• Keine Ergebnisse gefunden

multiple constraints

N/A
N/A
Protected

Academic year: 2022

Aktie "multiple constraints"

Copied!
63
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

From observations to prediction through  model‐data integration: the importance of 

multiple constraints

Markus Reichstein, Nuno Carvalhais, Gregor Schürmann,  Thomas Wutzler, Matthias Forkel, Soenke Zaehle

Max-Planck Institute for Biogeochemistry, Jena Department of Biogeochemical Integration

(2)

Motivation: carbon cycle uncertainty

~1 Pbyte/year

(~200 Billion bibles [2e8] or 50 Lib of Congress)

Ahlström et al. (2012), ERL Friedlingstein et al. (2006)

(3)

Potential sources of uncertainty

• model structure

– missing processes

– misrepresentation of states dynamics

• parameterizations

– wrong sensitivities

• initial conditions

– inappropriate characterization of ecosystem states

(4)

Previous tests on parameter uncertainties

Booth et al. (2012)

Model spread caused by parameters of the terrestrial component Highly parameterized formulations

Green lines: Parameter perturbations

(5)

Potential sources of uncertainty

• model structure

– missing processes

– misrepresentation of states dynamics

• parameterizations

– wrong sensitivities

• initial conditions

– inappropriate characterization of ecosystem states

Explore the information content of observations from

ecosystem to regional/global scales

(6)

Observation level

Process level

Observation level

Process level

‘Real’ world Model world

Inverse approach Forward

approach Observed

behavior

Extracted  patterns

Extracted  patterns

Modelled behavior

Linking models and observations

cf. Reichstein & Beer (2008), JPNSS

(7)

Observation level

Process level

Observation level

Process level

‘Real’ world Model world

Inverse approach Forward

approach Observed

behavior

Extracted  patterns

Extracted  patterns

Modelled behavior

Linking models and observations

cf. Reichstein & Beer (2008), JPNSS

Q10 > 3

Lloyd & Taylor (1994) Reichstein et al. 2005

if (tsoil < -10.0) {

/* no decomp processes for tsoil < -10.0 C */

t_scalar = 0.0;

} else {

tk = tsoil + 273.15;

t_scalar = exp(308.56*((1.0/71.02)-(1.0/(tk-227.13))));

}

Model code

(8)

Observation level

Process level

Observation level

Process level

‘Real’ world Model world

Inverse approach Forward

approach Observed

behavior

Extracted  patterns

Extracted  patterns

Modelled behavior

Linking models and observations

cf. Reichstein & Beer (2008), JPNSS

Challenge:

Extract generalized information from data sets, confront these with model behavior and interpret differences in a system-oriented way

(9)

parameters

Inversion methods

data

model cost function

optimization

uncertainty

Adapted from Lasslop 2010 uncertainty

(10)

Model‐data integration

• Cost functions

– Single versus multiple constraints approaches

      

 

 

 

 

 

Q

k p,k

k M k

i

N

n i,n

n , i n

, i i

p ˆ p

y ,

x ˆ y

N

i

1

2

2

1 1

2

2

2 1 1

2

1 p

(11)

Model‐data integration

• Cost functions

– Single versus multiple constraints approaches

      

 

 

 

 

 

Q

k p,k

k M k

i

N

n i,n

n , i n

, i i

p ˆ p

y ,

x ˆ y

N

i

1

2

2

1 1

2

2

2 1 1

2

1 p

model estimates

parameter vector

observations

obs. uncertainty

proposed parameter

a priori parameter

par. uncertainty data streams

(12)

Multiple‐constraint model identification & parameter estimation…

p1 (e.g. C allocation to roots)

p2 (e.g. max. LUE)

Challenges: Equifinality, Over‐parameterisation (e.g. Knorr et al. 2005, Reichstein et al. 2005)

• Bayesian model calibration against different constraints

• Extension of the approach to test different model

structures and process representations (Model  identification)

Constraint I:

e.g. total C flux Constraint II:

e.g. H2O flux

Constraint III:

e.g. AGB

(13)

INFUSION

Addressing present and future variability in ecosystem carbon fluxes  through modeling ensembles and model‐data fusion approaches

Nuno Carvalhais, Marcel van Oijen, Trevor Keenan, Natasha MacBean, Philippe Peylin, Anja Rammig,  Susanne Rolinski, Tea Thum, André Granier, Dennis Loustau, Gregor Schuermann, Soenke Zaehle, Christian 

Beer, Miguel Mahecha, Jakob Zscheischler, Andrew Richardson and Markus Reichstein

(14)

models

• BASFOR [CEH]

• FoBAAR [Harvard]

• JSBACH [MPI BGC]

• LPJ [PIK]

• ORCHIDEE [LSCE]

Hesse: deciduous broadleaf

forest, beech; Cfb ‐ Warm 

temperate fully humid with 

warm summer

(15)

Quantifying ecosystem‐atmosphere interactions

(16)

Data & uncertainties

• Eddy covariance fluxes

– Net Ecosystem Exchange (NEE)

• random and u* thresholds

– Latent heat fluxes (LE)

• random and EBC method

(17)

Data : flux measurements

NEE and NEE uncertainties

LE and LE uncertainties

(18)

Data & uncertainties

• Eddy covariance fluxes

– Net Ecosystem Exchange (NEE)

• random and u* thresholds

– Latent heat fluxes (LE)

• random and EBC method

• Ancillary biometric data

– AGB and AGB increments

• natural variability, observational and parametric uncertainties in DBH curves

– Total soil carbon stocks

• Spatial variability and total profile representation

formal consideration of uncertainties in model-data

integration

(19)

Multi‐model MDF : Hesse : NEE

model: opti./test.

model: opti./test.

optimized

(20)

Hesse : misfits vs time scales

(21)

mdf : Hesse : vegetation stocks

model: NMAE/r model: NMAE/r

model: NMAE/r model: NMAE/r

(22)

Description of water use efficiency

(23)

Description of water use efficiency

(24)

JSBACH : implications of multiple constraints

standard

C+H2O+biometry C fluxes

H2O fluxes biometry

(25)

LPJML‐MDI

Exploring seasonal and decadal dynamics of phenology

Forkel et al., BGD, 2014; Forkel et al, in prep.

(26)

Trends in vegetation greenness 1982‐2011

Mean annual NDVI

(27)

LPJmL‐MDI setup

FAPAR

(GIMMS3g)

Photo‐

synthesis

Land cover

Phenology

FAPAR

Albedo

FAPAR

(Geoland2)

Temp, Precip, Radiation,  CO2

Cost

Model: LPJmL Model‐data  Opt/Eval Data integration

Parameter

Genetic 

Optimization GPP

(MTE)

Albedo

(MODIS)

Land cover 

(SYNMAP),  Tree cover 

(MODIS)

Burnt area 

(GFED, Alaska  LFDB, Canada 

NFDB)

Fire

Prescribed

Data

(28)

New phenology scheme based on GSI 

[Jolly et al., 2005]

(29)

Cor LPJmL‐OP‐prior ~ GIMMS3g Cor LPJmL‐GSI ~ GIMMS3g

Best LPJmL model run c)

a) b)

New phenology scheme based on GSI 

[Jolly et al., 2005]

(30)

Seasonal controls on phenological development

(31)

Drivers of annual and decadal variability

(32)

MPI‐CCDAS

Improving the Modelled Global Terrestrial Carbon Cycle by  Assimilating CO2 Mole Fractions and FAPAR with the 

MPI – Carbon Cycle Data Assimilation System 

Schuermann et al., in prep.

(33)

Site & global scale optimizations Site scale  Global scale

FAPAR Net Ecosystem Exchange

Fluxnet NEE CO2 mole fractions

Satellite observations for both

(34)

Details of the exercise

Spatial resolution of 8°x10°

Assimilating 2 years (2008 & 2009) 

1 year (2007) as spin‐up

1 year (2010) as “evaluation”

North American Evergreen pixel

FAPAR

Assimilated data

Not assimilated

Prior: JSBACH without having seen observations

Post(erior): JSBACH with improved parameters/initial conditions after having seen observations

(35)

CO2 (FAPAR assimilation)

Mauna Loa, Hawaii

Barrow, Alaska

(36)

CO2 (FAPAR & CO2 assimilation)

Barrow, Alaska

Mauna Loa, Hawaii

(37)

Conclusions

• importance of multiple data streams in model‐data  integration exercises

– further constrained parameterizations – consistency with observed states

– addressing equifinality – predictive uncertainty

• significant implications for diagnostic and prognostic  model runs

• remote sensing provide unique constraints to  integrate site‐level and regional to global scales  dynamics of responses of terrestrial ecosystem to  climate variability

• allocation / lag effects and the carbon‐hydrological 

cycle

(38)

http://link.springer.com/article/10.1007%2Fs10265‐008‐0188‐2/fulltext.html

processes and observations spanning

from wide scales

(39)

Observational scales

forest/soil inventories

remote sensing of (x)CO

2

Temporal scale

Spatial scale [km]

hour day week month year decade century

local 0.1 1 10 100 1000 10 000 global Countries EU

plot/site

tall tower obser-

vation Eddy

covariance towers tree

rings landsurface remote sensing [e.g. LAI, fAPAR, soil moisture]

upscaling fields [e.g. GPP, LE]

remote sensing of biomass / land cover

plot

inventory

(40)

THANK YOU!

(41)
(42)

observational scales

forest/soil inventories

remote sensing of (x)CO

2

Temporal scale

Spatial scale [km]

hour day week month year decade century

local 0.1 1 10 100 1000 10 000 global Countries EU

plot/site

tall tower obser-

vation Eddy

covariance towers tree

rings landsurface remote sensing [e.g. LAI, fAPAR, soil moisture]

upscaling fields [e.g. GPP, LE]

remote sensing of biomass / land cover

plot

inventory

(43)

From ecosystem level to regional/global scales

• Parameterizations

– Based on biotic and abiotic covariates (e.g. 

Carvalhais et al., 2010; Horn and Shulz, 2011)

– Based on spatial/temporal distributions of plant  functional types

Acknowledge:

– Site particularities (e.g. ground water access,  disturbance history/initial conditions, …)

– Determination of site representativeness

(44)
(45)
(46)

Quantifying ecosystem‐atmosphere interactions

(47)

ecosystem fluxes

CO2

H2O

NEP GPP R

A

R

H

(48)

Ecosystem C cycling and fluxes

Assimilation

Allocation

Respiration

Litterfall Mortality

Decomposition

[Adapted from Lasslop 2010]

Fire

Harvest

Leaching

(49)

Fluxnet‐Canada

Ameriflux

LBA

CarboAfrica Afriflux

Carboeurope/NECC TCOS

Asiaflux KoFlux

Ozflux Chinaflux

USCCC

FLUXNET: a network of network of eddy covariance sites

La Thuille data set:

>950 site-years from >250 sites

Standardized u*-filtering, gap-filling, flux-partitioning and uncertainties (Aubinet et al. 2001, Foken et al. 2003, Reichstein et al. 2005, Richardson et al. 2006, Papale et al. 2006,

Moffat et al. 2007, Desai et al. 2008, Lasslop et al. 2008)

(50)

(Direct) observations

(Free-running) C

4

-models Offline

DGVM Remote sensing

models (CASA, MOD17) Empirical

‘models’

Assumptions about system Assumptions about system

Observational input Observational input

(51)

Data : vegetation and soil C stocks

AGB and AGB increments Soil C stocks

[Wutzler et al., 2008]

[Carvalhais et al., in prep.]

(52)

Hesse : seasonal misfits :  window180days

optimized

(53)

Changes in prognostic gross fluxes

(54)

Changes in net ecosystem fluxes

Not a clear sign of spread reduction

(55)

ADDRESSING DIFFERENT RECOVERY DYNAMICS 

WITH FLUX AND BIOMETRIC CONSTRAINTS

(56)

Challenging dynamics

Spin-up Extra spin-up

T

P1 P2

C

eq

CW,

ne

CW,

WD

W eq W ne

W C

C , ,

(a)

T

P1 P2

C

(b)

T

P1 P2

C

(c)

P1 P2

C

T (d) Spin-up Extra spin-up

T

P1 P2

C

eq

CW,

ne

CW,

WD

W eq W ne

W C

C , ,

Spin-up Extra spin-up (a)

T

P1 P2

C

eq

CW,

ne

CW,

WD

W eq W ne

W C

C , ,

Spin-up Extra spin-up

T

P1 P2

C

eq

CW,

ne

CW,

WD

W eq W ne

W C

C , ,

(a)

T

P1 P2

C

(b)

T

P1 P2

C

(b)

T

P1 P2

C

(c)

T

P1 P2

C

(c)

P1 P2

C

T (d)

P1 P2

C

T (d)

[Carvalhais et al., 2010]

Disturbance

Recovery

Cascading effects

Logging Fire Coppice

But also empirical approaches

(57)

Just NEP

Scenario differentiation 

Despite differences in  the initialization 

routines it is not 

possible to distinguish  between the different 

“prescribed dynamics”

different scenarios different sites

[Carvalhais et al., 2010]

MEF –relaxing wood (& soil)

MEF – relaxing just soil

(58)

Just NEP

Scenario differentiation 

[Carvalhais et al., 2010]

MEF –relaxing wood (& soil)

MEF – relaxing just soil

NEP + Pools

MEF –relaxing wood (& soil)

MEF – relaxing just soil

(59)

different convergence / stronger constraints

0 1

2

0 1 2 3 4

4 6 8 10 12 14

* [gC.MJ-1 APAR]

WL []

Log Likelihood

[NEP] [NEP,AGB]

[Carvalhais et al., 2010]

(60)

α

β

95% LL for data stream 1 95% LL for data stream 2

α

β

Relevance of multiple constraints

‐ model structure consistent with observations

‐ multiple constraints reduces parametric uncertainty

‐ model structure inconsistent with both datastreams

‐ (due) inflation of parameter uncertainty/multimodality

Challenges: Equifinality, Over-parameterisation (e.g. Knorr et al. 2005, Reichstein et al. 2005)

(61)

COMBINING DATASETS WITH SUBSTANTIALLY  DIFFERENT STATISTICAL PROPERTIES

Wutzler and Carvalhais, in rev.

(62)

Particular challenge of multiple constraints approaches

Highly imbalanced dimensions in data streams:

• for a perfect model, different alternative cost 

functions do not affect the achievement of 

optimum, but weighted approaches inflate 

posterior uncertainties.

(63)

Particular challenge of multiple constraints approaches

Referenzen

ÄHNLICHE DOKUMENTE

Key spectral bands for each trait were identified using the RFR variable importance measure and the Gaussian processes regression band analysis tool (GPR-BAT), highlighting

The Boosted Regression Trees fitted model for each of the influential factors of undercover cropland area calculated from field estimated percent cover is

A detailed description of the achievable accuracies can be found in Bamler and Eineder (2005). The colors in Fig. 11b indicate the magnitude of the motion that occurred in the

The land surface temperature (LST) is accessible on the pan-arctic scale through a number of remote sensing platforms, such as the “Moderate Resolution Imaging Spectrometer”

Es wird das Vorhandensein von Luftschadstoffen entlang einer schmalen vertikalen Luftsäule registriert, die Messung erfolgt vom Boden aus (z.B. aus einem fahrenden KFZ). Mit

Here, we offer a perspective from the ground up and propose a strategy for gathering reliable ground-based measurements and biomass estimates that will be useful to the various

the differences in methane emission at different study sites are obvious, and the measured methane emissions from the various sub- classes of the land cover class WT in the Lena

The result of the Landsat ETM+ classi fi cation at the Turakh study site in the western Lena Delta consists of 15 land-cover classes, which differ in vegetation cover,