• Keine Ergebnisse gefunden

Airborne Remote Sensing of 

N/A
N/A
Protected

Academic year: 2022

Aktie "Airborne Remote Sensing of "

Copied!
33
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Airborne Remote Sensing of 

Permafrost Landscape Dynamics 

Guido Grosse

1

, Julia Boike

1

, Hugues Lantuit

1

, Frank Günther

1

, Birgit Heim

1

,  Moritz Langer g

1

, Ingmar Nitze , g

1

, Sofia A. Antonova ,

2,1

, Veit Helm ,

1

, Torsten Sachs ,

3

1 – Alfred Wegener Institute Helmholtz Centre for Polar‐and Marine Research, Potsdam, Germany 2 – University of Heidelberg, Geographical Institute, Heidelberg, Germany

3 – Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany

(2)

What is Permafrost?

Permafrost in numbers:

Permafrost in numbers:

• Ground that stays below 0°C for at least ≥ 2 consecutive years

• 22 8×10

6

km² (23%) of the northern hemisphere land mass

• 22.8×10

6

km² (23%) of the northern hemisphere land mass

• Up to > 2.5 million years old

• Up to 1600 m thick Up to 1600 m thick

P f t t t

Continuous Discontinuous

Permafrost extent

Isolated

Brown et al., 1997, IPA

(3)

Climate Change in the Arctic: Past + Present

• Polar Amplification of 

climate change increases  ecosystems pressures

NASA/GSFC/Earth Observatory, NASA/GISS

(4)

Thawing Permafrost: Alaska

(5)

Permafrost Remote Sensing Permafrost Remote Sensing

Remote Sensing as tool for understanding Remote Sensing as tool for understanding 

permafrost landscapes, dynamics, and ecosystem feedbacks

Abrupt thaw and subsidence Energy and water fluxes Hydrology and lakes Permafrost coastal change

Carbon pools & fluxes Permafrost modelling Vegetation and land cover  Periglacial landform mapping

(6)

Bridging the Scales Bridging the Scales

Airborne platforms bridge scales between field-based research and

b ti b t llit l tf d l lt f LSM /GCM

observations by satellite platforms or model results from LSMs/GCMs

MOSES 

field observation scheme field observation scheme

Greenhouse gas  emissions

Greenhouse gas  emissions

Thaw event Wetlands

Permafrost

Thaw event

J. Boike et al.

(7)

Bridging the Scales Bridging the Scales

Airborne Platforms bridge scales between field-based research and

l b d b t llit l tf d ll d ith LSM /GCM

scales observed by satellite platforms or modelled with LSMs/GCMs

Regional coverage for detecting permafrost region disturbances with satellite remote sensing

Lake change

LGM glaciation Fire scars Thaw slumps

Nitze et al. 2018: Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nature Communications

Lake change

(8)

Airborne Observation Targets Airborne Observation Targets

Monitoring syn‐ and

post‐disturbance landscape trajectories

Characterizing patterned

patterned ground and ground ice distribution

Quantifying thaw subsidence

Quantifying permafrost

coastal and shore dynamics

subsidence

(9)

Ice Wedge Polygonal Ground Ice Wedge Polygonal Ground

Samoylov Island: Kite and balloon remote sensing

2014 NIR

2006 VIS

Boike et al. 2015

VIS

(10)

Ice Wedge Polygonal Ground

• Location: Ebe‐Basyn‐Sise Island Thermokarst Basin Yedoma Upland

Ice Wedge Polygonal Ground

Location: Ebe Basyn Sise Island,  Lena Delta

• Comparison of polygon p p yg geomorphometry between  manually mapped polygonal  patterns (white lines) and 

p ( )

automatically derived Thiessen  polygons (blue lines)

Scatter plots showing relationship  between manually mapped

between manually mapped  polygon sizes and automatically  derived Thiessen polygon sizes Ulrich et al 2014 (Permafrost & 

Periglacial Processes)

(11)

Ice Wedge Polygonal Ground

3D subsurface models (3D SSMs)

Ice Wedge Polygonal Ground

Epigenetic ice wedge polygonal

3D subsurface models (3D SSMs) 

Epigenetic ice wedge polygonal  network in drained thermokarst lake basin on the Buor Khaya Peninsula.

Equivalent Ground‐Ice Content:

0.1 – 1.3 m (for 10m deposits) Syngenetic ice wedge polygonal  network on Yedoma deposits on  Ebe‐Basyn‐Sise Island.

Ebe Basyn Sise Island.

Equivalent Ground‐Ice Content:

1 7 – 6 3 m (for 10m deposits) Ulrich et al 2014 (Permafrost & Periglacial Processes)

1.7  6.3 m (for 10m deposits)

(12)

Ice Wedge Degradation Ice Wedge Degradation

Liljedahl et al., 2016  (Nature Geoscience)

(13)

Ice Wedge Degradation Ice Wedge Degradation

Liljedahl et al., 2016  (Nature Geoscience)

(14)

Post Disturbance Repeat LiDAR

Time series of commercial satellite imagery

Post-Disturbance Repeat LiDAR

Anaktuvuk River Tundra Fire Scar, 1000 km2

• Indicates ice wedge degradation between the 4th and 7thyears post-fire

• Would be very difficult to quantify this type of change using high-resolution commercial imagery Jones et al. (2015): Recent Arctic tundra fire initiates

widespread thermokarst development. Scientific Reports.

(15)

Post Disturbance Repeat LiDAR

2008 Quickbird 2009 LiDAR 2014 LiDAR

Time series of commercial satellite imagery + repeat airborne LiDAR

Post-Disturbance Repeat LiDAR

2008 Quickbird 2009 LiDAR 2014 LiDAR

dDTM >~20cm >~50cm

Jones et al., In Review, Nature Scientific Reports Jones et al. (2015): Recent Arctic tundra fire initiates

widespread thermokarst development. Scientific Reports.

(16)

Permafrost Coastal Erosion Permafrost Coastal Erosion

About34% of all coasts on Earth are permafrost coasts

About34% of all coasts on Earth are permafrost coasts Lantuit et al, AWI Potsdam

p

Permafrost coasts erode with an average of 0,5 m/a, Observed maximum rates of erosion up to 50 m/a

Erosion of permafrost coasts transports particular organic carbon  into the Arctic Ocean

Coastal infrastructure is endangered p

Permafrost coasts erode with an average of 0,5 m/a, Observed maximum rates of erosion up to 50 m/a

Erosion of permafrost coasts transports particular organic carbon  into the Arctic Ocean

Coastal infrastructure is endangered

(17)

Permafrost Coastal Erosion Permafrost Coastal Erosion

Permafrost coastal erosion  surveys with annual repeat  LiDAR at 24 sites on Yukon LiDAR at 24 sites on Yukon  Coastal Plain, Canada.

Obu et al. (2016): Coastal erosion and mass wasting along the Canadian

Beaufort Sea based on annual airborne LiDAR elevation data. Geomorphology.

(18)

Permafrost Coastal Erosion Permafrost Coastal Erosion

• Low‐elevation ice‐rich coasts erode uniformly by up to 20 m aLow elevation ice rich coasts erode uniformly by up to 20 m a .1.

• Mass wasting causes high erosion variability of high‐elevation permafrost coasts.

• Intensive slumping can result in coastline progradation by up to 40 m a1.

• Short‐term coastline movements can impact erosion estimates from aerial imagery.p g y

Obu et al. (2016): Coastal erosion and mass wasting along the Canadian

Beaufort Sea based on annual airborne LiDAR elevation data. Geomorphology.

(19)

Thaw Subsidence Monitoring

Ground‐ice rich terrain in the Arctic is being destabilized, yet few observations  of widespread and irreversible thaw subsidence exist

Thaw Subsidence Monitoring

of widespread and irreversible thaw subsidence exist

Available datasets

• DGPS surveys 2015

• Multistation Laserscan Surveys 2015 + 2017

• LiDAR Overflights 2018 canceled

• UAV overflight 2018UAV overflight 2018

• LiDAR + DLR MACS Overflights 2019 planned

• Ground temperature + waether stations at site

(20)

Thaw Subsidence Monitoring Thaw Subsidence Monitoring

P i d i i f id

• Preparation and instrumentation of survey grid

• 16 height reference markers for repeat surveys (plastic pipes)

• 2 permafrost temperature data loggers (3 m  depth)

• Profile across drainage gradient on upland between two thermokarst lakes

(21)

Thaw Subsidence Monitoring Thaw Subsidence Monitoring

MS50 Station Laser scan Benchmark

Günther et al., unpublished

(22)

Thaw Subsidence Monitoring Thaw Subsidence Monitoring

Benchmark MS50 Station Laser scan

Günther et al., unpublished

(23)

Thaw Subsidence Monitoring Thaw Subsidence Monitoring

Günther et al., unpublished

(24)

PermaSAR / MOSES 2018 PermaSAR / MOSES 2018

MOSES‐ Polar 5‐ PermaSAR MOSES Polar 5 PermaSAR

Lead: Julia Boike

•4 weeks (12.8.‐7.9.)

• DLR/Polar 5 & AWI ground team working at same sitesg

•Successful Polar5 repeat survey of Trail  Valley Creek and road

• Outreach: public presentation at ARI

• Outreach: public presentation at ARI,  blog, Wochenberichte

(25)

PermaSAR / MOSES 2018 PermaSAR / MOSES 2018

Mackenzie  Summer

Permafrost distribution in the Arctic

2018

Mackenzie Delta 2018

(26)

PermaSAR / MOSES 2018

PermaSAR / MOSES 2018

(27)

PermaSAR / MOSES 2018 PermaSAR / MOSES 2018

Trail valley creek, NWT, Canada

https://blogs.helmholtz.de/moses/

(28)

PermaSAR / MOSES 2018 PermaSAR / MOSES 2018

Detailed measurements of land surface characteristics 

(29)

PermaSAR / MOSES 2018 PermaSAR / MOSES 2018 GNSS 2016 2018

GNSS surveys, 2016+2018 

Polygons

Detecting  of small‐Scale Subsidence (point scale)

 Validation of DEMs

(30)

PermaSAR / MOSES 2018

PermaSAR / MOSES 2018

(31)

Summary DLR MACS onboard Polar 5

Fi t C i i d f A t 2018

DLR MACS onboard Polar-5 y

• First Campaign in end of August 2018

• Alaska and NW Canada were targeted

• Due to technical issues with plane only Canada was realized  (few observation days)

(few observation days)

• Second campaign planned in Alaska in summer 2019 (several  weeks field time)

• Targets will include permafrost coastal erosion, thaw Targets will include permafrost coastal erosion, thaw 

subsidence, tundra fire scars, ice wedge polygonal ground,  drained thaw lake basins

• Onboard sensors will include Riegl LiDAR for comparison

(32)

Summary Conclusions

Ai b C d LiDAR id hi h l ti hi h

y Conclusions

• Airborne Cameras and LiDARs provide high‐resolution, high‐

accuracy data  types currently not available from other  platforms

platforms 

• Airborne Cameras and LiDARs are key to detect and quantify  rapid and gradual changes across large permafrost regions

• Airborne remote sensing provides a critical tool for scaling Airborne remote sensing provides a critical tool for scaling  field research and bridging to satellite / model scales

AWI P l l ff i d d

• AWI Polar planes offer unique access to conduct repeated  surveys

• Expanding the AWI airborne sensor suite would provide 

continued capacities for observations of polar landscapes

(33)

Questions?

Referenzen

ÄHNLICHE DOKUMENTE

Es wird das Vorhandensein von Luftschadstoffen entlang einer schmalen vertikalen Luftsäule registriert, die Messung erfolgt vom Boden aus (z.B. aus einem fahrenden KFZ). Mit

the differences in methane emission at different study sites are obvious, and the measured methane emissions from the various sub- classes of the land cover class WT in the Lena

The result of the Landsat ETM+ classi fi cation at the Turakh study site in the western Lena Delta consists of 15 land-cover classes, which differ in vegetation cover,

Æ Æ digital high digital high resolution resolution maps maps Æ Æ precondition precondition for for monitoring of. monitoring of small small - - scaled

It is advantageous to apply the fl uorescence retrieval to GOME-2 data, because the satellites, which are already in orbit (MetOp-A, MetOp-B), and the upcoming satellite MetOp-C,

Our comparison between satellite and in situ Z eu for data south of 60°S did not show signi fi cant differences between the approaches for SeaWiFS and slightly better esti- mates of Z

A detailed description of the achievable accuracies can be found in Bamler and Eineder (2005). The colors in Fig. 11b indicate the magnitude of the motion that occurred in the

The land surface temperature (LST) is accessible on the pan-arctic scale through a number of remote sensing platforms, such as the “Moderate Resolution Imaging Spectrometer”