+bgorzSnkk/S4n3lUJIeBQLSqXArl0NwIClk2gghJM9ffknOdttJ3E5OvrQODmdxLLFNtsW2WcL22AE7YseswyS7ZT/YL/Y7+h79jP5Ed4+tc9Fs5gP7D9H9A/Slos4=</latexit><latexit sha1_base64="RUibAPBZ1AdJB7LbQmlyRbMp6vk=">AAACIHicbVBNTxsxEPVCy0daINAjF4uoEj007KJKcET0whEkAkhxWM06s4mF1+vas4holZ/CpX+llx5aVfRWfg1OyIECTxrp6b0ZzczLrFae4vhfNDf/5u3C4tJy4937ldW15vrGmS8rJ7EjS126iww8amWwQ4o0XliHUGQaz7OrrxP//BqdV6U5pZHFXgEDo3IlgYKUNvcEWOvKGy7wxgqNOW1//na5uyO8GhSQ1kKC5qdjkYHjJkV+JJwaDOlT2mzF7XgK/pIkM9JiMxynzb+iX8qqQENSg/fdJLbUq8GRkhrHDVF5tCCvYIDdQA0U6Hv19MEx/xiUPs9LF8oQn6pPJ2oovB8VWegsgIb+uTcRX/O6FeX7vVoZWxEa+bgorzSnkk/S4n3lUJIeBQLSqXArl0NwIClk2gghJM9ffknOdttJ3E5OvrQODmdxLLFNtsW2WcL22AE7YseswyS7ZT/YL/Y7+h79jP5Ed4+tc9Fs5gP7D9H9A/Slos4=</latexit><latexit sha1_base64="RUibAPBZ1AdJB7LbQmlyRbMp6vk=">AAACIHicbVBNTxsxEPVCy0daINAjF4uoEj007KJKcET0whEkAkhxWM06s4mF1+vas4holZ/CpX+llx5aVfRWfg1OyIECTxrp6b0ZzczLrFae4vhfNDf/5u3C4tJy4937ldW15vrGmS8rJ7EjS126iww8amWwQ4o0XliHUGQaz7OrrxP//BqdV6U5pZHFXgEDo3IlgYKUNvcEWOvKGy7wxgqNOW1//na5uyO8GhSQ1kKC5qdjkYHjJkV+JJwaDOlT2mzF7XgK/pIkM9JiMxynzb+iX8qqQENSg/fdJLbUq8GRkhrHDVF5tCCvYIDdQA0U6Hv19MEx/xiUPs9LF8oQn6pPJ2oovB8VWegsgIb+uTcRX/O6FeX7vVoZWxEa+bgorzSnkk/S4n3lUJIeBQLSqXArl0NwIClk2gghJM9ffknOdttJ3E5OvrQODmdxLLFNtsW2WcL22AE7YseswyS7ZT/YL/Y7+h79jP5Ed4+tc9Fs5gP7D9H9A/Slos4=</latexit><latexit sha1_base64="RUibAPBZ1AdJB7LbQmlyRbMp6vk=">AAACIHicbVBNTxsxEPVCy0daINAjF4uoEj007KJKcET0whEkAkhxWM06s4mF1+vas4holZ/CpX+llx5aVfRWfg1OyIECTxrp6b0ZzczLrFae4vhfNDf/5u3C4tJy4937ldW15vrGmS8rJ7EjS126iww8amWwQ4o0XliHUGQaz7OrrxP//BqdV6U5pZHFXgEDo3IlgYKUNvcEWOvKGy7wxgqNOW1//na5uyO8GhSQ1kKC5qdjkYHjJkV+JJwaDOlT2mzF7XgK/pIkM9JiMxynzb+iX8qqQENSg/fdJLbUq8GRkhrHDVF5tCCvYIDdQA0U6Hv19MEx/xiUPs9LF8oQn6pPJ2oovB8VWegsgIb+uTcRX/O6FeX7vVoZWxEa+bgorzSnkk/S4n3lUJIeBQLSqXArl0NwIClk2gghJM9ffknOdttJ3E5OvrQODmdxLLFNtsW2WcL22AE7YseswyS7ZT/YL/Y7+h79jP5Ed4+tc9Fs5gP7D9H9A/Slos4=</latexit>

(44)

Damped Oscillator

Using the energy conservation to replace δuγ with δργγ, we obtain, for q >> aH,

New term, giving damping!

Exponential Silk dampling!

The new solution is

Silk

Silk

“diffusion length”

= length traveled by photon’s random walks

(45)

The Diffusion Length

Random walk

• The mean free path of the photon between scatterings is (σ

T

n

e

)

–1

.

• Below this scale, you do not have a photon-baryon fluid: they are individual particles.

• The number of scatterings per Hubble time is N

scattering

T

n

e

/H.

• Then, the length traveled by photons by random walks within the Hubble time is (σ

T

n

e

)

–1

times √N

scatterings

• The diffusion length is thus (σ

T

n

e

)

–1

times √N

scatterings

= (σ

T

n

e

H)

–1/2

.

45

Silk

“diffusion length”

= length traveled by photon’s random walks

(46)

The Diffusion Damping

Diffusion mixes hot and cold photons -> Damping of anisotropies

by Wayne Hu

46

(47)

Planck Collaboration (2016)

Sachs-Wolfe Sound Wave

Silk Damping?

(48)

Additional Damping

fuzziness

( )

The power spectrum is

[

] 2

with q -> l/rL. The damping factor is thus exp

(

2

q2/qsilk2

).

qsilk(tL) = 0.139 Mpc–1. This corresponds to a multipole of lsilk ~ qsilk rL/√2 = 1370. Seems too large, compared to the exact

calculation.

There is an additional damping due to a finite width of the last scattering surface, σ~250 K.

“Fuzziness damping” – Bond (1996); “Landau damping” - Weinberg (2001)

(49)

Sachs-Wolfe Sound Wave

Silk+Fuzziness Damping

Total damping:

q

D–2

= q

silk–2

+ q

fuzziness–2

q

D

~ 0.11 Mpc

–1

, giving

l

D

~ q

D

r

L

/√2 ~ 1125

Planck Collaboration (2016)

(50)

Recap

• The basic structure of the temperature power spectrum is

The Sachs-Wolfe “plateau” at low multipoles, l(l+1)C

l

~ l

n–1

Sound waves at intermediate multipoles

• The 1st-order tight-coupling approximation

Silk damping and Fuzziness damping at high multipoles

• The 2nd-order tight-coupling approximation

50

(51)

Appendix: Neutrino Viscosity

51

(52)

High-frequency solution without neutrino viscosity

The solution is

where

'<latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit> 1

'<latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit> 1

52

(53)

High-frequency solution with neutrino viscosity

The solution is

where

Chluba & Grin (2013)

non-zero value!

'<latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit> 1

'<latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit><latexit sha1_base64="bNhabzp0K7ZXJMGgnjOef5tGyL8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gOaUDbbTbp0s1l2N4US+je8eFDEq3/Gm//GTZuDtj4YeLw3w8y8UHKmjet+O5WNza3tnepubW//4PCofnzS1WmmCO2QlKeqH2JNORO0Y5jhtC8VxUnIaS+c3Bd+b0qVZql4MjNJgwTHgkWMYGMl359iJcfMj2PkDesNt+kugNaJV5IGlGgP61/+KCVZQoUhHGs98Fxpghwrwwin85qfaSoxmeCYDiwVOKE6yBc3z9GFVUYoSpUtYdBC/T2R40TrWRLazgSbsV71CvE/b5CZ6DbImZCZoYIsF0UZRyZFRQBoxBQlhs8swUQxeysiY6wwMTammg3BW315nXSvmp7b9B6vG627Mo4qnME5XIIHN9CCB2hDBwhIeIZXeHMy58V5dz6WrRWnnDmFP3A+fwCEuJFT</latexit> 1

53

(54)

High-frequency solution with neutrino viscosity

Using the formula for trigonometry, we write

where

(Hu & Sugiyama 1996)

(Bashinsky & Seljak 2004)

Phase shift!

54

(55)

High-frequency solution with neutrino viscosity

The solution is

where

Hu & Sugiyama (1996)

Phase shift!

Thus, the neutrino viscosity will:

(1) Reduce the amplitude of

sound waves at large multipoles

(2) Shift the peak positions

of the temperature power spectrum

55

(Bashinsky & Seljak 2004)

Referenzen

ÄHNLICHE DOKUMENTE

Personen abrechnen Es muss angegeben werden, ob die/der Mitarbeiter/in. abgerechnert werden

Die Entwicklung neuer Wissens- ressourcen wird zwar auch durch die Digitalisierung von Dokumenten an- gestrebt, im Wesentlichen wird sie aber durch die Dokumentation koopera-

When AQR adjustment (-), the impact of the adverse stress test scenario (-), impact of full transition to new regulatory standards on CET1 (-) and net capital raised (+) also are

• Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ. • Einstein’s equations - let’s look up any

• Pressure of non-relativistic species (i.e., baryons and cold dark matter) can be ignored relative to the energy density... • Pressure of non-relativistic species (i.e., baryons

• Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ!. • Einstein’s equations - let’s look up any

• Now we need to know Newton’s gravitational potential, φ, and the scalar curvature perturbation, ψ. • Einstein’s equations - let’s look up any

Ausführliche Informationen zur Bayerischen Ärzteversorgung und die Online-Version der Kurz- broschüre finden Sie im Internet unter www.bayerische-aerzteversorgung.de unter der Rubrik