• Keine Ergebnisse gefunden

Experimental Techniques for the Study of Magnetism

N/A
N/A
Protected

Academic year: 2022

Aktie "Experimental Techniques for the Study of Magnetism"

Copied!
129
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

School on Pulsed Neutrons - October 2005 - ICTP Trieste

"Methods and Techniques"

Experimental Techniques for the Study of Magnetism

Prof. Dr. Thomas Brückel

Institute for Scattering Methods

Institute for Solid State Research

(2)

first compass

History: Loadstone Fe 3 O 4 ( ≈ 800 BC)

100 A.D.

Chinese "south pointer"

(3)

first compass

History: Loadstone Fe 3 O 4 ( ≈ 800 BC)

100 A.D.

Chinese "south pointer"

"perpetual motion machine"

1269

Europe: Petrus Perigrinus

"Epostolia de Magnete"

(4)

first compass

History: Loadstone Fe 3 O 4 ( ≈ 800 BC)

100 A.D.

Chinese "south pointer"

"perpetual motion machine"

1269

Europe: Petrus Perigrinus

"Epostolia de Magnete"

what’s new ? what’s new ?

magnetic nanostructures correlated electron systems

...

(5)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

(6)

Magnetic Nanostructures

Thin Film Multilayer:

Fe 50 Pt 50 Nanoparticle Network by colloidal self organisation

Sun et al; Science 287 (2000), 1989

(7)

Magnetic Nanostructures

Thin Film Multilayer:

⇒Surfaces,

⇒Interfaces,

⇒Proximity effects

Fe 50 Pt 50 Nanoparticle Network by colloidal self organisation

Sun et al; Science 287 (2000), 1989

(8)

Magnetic Nanostructures

Thin Film Multilayer:

⇒Surfaces,

⇒Interfaces,

⇒Proximity effects

Fe 50 Pt 50 Nanoparticle Network by colloidal self organisation

Sun et al; Science 287 (2000), 1989

(9)

Interlayer Exchange Coupling

Peter Grünberg:

Interlayer Exchange Coupling in Fe/Cr Multilayers Phys. Rev. Lett. 57 (1986), 2442

Oscillatory coupling as function of interlayer thickness:

Co Cu Co

Co Cu Co

Ferromagnetic Antiferromagnetic

(10)

Giant Magnetoresistance (GMR)

P. Grünberg et al.

Phys. Rev. B 39 (1989), 4828 (and independently: A. Fert, Paris)

GMR-effect

Fe/Cr/Fe

1.5 %

Artificial Nano-Structures

→ purpose designed properties

(11)

Giant Magnetoresistance (GMR)

P. Grünberg et al.

Phys. Rev. B 39 (1989), 4828 (and independently: A. Fert, Paris)

GMR-effect

Fe/Cr/Fe

1.5 %

Fe/Cr/Fe

Artificial Nano-Structures

→ purpose designed properties

(12)

Giant Magnetoresistance (GMR)

P. Grünberg et al.

Phys. Rev. B 39 (1989), 4828 (and independently: A. Fert, Paris)

GMR-effect

Fe/Cr/Fe

1.5 %

Fe/Cr/Fe

1

Artificial Nano-Structures

→ purpose designed properties

(13)

Giant Magnetoresistance (GMR)

P. Grünberg et al.

Phys. Rev. B 39 (1989), 4828 (and independently: A. Fert, Paris)

GMR-effect

Fe/Cr/Fe

1.5 %

Fe/Cr/Fe

1

Artificial Nano-Structures

→ purpose designed properties

(14)

Applications: Hard Disks

(15)

Applications: Hard Disks

Moor's Law

(16)

Applications: MRAM

MRAM MRAM

Magnetic Random Access Memory:

(17)

Applications: MRAM

MRAM MRAM

Magnetic Random Access Memory:

• 100 Million storage elements per mm 2

• 1 /100 Million gram mass per cm 2

(18)

Applications: MRAM

MRAM MRAM

Magnetic Random Access Memory:

• 100 Million storage elements per mm 2

• 1 /100 Million gram mass per cm 2

independently 1988 A. Fert

(19)

Applications: MRAM

MRAM MRAM

Magnetic Random Access Memory:

• 100 Million storage elements per mm 2

• 1 /100 Million gram mass per cm 2

independently 1988 A. Fert

"Spintronics":

Information transport, storage and processing

with the spin of the electron (not the charge!)

(20)

Complex transition metal oxides:

High T C Superconductors; CMR-Manganates; …

New phenomena appear from the New phenomena appear from the bottom of the Fermi sea due to bottom of the Fermi sea due to electronic correlations:

electronic correlations:

• Magnetism

• Superconductivity

• Metal-insulator transition (CMR)

• Charge- & orbital order

• Multiferroica

Highly correlated electron systems

(21)

High T C Materials (YBa 2 Cu 3 O 6+x ):

Magnetism ↔ Superconductivity Materials with collosal Magnetoresistance

Spin ↔ Charge ↔ Lattice ↔ Orbital order Oxides

No simple Fermi liquids; competing interactions

La Mn

O

Highly correlated electron systems

Fundamental microscopic understanding !

Fundamental microscopic understanding !

(22)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

(23)

Susceptibility and Magnetisation

(24)

Susceptibility and Magnetisation

M

H

H M = χ ⋅

linear response theory

(25)

Susceptibility and Magnetisation

(26)

Scattering

(27)

Scattering

→ Internal structure? (atom positions, moment arrangement)

→ Microscopic dynamics? (atom movements, spin dynamics)

⇒ Macroscopic properties (conductivity, susceptibility, ...)

(28)

Scattering

Scattering:

interaction sample ↔ radiation weak

⇒ non-invasive, non destructive probe

for structure & dynamics

(29)

v N

µ N

Generalised Susceptibility

linear response theory:

perturbation of magnetic system described by spacial and temporal varying magnetic field H (r, t)

system reaction:

local magnetisation M (r,t)

linear response theory → susceptibility )

, ( r t χ

( ) ( )

,

0

, =

=

ld H

ld

t M R t

R

M

β β

( , ' ) (

' '

, ' ) '

' '

'

'

t R R t t dt

R

t

H

d l ld d

l

d

∫ ∑∑

l

− −

+

αβ

α

α

χ

( , ' ) ( ) (

0 '

, ' )

1

'

Q t t e

iQ R R0 '

R

ld

R

d

t t

dd

d

ld

− −

=

− ∑

αβ

αβ χ

χ

( ) Q e

dd

( ) Q t dt

t i

dd

,

'

,

' 0

αβ ω

αβ

ω χ

χ =

∞ −

(30)

v N

µ N

Generalised Susceptibility

linear response theory:

perturbation of magnetic system described by spacial and temporal varying magnetic field H (r, t)

system reaction:

local magnetisation M (r,t)

linear response theory → susceptibility )

, ( r t χ

Fourier transform:

( , ) = ( , )

=0

ld H

ld

t M R t

R

M

β β

( , ' ) (

' '

, ' ) '

' '

'

'

t R R t t dt

R

t

H

d l ld d

l

d

∫ ∑∑

l

− −

+

αβ

α

α

χ

( , ' ) ( ) (

0 '

, ' )

1

'

Q t t e

iQ R R0 '

R

ld

R

d

t t

dd

d

ld

− −

=

− ∑

αβ

αβ χ

χ

( ) Q e

dd

( ) Q t dt

t i

dd

,

'

,

' 0

αβ ω

αβ

ω χ

χ =

∞ −

(31)

Neutrons: Length and Time Scales

(32)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

(33)

Magnetic Structures

Mn

2+

b=a a=4.873 Å

c= 3. 31 Å

Collinear Antiferromagnets:

F -

MnF

2

:

Modulated Structures:

Cr:

MnO:

Complex Structures:

Er

6

Mn

23

:

Rare Earth:

General description in Fourier representation:

=

k k l

e

m i k R

m

ij ij

exp( )

(34)

Neutron-Matter-Interaction

First Born Approximation: 2 2

|

|

|'

2 ⎟ | < >

⎜ ⎞

= ⎛

m k V k

d d

π h

σ

(35)

Neutron-Matter-Interaction

First Born Approximation: 2 2

|

|

|'

2 ⎟ | < >

⎜ ⎞

= ⎛

m k V k

d d

π h σ

r d e

r V

r d e r V e

r Q i

r k i r

k i

3 3 '

) (

) (

=

(36)

Neutron-Matter-Interaction

First Born Approximation: 2 2

|

|

|'

2 ⎟ | < >

⎜ ⎞

= ⎛

m k V k

d d

π h σ

r d e

r V

r d e r V e

r Q i

r k i r

k i

3 3 '

) (

) (

? =

(37)

Neutron-Matter-Interaction

First Born Approximation: 2 2

|

|

|'

2 ⎟ | < >

⎜ ⎞

= ⎛

m k V k

d d

π h σ

r d e

r V

r d e r V e

r Q i

r k i r

k i

3 3 '

) (

) (

? =

• strong interaction n ↔ nucleus

• magnetic dipole-interaction with B-field of unpaired e

-

major

(38)

Magnetic Interaction Potential

e -

v e

µ e

R

B µ n

n

magnetic moment of the neutron:

σ γµ

=

µ n N

magnetic field of the electron:

L

S B

B

B = +

dipolar field of the spin moment: ; 2 S

R R

B x e B

e 3

S ⎟⎟ ⎠ µ = − µ ⋅

⎜⎜ ⎞

× ⎛ µ

=

field due to the movement of the electron (Biot-Savart): L e 3 R

R v

c

B = − e ×

n B

m = − µ ⋅ V

Zeeman energy:

(39)

Magnetic Scattering Cross Section

σz Vm k

σz‘ k‘

z 2 m

z 2

n 2 k ' ' k

2 m d

d ⎟⎟ ⎠ σ σ

⎜⎜ ⎞

= π Ω

σ V

h

( ) z ( ) z 2

B

0 2 ' M Q

2 r 1

d

d σ ⋅ σ

− µ γ

Ω = σ

σ

cm 10

539 . 0

r 0 = ⋅ 12 γ

→"equivalent scattering length" for 1 µ

B

(S=

2

1 ): 2.696 fm ≈ b

co

( ) Q M ( ) Q

M = × ×

( ) Q = M ( ) r e d r

M i Q r 3

( ) r M ( ) r M ( ) r

M = S + L

( ) = − µ ⋅ ( ) = − µ ∑ δ ( − )

i i i

B B

S r 2 S r 2 r r S

M

1. Born approximation

(40)

Directional Dependence

Q k‘

M

k

M

( ) Q M

M = × ×

Illustration: scattering from the dipolar field

Only the component of the magnetisation perpendicular to the scattering vector gives rise to magnetic scattering!

M || Q M

Q

Planes with equal phase factor

M ⊥ Q M

Q

(41)

Pure Spin Scattering

Ri rik

tik Sik

Si

Atom i

Separation of intra-atomic quantities for localised moments:

( ) = − µ ∑ δ ( − ) ⋅ +

=

ik ik ik

B S

ik i

ik R t ; M r 2 r r s

r

( ) Q = M ( ) r e d r

M S i Q r 3

∑ ∑ ⋅

∑ =

=

i i Q R k i Q t ik ik ik

r Q

i s e e s

e i i ik

Expectation value of the operator for the thermodynamic state of the sample:

( ) Q = − 2 µ B ⋅ f m ( ) Q ⋅ ∑ e i Q R ⋅ S i

M i

( ) = ∫ ρ ( )

Atom

r 3 Q s i

m Q r e d r

f

( ) ( ) 2

i

R Q i i

2 m

0 f Q S e i

d r

d = γ ∑

σ ⊥

(42)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

normalized form factor

sin(Θ/λ)

nuclear scattering

orbital

x-ray

spin

Chromium

0.0 0.2 0.4 0.6 0.8 1.0

sin(Θ/λ)

Q || b Q || a

a b

form factor

Form Factor: Spin, Orbit, Anisotropy

M(r)

λ

F

i. a. anisotrop:

in general anisotropic:

(43)

Magnetic Bragg Diffraction from a Type I Antiferromagnet on a tetragonal body-centered lattice

amplitude

→ intensity

nuclear structure factor

squared

square of structure

factor

(44)
(45)

Magnetic Neutron Scattering

Neutron Powder Diffraction

10 K RT

E. Gorelik (2004)

Distorted

Perovskite

structure

(46)

Magnetic Neutron Scattering

Neutron Powder Diffraction

10 K RT

E. Gorelik (2004)

Distorted

Perovskite

structure

(47)

Magnetic Neutron Scattering

Neutron Powder Diffraction

10 K RT

E. Gorelik (2004)

Spin Structure:

Distorted

Perovskite

structure

(48)

v N

µ N Interaction:

Magnetic Dipole-Dipole

) ' ,' ( )

' , ,' , ( )

,

( r t r r t t H r t

M = χ ⋅

(

0

)

2

1 ' ( )

2

z B z

mag n

Q M d r

d ω σ γ µ σ σ σ

=

Elastic scattering:

Magnetic Neutron Scattering

(49)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

(50)

X-Ray Powder Diffraction

Chemical structure, but not

Magnetic Structure

(51)

La 7/8 Sr 1/8 MnO 3 -Kristall

Perßon, Li, Mattauch, Kaiser, Roth, Heger (2004)

(52)

La 7/8 Sr 1/8 MnO 3 -Kristall

Perßon, Li, Mattauch, Kaiser, Roth, Heger (2004)

< 112>

T = 120 K

(53)

ESRF @ Grenoble, France 6 GeV

APS @ Argonne/Chicago, USA 7 GeV

SPRING8, Japan, 8 GeV

Synchrotron Sources

(54)

X-Ray Probes of Magnetism

- Kerr-microscopy - Faraday effect

- Linear x-ray magnetic dichroism - Circular x-ray magnetic dichroism

- Spin resolved x-ray absorption fine structure SEXAFS - Magnetic x-ray diffraction (non-resonant scattering) - Resonant magnetic x-ray scattering (X-ray resonance

exchange scattering XRES) - Nuclear resonant scattering - Magnetic x-ray reflectivity - Magnetic Compton scattering

- Angular- and spin resolved photoemission

(55)

X-Ray Probes of Magnetism

- Kerr-microscopy - Faraday effect

- Linear x-ray magnetic dichroism - Circular x-ray magnetic dichroism

- Spin resolved x-ray absorption fine structure SEXAFS - Magnetic x-ray diffraction (non-resonant scattering) - Resonant magnetic x-ray scattering (X-ray resonance

exchange scattering XRES) - Nuclear resonant scattering - Magnetic x-ray reflectivity - Magnetic Compton scattering

- Angular- and spin resolved photoemission

(56)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

(57)

E

H E

H

H H

E

E

interaction re-radiation

-e

-e

-e µ

µ force

-eE

-eE

grad(µH)

torque Hxµ

E-dipole

H-quadr.

E-dipole

H-dipole

σ

σ

σ

σ

σ

π,σ

π

π

µ

De Bergevin & Brunel 1981

Nonresonant Scattering: Classical

Thomson scattering from charges

Structure

(58)

E

H E

H

H H

E

E

interaction re-radiation

-e

-e

-e µ

µ force

-eE

-eE

grad(µH)

torque Hxµ

E-dipole

H-quadr.

E-dipole

H-dipole

σ

σ

σ

σ

σ

π,σ

π

π

µ

De Bergevin & Brunel 1981

Nonresonant Scattering: Classical

Thomson scattering from charges

Structure

But: X-rays are electromagnetic

radiation ⇒ non resonant magnetic x-ray

scattering

Magnetism

(59)

Cross Section for Magnetic X-Ray Scattering

Non-relativistic treatment in second order perturbation theory ( Blume 1985, Blume & Gibbs 1988 )

• Hamiltonian for e - in e-m field:

)) 2 (

2 (

1 A r j

c j e j m P

H = ∑ −

+ ∑

ji V ( r ij )

∑ ⋅ ∇ ×

j s j A r j mc

e h ( )

)) (

( ) 2 (

) (

2 A r j

c j e j s j E r j P

mc

e ∑ ⋅ × −

− h

2 ) ) 1 ( ) (

∑ ( + +

+ λ ω λ λ

k h k c k c k

kinetic energy

Coulomb interaction Zeeman energy -µ · H

spin-orbit coupling -µ·H~s·(E×v)

self energy of e-m-field

• Vector potential in plane wave expansion:

2 1 q 2 V c q 2 )

r (

A = ∑σ ω π

⎟⎟

⎜⎜

h × [ ε ( q σ ) c ( q σ ) e i q ⋅ r + ε * ( q σ ) c + ( q σ ) e − i q ⋅ r ]

(60)

H = H o + H r + H int

e

-

-system e-m-wave interaction

→ perturbation theory (Fermi's "golden rule")

first order for terms quadratic in A second order for terms linear in A

2

int

, ,

,'

,' f H k i d k

d σ ε ε

Cross Section for Magnetic X-Ray Scattering

(61)

2 ' 2

2 2

' εε

ε ε

σ

f C

mc e d

d ⎥ ⋅

⎢ ⎤

= ⎡ Ω

non-resonant elastic scattering cross section:

r e = 2.818 fm

incident and final polarization

Intensity ratio: I I

(62)

2 ' 2

2 2

' εε

ε ε

σ

f C

mc e d

d ⎥ ⋅

⎢ ⎤

= ⎡ Ω

non-resonant elastic scattering cross section:

r e = 2.818 fm

incident and final polarization

2 ' '

2 2 2

' ε ε ε ε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

= ⎡ Ω

Intensity ratio: I I

(63)

2 ' 2

2 2

' εε

ε ε

σ

f C

mc e d

d ⎥ ⋅

⎢ ⎤

= ⎡ Ω

non-resonant elastic scattering cross section:

r e = 2.818 fm

incident and final polarization

2 ' '

2 2 2

' ε ε ε ε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

= ⎡ Ω

charge ~ |f C | 2

Intensity ratio: I I

(64)

2 ' 2

2 2

' εε

ε ε

σ

f C

mc e d

d ⎥ ⋅

⎢ ⎤

= ⎡ Ω

non-resonant elastic scattering cross section:

r e = 2.818 fm

incident and final polarization

2 ' '

2 2 2

' ε ε ε ε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

= ⎡ Ω

charge ~ |f C | 2 magnetic~ |f M | 2

Intensity ratio: I I

(65)

2 ' 2

2 2

' εε

ε ε

σ

f C

mc e d

d ⎥ ⋅

⎢ ⎤

= ⎡ Ω

non-resonant elastic scattering cross section:

r e = 2.818 fm

incident and final polarization

2 ' '

2 2 2

' ε ε ε ε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

= ⎡ Ω

charge ~ |f C | 2 magnetic~ |f M | 2 interference~ f C · f M

Intensity ratio: I I

(66)

2 ' 2

2 2

' εε

ε ε

σ

f C

mc e d

d ⎥ ⋅

⎢ ⎤

= ⎡ Ω

non-resonant elastic scattering cross section:

r e = 2.818 fm

incident and final polarization

2 ' '

2 2 2

' ε ε ε ε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

= ⎡ Ω

charge ~ |f C | 2 magnetic~ |f M | 2 interference~ f C · f M

π/2 phase shift

Intensity ratio: I I

(67)

2 ' 2

2 2

' εε

ε ε

σ

f C

mc e d

d ⎥ ⋅

⎢ ⎤

= ⎡ Ω

non-resonant elastic scattering cross section:

r e = 2.818 fm

incident and final polarization

2 ' '

2 2 2

' ε ε ε ε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

= ⎡ Ω

charge ~ |f C | 2 magnetic~ |f M | 2 interference~ f C · f M

π/2 phase shift h/mc = 2.426 pm

Intensity ratio: I I

(68)

2 ' 2

2 2

' εε

ε ε

σ

f C

mc e d

d ⎥ ⋅

⎢ ⎤

= ⎡ Ω

non-resonant elastic scattering cross section:

r e = 2.818 fm

incident and final polarization

2 ' '

2 2 2

' ε ε ε ε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

= ⎡ Ω

charge ~ |f C | 2 magnetic~ |f M | 2 interference~ f C · f M

π/2 phase shift h/mc = 2.426 pm

10 6

~ 2 f S

N f M N M

d c

~ I M C

I −

⋅ ⋅

Intensity ratio: I I λ

(69)

cross section:

scattering geometry:

Cross Section: Nonresonant

2 ' '

2 2 2

' ε ε ε ε

ε ε

λ σ

M C

C f

i d mc f

e d

d ⎥ ⋅ +

⎢ ⎤

= ⎡ Ω

Q=k’-k

(70)

Amplitude-matrices:

to \ from σ π

σ ' ρ ( Q ) 0

π ' 0 ρ (Q) cos2 ( θ )

<f

C

> for charge scattering:

charge density ρ(Q)

(71)

Amplitude-matrices:

to \ from σ π

σ ' ρ ( Q ) 0

π ' 0 ρ (Q) cos2 ( θ )

<f

C

> for charge scattering:

charge density ρ(Q)

e

-

E Hertz

Dipole

Radiation

(72)

Amplitude-matrices:

to \ from σ π

σ ' ρ ( Q ) 0

π ' 0 ρ (Q) cos2 ( θ )

<f

C

> for charge scattering:

charge density ρ(Q)

e

-

E Hertz

Dipole Radiation

to \ from σ π

σ ' S 2cos θ [ ( L 1 + S 1 )cos θ + S 3sin θ ] sin θ

π ' [ − ( L 1 + S 1 )cos θ + S 3sin θ ] sin θ [ 2 L 2 ⋅ sin 2 θ + S 2 ] ⋅cos θ

<f

M

> for the magnetic part:

spin density S(Q) and orbital angular momentum density L(Q)

(73)

Amplitude-matrices:

to \ from σ π

σ ' ρ ( Q ) 0

π ' 0 ρ (Q) cos2 ( θ )

<f

C

> for charge scattering:

charge density ρ(Q)

e

-

E Hertz

Dipole Radiation

to \ from σ π

σ ' S 2cos θ [ ( L 1 + S 1 )cos θ + S 3sin θ ] sin θ

π ' [ − ( L 1 + S 1 )cos θ + S 3sin θ ] sin θ [ 2 L 2 ⋅ sin 2 θ + S 2 ] ⋅cos θ

<f

M

> for the magnetic part:

spin density S(Q) and orbital angular momentum density L(Q)

Charge scattering: "NSF"

Magnetic scattering: "NSF" (S

2

, L

2

) – scattering plane + "SF" (S

1

, S

3

, L

1

) – in scattering plane

Separation S ↔L

(74)

50 m

5 mm properties calculable

small source

size wiggler clean ultra-high

vacuum source

time structure

intense continuous spectrum highly collimated

undulators

.

. polarised

Synchrotron X-Ray Source

(75)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

(76)

Resonant Magnetic X-Ray Scattering

εF

2s 2p 2p

1s

1/2 3/2

4f 4f

s-p-d

up E down

exchange splitting

γ

LIII

E1: 2p3/2→5d5/2 E2: 2p3/2→4f7/2

Hannon, Trammell, Blume & Gibbs PRL 61 (1988), 1245

(77)

Resonant Magnetic X-Ray Scattering

εF

2s 2p 2p

1s

1/2 3/2

4f 4f

s-p-d

up E down

exchange splitting

γ

LIII

E1: 2p3/2→5d5/2 E2: 2p3/2→4f7/2

Hannon, Trammell, Blume & Gibbs PRL 61 (1988), 1245

(78)

Resonant Magnetic X-Ray Scattering

εF

2s 2p 2p

1s

1/2 3/2

4f 4f

s-p-d

up E down

exchange splitting

resonance exchange scattering

γ

LIII

E1: 2p3/2→5d5/2 E2: 2p3/2→4f7/2

Hannon, Trammell, Blume & Gibbs PRL 61 (1988), 1245

(79)

Resonant Magnetic X-Ray Scattering

εF

2s 2p 2p

1s

1/2 3/2

4f 4f

s-p-d

up E down

exchange splitting

resonance exchange scattering

( )

2 0

M

mag E E i / 2

E / d

d

Γ

∝ α Ω

σ

γ

LIII

E1: 2p3/2→5d5/2 E2: 2p3/2→4f7/2

Hannon, Trammell, Blume & Gibbs PRL 61 (1988), 1245

(80)

Resonant Magnetic X-Ray Scattering

εF

2s 2p 2p

1s

1/2 3/2

4f 4f

s-p-d

up E down

exchange splitting

resonance exchange scattering

( )

2 0

M

mag E E i / 2

E / d

d

Γ

∝ α Ω

σ

neutron scattering

γ

LIII

E1: 2p3/2→5d5/2 E2: 2p3/2→4f7/2

Hannon, Trammell, Blume & Gibbs PRL 61 (1988), 1245

(81)

Resonant Magnetic X-Ray Scattering

εF

2s 2p 2p

1s

1/2 3/2

4f 4f

s-p-d

up E down

exchange splitting

resonance exchange scattering

( )

2 0

M

mag E E i / 2

E / d

d

Γ

∝ α Ω

σ

neutron scattering

resonant x-ray scattering

γ

LIII

E1: 2p3/2→5d5/2 E2: 2p3/2→4f7/2

Hannon, Trammell, Blume & Gibbs PRL 61 (1988), 1245

(82)

7942 eV 7938 eV 7935 eV 7933 eV

ω 0

1000 2000 3000

5 5.2 5.4 5.6 5.8

co un ts / se c

energy

7924 eV 7930 eV

0 20 40 60 80 100 120 140

0 50 100 150 200 250

7920 7925 7930 7935 7940 7945 7950

peak intensity [a.u.] flourescence yield [a.u.]

energy [eV]

GdS 9/2 1/2 1/2

LII edge

GdS: L II Edge Resonance

Brückel, Hupfeld, Strempfer, Caliebe, Mattenberger, Stunault, Bernhoeft, McIntyre; Eur. Phys. J B19 (2001); 475

(83)

) ( )

( )

( )

1 (

lin E f circ E

f o E

f E E

f res = + +

Dipole Approximation:

ε ε⋅ + + −

= 1

F 1 1 1 F ' ) E 0 ( f

ε × ε ⋅ − − +

= 1

F 1 1 1 F m '

i ) E circ ( f

( )

ε ⋅ ε ⋅ − + − −

= 1

F 1 1 1 1 F

F 0 2 m m

' ) E lin ( f

Amplitudes:

Oscillator Strengths:

2 h res i

1 M

F M ω − ω − Γ

= α

( ) ... 2

' 1

' '

2 2 2

' = ⋅ + + +

Ω → ⎟

⎜ ⎞

ε ε ε

λ ε ε

ε ε ε

σ E E

f res f M

d i c f c

mc e d

d

Anomalous Scattering: Cross Section

(84)

XRES: Resonance Enhancements

elements edge transition energy range [keV]

resonance strength

comment

3d

K 1s 4p 5 - 9 weak small overlap

3d

LI 2s → 3d 0.5 - 1.2 weak small overlap

3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f

K 1s → 5p 40 - 63 weak small overlap

4f

LI 2s 5d 6.5 - 11 weak small overlap

4f

LII, LIII 2p → 5d

2p → 4f

6 - 10 medium dipolar

quadrupolar

4f

MI 3s → 5p 1.4 - 2.5 weak small overlap

4f

MII, MIII 3p → 5d

3p → 4f

1.3 - 2.2 medium to strong

dipolar quadrupolar

4f

MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, high spin polarisation of 4f

5f

MIV, MII 3d → 5f 3.3 - 3.9 strong dipolar, large overlap, high spin polarisation of 5f

(85)

XRES: Resonance Enhancements

elements edge transition energy range [keV]

resonance strength

comment

3d

K 1s 4p 5 - 9 weak small overlap

3d

LI 2s → 3d 0.5 - 1.2 weak small overlap

3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f

K 1s → 5p 40 - 63 weak small overlap

4f

LI 2s 5d 6.5 - 11 weak small overlap

4f

LII, LIII 2p → 5d

2p → 4f

6 - 10 medium dipolar

quadrupolar

4f

MI 3s → 5p 1.4 - 2.5 weak small overlap

4f

MII, MIII 3p → 5d

3p → 4f

1.3 - 2.2 medium to strong

dipolar quadrupolar

4f

MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, high spin polarisation of 4f

5f

MIV, MII 3d → 5f 3.3 - 3.9 strong dipolar, large overlap, high spin polarisation of 5f

thin films 3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

(86)

XRES: Resonance Enhancements

elements edge transition energy range [keV]

resonance strength

comment

3d

K 1s 4p 5 - 9 weak small overlap

3d

LI 2s → 3d 0.5 - 1.2 weak small overlap

3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f

K 1s → 5p 40 - 63 weak small overlap

4f

LI 2s 5d 6.5 - 11 weak small overlap

4f

LII, LIII 2p → 5d

2p → 4f

6 - 10 medium dipolar

quadrupolar

4f

MI 3s → 5p 1.4 - 2.5 weak small overlap

4f

MII, MIII 3p → 5d

3p → 4f

1.3 - 2.2 medium to strong

dipolar quadrupolar

4f

MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, high spin polarisation of 4f

5f

MIV, MII 3d → 5f 3.3 - 3.9 strong dipolar, large overlap, high spin polarisation of 5f

thin films 3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f

LII, LIII 2p → 5d

2p → 4f

6 - 10 medium dipolar

quadrupolar

(87)

XRES: Resonance Enhancements

elements edge transition energy range [keV]

resonance strength

comment

3d

K 1s 4p 5 - 9 weak small overlap

3d

LI 2s → 3d 0.5 - 1.2 weak small overlap

3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f

K 1s → 5p 40 - 63 weak small overlap

4f

LI 2s 5d 6.5 - 11 weak small overlap

4f

LII, LIII 2p → 5d

2p → 4f

6 - 10 medium dipolar

quadrupolar

4f

MI 3s → 5p 1.4 - 2.5 weak small overlap

4f

MII, MIII 3p → 5d

3p → 4f

1.3 - 2.2 medium to strong

dipolar quadrupolar

4f

MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, high spin polarisation of 4f

5f

MIV, MII 3d → 5f 3.3 - 3.9 strong dipolar, large overlap, high spin polarisation of 5f

thin films 3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f

LII, LIII 2p → 5d

2p → 4f

6 - 10 medium dipolar

quadrupolar

thin films 4f

MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, high spin polarisation of 4f

(88)

XRES: Resonance Enhancements

elements edge transition energy range [keV]

resonance strength

comment

3d

K 1s 4p 5 - 9 weak small overlap

3d

LI 2s → 3d 0.5 - 1.2 weak small overlap

3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f

K 1s → 5p 40 - 63 weak small overlap

4f

LI 2s 5d 6.5 - 11 weak small overlap

4f

LII, LIII 2p → 5d

2p → 4f

6 - 10 medium dipolar

quadrupolar

4f

MI 3s → 5p 1.4 - 2.5 weak small overlap

4f

MII, MIII 3p → 5d

3p → 4f

1.3 - 2.2 medium to strong

dipolar quadrupolar

4f

MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, high spin polarisation of 4f

5f

MIV, MII 3d → 5f 3.3 - 3.9 strong dipolar, large overlap, high spin polarisation of 5f

thin films 3d

LII, LIII 2p 3d 0.4 - 1.0 strong dipolar, large overlap, high spin polarisation of 3d

4f

LII, LIII 2p → 5d

2p → 4f

6 - 10 medium dipolar

quadrupolar

thin films 4f

MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, high spin polarisation of 4f

5f

MIV, MII 3d → 5f 3.3 - 3.9 strong dipolar, large overlap, high spin polarisation of 5f

(89)

Outline

• What's new in magnetism ?

• Experimental techniques

• Elastic magnetic neutron scattering

• X-ray techniques for magnetism

• Nonresonant magnetic x-ray scattering

• Resonant magnetic x-ray scattering

• Example: Non-resonant scattering from transition metal di-flourides

• Example: Resonance exchange scattering from mixed crystals

• Summary

(90)

High Energy X-Ray Scattering

Sample Ø 5 mm

W. Schweika:

ico-AlPdMn: phason modes

(91)

High Energy X-Ray Scattering

Sample Ø 5 mm

Bragg geometry 10 keV

W. Schweika:

ico-AlPdMn: phason modes

(92)

High Energy X-Ray Scattering

Sample Ø 5 mm

100 keV Sample

Ø 5 mm

W. Schweika:

ico-AlPdMn: phason modes

Referenzen

ÄHNLICHE DOKUMENTE

To prove the invertibility of the operator A in the general case of an arbitrary rough surface we define a continuous deformation of a flat surface into the rough scattering

As a first step, claims can be based on the data sheet containing information on the nominal power output (related to STC) and the power output tolerance. The question

This means that the direction of the pumped spin momentum gets ran- domized by large spin fluctuations inside Pd; and, conse- quently, the spin momentum backflow loses its net spin

The magnetization was excited by an in-plane magnetic field pulse using the transient internal field generated at a Schottky barrier while the wavelength of the excitation

This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics.. We find, in particular, that for

Remarkably, we find signifi- cant qualitative differences in the spin relaxation times of chaotic, integrable, and open diffusive systems: Spin re- laxation for confined chaotic

The iron precipitates from water samples (sea ice, deposition, water beneath ice and surface water) were dried and placed in plastic vials for gamma measurements.. In the case

The pronounced thermal excitation of d electrons drives the system into a nonequilibrium state which by a dissipationless spin dynamics, where energy and angular momentum