• Keine Ergebnisse gefunden

Übung zu Drahtlose Kommunikation

N/A
N/A
Protected

Academic year: 2022

Aktie "Übung zu Drahtlose Kommunikation"

Copied!
29
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Übung zu Drahtlose Kommunikation

2. Übung

20.11.2018

(2)

Exercise 1

(3)

Exercise 1

𝑑𝑑

𝑓𝑓

= 2 � 𝐷𝐷

2

𝜆𝜆

Fraunhofer’s distance

- D – the largest antenna dimension

- defining difference between near-field and far-field effects

𝜆𝜆 = 𝑐𝑐

𝑓𝑓 = 3 � 108

5 � 109 = 6𝑐𝑐𝑐𝑐

⇒ 𝑑𝑑𝑓𝑓 = 2 � 0,122

0,06 = 48𝑐𝑐𝑐𝑐

(4)

Exercise 1

b) What happens to the near field, when increasing the frequency and at the same time:

1) keeping the antenna length the same?

Frequency increases => wave length is smaller =>

=> Fraunhofer distance increases => Near-field increases 2) adjusting the antenna length according to λ/4?

=> Fraunhofer distance decreases

=> Near-field decreases

𝑑𝑑 𝑓𝑓 = 2�( 𝜆𝜆

𝜆𝜆4

)

2

= 2� 𝜆𝜆

𝜆𝜆216

= 𝜆𝜆 8 = 8�𝑓𝑓 𝑐𝑐

(5)

Exercise 2

(6)

Exercise 2

𝑐𝑐 = 3� 108 𝑐𝑐 𝑠𝑠 𝜆𝜆 = 𝑐𝑐

𝑓𝑓 = 3 �108

900 �106 = 1 3 𝑐𝑐 𝑓𝑓𝑑𝑑 = 𝑣𝑣

𝜆𝜆 = 27,78 �3 = 83,34 𝐻𝐻𝐻𝐻

⇒ 𝑓𝑓 = 𝑓𝑓 + 𝑓𝑓𝑑𝑑 = 900 000 083,34 𝐻𝐻𝐻𝐻

(7)

Exercise 2

𝑓𝑓′′ = 𝑓𝑓 + 𝑓𝑓𝑑𝑑 = 900 000166.68 𝐻𝐻𝐻𝐻

(8)

Exercise 3

(9)

Exercise 3

𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃 𝑑𝑑

0

+ 10 � 𝑛𝑛 � log 𝑑𝑑

𝑑𝑑

0

+ 𝐸𝐸 𝑋𝑋

𝛿𝛿

𝑃𝑃𝑃𝑃 = 10 + 10 � 2,5 � log 100 = 60 𝑑𝑑𝑑𝑑

(10)

Exercise 3

𝑃𝑃𝑅𝑅𝑅𝑅 𝑑𝑑 = 𝑃𝑃𝑇𝑇𝑅𝑅 − (𝑃𝑃𝑃𝑃0(𝑑𝑑0) + 10 � 𝛾𝛾 � log 𝑑𝑑

𝑑𝑑0 + 𝑋𝑋𝛿𝛿) 𝑃𝑃𝑅𝑅𝑅𝑅 𝑑𝑑 ≥ −80 𝑑𝑑𝑑𝑑𝑐𝑐

𝑃𝑃𝑇𝑇𝑅𝑅 − 𝑃𝑃𝑃𝑃0 𝑑𝑑0 − 10 � 𝛾𝛾 � log 𝑑𝑑

𝑑𝑑0 − 𝑋𝑋𝛿𝛿 ≥ −80 𝑑𝑑𝑑𝑑𝑐𝑐

−10 − 10 − 50 − 𝑋𝑋𝛿𝛿 ≥ −80𝑑𝑑𝑑𝑑𝑐𝑐 𝑋𝑋𝛿𝛿 ≤ 10

(11)

Exercise 3

𝑃𝑃𝑅𝑅𝑅𝑅 𝑑𝑑 = 𝑃𝑃𝑇𝑇𝑅𝑅 − (𝑃𝑃𝑃𝑃0(𝑑𝑑0) + 10 � 𝛾𝛾 � log 𝑑𝑑

𝑑𝑑0 + 𝑋𝑋𝛿𝛿) 𝑃𝑃𝑅𝑅𝑅𝑅 𝑑𝑑 ≥ −80 𝑑𝑑𝑑𝑑𝑐𝑐

𝑃𝑃𝑇𝑇𝑅𝑅 − 𝑃𝑃𝑃𝑃0 𝑑𝑑0 − 10 � 𝛾𝛾 � log 𝑑𝑑

𝑑𝑑0 − 𝑋𝑋𝛿𝛿 ≥ −80 𝑑𝑑𝑑𝑑𝑐𝑐

−10 − 10 − 50 − 𝑋𝑋𝛿𝛿 ≥ −80𝑑𝑑𝑑𝑑𝑐𝑐 𝑋𝑋𝛿𝛿 ≤ 10

𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑣𝑣𝑐𝑐 = 𝑃𝑃 𝑋𝑋𝛿𝛿 ≤ 10

Φ 𝑥𝑥 = 1

2𝜋𝜋 �

−∞

𝑅𝑅

𝑐𝑐−𝑡𝑡22𝑑𝑑𝑐𝑐 𝑤𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 = 10 − 0 5

𝜱𝜱 𝒙𝒙 = 𝟎𝟎,𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

Generic normal distribution:

Φ 𝑥𝑥 − 𝜇𝜇

𝜎𝜎 = 1

2 � 1 + 𝑐𝑐𝑐𝑐𝑓𝑓 𝑥𝑥 − 𝜇𝜇 𝜎𝜎 2

(12)

Exercise 3

𝑷𝑷𝒔𝒔 = 𝟎𝟎,𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

𝑷𝑷𝑭𝑭 = 𝟏𝟏 − 𝑷𝑷𝒔𝒔 = 𝟎𝟎,𝟎𝟎𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

(13)

Exercise 3

𝑷𝑷𝒔𝒔 = 𝟎𝟎,𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

𝑷𝑷𝑭𝑭 = 𝟏𝟏 − 𝑷𝑷𝒔𝒔 = 𝟎𝟎,𝟎𝟎𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

A B

C

(14)

Exercise 3

𝑷𝑷𝒔𝒔 = 𝟎𝟎,𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

𝑷𝑷𝑭𝑭 = 𝟏𝟏 − 𝑷𝑷𝒔𝒔 = 𝟎𝟎,𝟎𝟎𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

A B

C

To have a successful communication we need to have either all three links functional OR two links functional and one nonfunctional

𝐴𝐴𝐴𝐴 ∧ 𝑑𝑑𝐴𝐴 𝐴𝐴𝑑𝑑 ∧ 𝑑𝑑𝐴𝐴

𝐴𝐴𝐴𝐴 ∧ 𝐴𝐴𝑑𝑑 ∨ 𝐴𝐴𝑑𝑑 ∧ 𝑑𝑑𝐴𝐴 ∧ 𝐴𝐴𝐴𝐴

(15)

Exercise 3

𝑷𝑷𝒔𝒔 = 𝟎𝟎,𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

𝑷𝑷𝑭𝑭 = 𝟏𝟏 − 𝑷𝑷𝒔𝒔 = 𝟎𝟎,𝟎𝟎𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

A B

C

To have a successful communication we need to have either all three links functional OR two links functional

𝐴𝐴𝐴𝐴 ∧ 𝑑𝑑𝐴𝐴 𝐴𝐴𝑑𝑑 ∧ 𝑑𝑑𝐴𝐴

𝐴𝐴𝐴𝐴 ∧ 𝐴𝐴𝐴𝐴 ∨ 𝐴𝐴𝑑𝑑 ∧ 𝑑𝑑𝐴𝐴 ∧ 𝐴𝐴𝐴𝐴

𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑤𝑐𝑐𝑀𝑀 = 𝑂𝑂𝑂𝑂 = 𝑃𝑃

𝑆𝑆3

+ 3 � 𝑃𝑃

𝑆𝑆2

⋅ 𝑃𝑃

𝐹𝐹

𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑤𝑐𝑐𝑀𝑀 = 𝑂𝑂𝑂𝑂 = 0,97725

3

+ 3 ⋅ 0,97725

2

� 0,02275

𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑟𝑟𝑤𝑐𝑐𝑀𝑀 = 𝑂𝑂𝑂𝑂 = 0,9985

(16)

Exercise 3

𝑃𝑃 = 0,99 ⇒ Φ 𝑦𝑦

5 ⇒ 𝑦𝑦

5 = 2,326 ⇒ 𝑦𝑦 = 11,632 𝑃𝑃𝑅𝑅𝑅𝑅 𝑑𝑑 = 𝑃𝑃𝑇𝑇𝑅𝑅 − (𝑃𝑃𝑃𝑃0(𝑑𝑑0) + 10 �2,5 � log 𝑑𝑑

𝑑𝑑0 + 𝑋𝑋𝛿𝛿) 𝑃𝑃𝑅𝑅𝑅𝑅 𝑑𝑑 ≥ −80 𝑑𝑑𝑑𝑑𝑐𝑐

−10 − 10 − 25 �log 𝑑𝑑

𝑑𝑑0 − 11,632 ≥ −80 log 𝑑𝑑

𝑑𝑑0 ≤ 1,9347 ⇒ 𝑑𝑑 ≤ 101,9347 ⇒ 𝑑𝑑 = 86 𝑐𝑐

(17)

Exercise 4

• Multiple digital signals (or analog signals carrying digital data) carried on a single transmission path by interleaving portions of each signal in time.

• GSM: 8 timeslots in 120/26 ms frame (many auxiliary channels) DECT: 24 time slots in 10 ms frames

ISDN: 32 time slots in 125 microseconds frame (PRI, E1)

• SDMA transmits different information in different physical areas

• Examples: simple cellular radio systems and advanced cellular systems which use directional antennas and power modulation

• Mobile phone network cell structure - same frequencies reused in areas that are far enough apart.

• FM Radio

(18)

Exercise 4

• FDMA – multiple signals are carried simultaneously on the same medium allocating each signal to a different frequency band.

• Modulation and multiplexing equipment are needed to move each signal to the required frequency band and to combine modulated signals.

• TV/Radio

• CDMA – every signal has its own code (chip sequence), receiver knows these codes and uses them to decode the received information

• UMTS, LTE

(19)

Exercise 5

Phase converges to 180 degrees

Explanation:

Try to calculate phase shift (using LOS distance and reflected distance) 𝑑𝑑𝐿𝐿𝐿𝐿𝑆𝑆 = 2 ⋅ 𝑑𝑑

𝑑𝑑𝑅𝑅𝑅𝑅𝑓𝑓 = 2 � 𝑑𝑑2 + 𝑤2 𝜑𝜑 = 2𝜋𝜋 � 𝑑𝑑𝑅𝑅𝑅𝑅𝑓𝑓 − 𝑑𝑑𝐿𝐿𝐿𝐿𝑆𝑆

𝜆𝜆 + 𝜋𝜋

(20)

Exercise 5

Rice, Rayleigh

Log normal shadowing

Rice, Rayleigh

(21)

Exercise 6

Number of codes, interferences

Number of channels, bandwidth

Number of time slots

(22)

Exercise 6

Decreasing – if cell is overloaded neighboring cells take over the part of the load

Increasing – to help neighboring nodes when they are overloaded

(23)

Exercise 7

(24)

Exercise 7

(25)

Exercise 7

(26)

Exercise 8

(27)

Exercise 8

1 8

2

(28)

Exercise 8

8 = 2

3

⇒ 3 𝑏𝑏𝑟𝑟𝑐𝑐𝑠𝑠

Distance is not evenly distributed => non optimal number of phases

𝐴𝐴𝑐𝑐𝑀𝑀𝑀𝑀𝑟𝑟𝑐𝑐𝑀𝑀𝑑𝑑𝑐𝑐 = 𝑄𝑄𝑋𝑋2 + 𝐼𝐼𝑅𝑅2 = 42 + 12 = 17 𝑃𝑃𝑤𝑃𝑃𝑠𝑠𝑐𝑐 = tan−1𝑄𝑄𝑋𝑋

𝐼𝐼𝑅𝑅 = tan−11

4 = 14,04°

(29)

Exercise sheet 3

• Will be published soon

• Next tutorial:

Tuesday 11.12.2018 from 16:00 – 18:00 in B016

Referenzen

ÄHNLICHE DOKUMENTE

1) Erläutern Sie mit wenigen Worten was mit Fresnelzonen bei einer Funkübertragung bezeichnet wird. • Bei einer Fresnelzone handelt es sich um einen gedachten Rotationsellipsoiden

• Bestimmte Time-Slots werden dann jeweils exklusiv einem Sender zugeordnet.. • Frequenzkanal kann periodisch abwechselnd mehreren

Richtiger Faltungscode: 11 10 10 01 00 11 Falscher Faltungscode: 11 10 00 01 01 11.. 1) Zeichnen Sie eine Register Implementation. 2) Zeichnen Sie ein Zustandsdiagramm für

In einem Netzwerk arbeiten 1000 Teilnehmer und greifen unabhängig voneinander mit einer Wahrscheinlichkeit von p = 0,01 zu einem bestimmten Zeitpunkt auf das Netzwerk zu..

Faltungscodes (Wiederholung).. 1) Zeichnen Sie eine Register Implementation. 2) Zeichnen Sie ein Zustandsdiagramm für diesen Encoder.. 1) Zeichnen Sie eine Register Implementation..

1) Identify the interfaces (and components) that provide access to the radio and allow us to manipulate the message_t type. 2) Update the module block in the BlinkToRadioC.nc by

• Tasks dürfen eine willkürliche lange Rechenzeit benötigen. – Unterliegen ebenfalls dem run-to-completion Prinzip, da kein kooperatives Multi-tasking implementiert ist. –

durchschnittlich für eine angenommene Anzahl an Gesprächen bei einer festgelegten Verlustwahrscheinlichkeit benötigt wird. Die mathematische Formel wurde von Agner Krarup