• Keine Ergebnisse gefunden

On Approximate Vector Optimization

N/A
N/A
Protected

Academic year: 2022

Aktie "On Approximate Vector Optimization"

Copied!
39
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Working Paper

ON APPROXIMATE VECTOR OPTIMIZATION

Istvtin V t i l y i

January 1986 W - 8 6 - 7

International Institute for Applied Systems Analysis

A-2361 Laxenburg, Austria

(2)

NOT FOE QUOTATION WITHOUT THE PERMISSIOK OF THE AUTHOR

ON

APPROXIMATE VECTOR OPTIMIZATION

Istv&n V&lyi

January

1986

WP-86-7

Working Papers are interim r e p o r t s o n work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Anaiysis a n d h a v e r e c e i v e d only limited review. Views or opinions e x p r e s s e d h e r e i n d o n o t n e c e s s a r i l y r e p r e s e n t t h o s e of t h e I n s t i t u t e o r of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 L a x e n b u r g , Austria

(3)

PREFACE

The r o o t s of c u r r e n t i n t e r e s t in t h e t h e o r y of approximate soiutions of optimiza- tion problems lie in approximation t h e o r y and nondifferentiable optimization. In this p a p e r a n approximate saddle point t h e o r y is p r e s e n t e d f o r v e c t o r vaiuea con- vex optimization problems. The considerations c o v e r different possible t y p e s of approximate optimality, including both t h e efficient, o r Pareto-type, which is more frequently used in p r a c t i c a l decision making applications, and t h e absolute, o r s t r i c t type, which is more of t h e o r e t i c a l i n t e r e s t . The saddle point theorems a r e used t o study duality in t h e context of approximate solutions. The a p p r o a c h of t h e p a p e r a i s o provides f o r a unified, view of a number of r e s u l t s achieved e i t h e r in approximate s c a l a r optimization o r e x a c t v e c t o r optimization.

Alexander B. Kurzhanski Chairman

Systems and Decision Sciences Area

(4)

CONTENTS

2. S t r i c t Optima

2.1. Approximate Extremai Points and Approximate Soiutions 2.2. T'ne Sacdie Point Tneorems

2.3. Primai and Dual Problems

3.1. Approximate Non-dominated Eiements 3.2. Saddle Point Tneorems

3.3. Primal and Dual Functions

4. References

(5)

ON APPROXIMATE VECTOR OPTIMIZATION Istvdn Vdlyi

1. INTRODUCTION

The aim of t h e p r e s e n t p a p e r i s t o give t h e p r o o f s of t h e t h e o r y p r e s e n t e d at t h e IIASA Workshop on Nondifferentiable Optimization held between 1'7 and 22 Sep- tember, 1984, Sopron, Hungary. (See Vdlyi (1985a)),but some m o r e r e c e n t r e l a t e d r e s u l t s are a l s o included.

The c e n t r a l r e s u l t s are Hurwitz-type saddle point theorems corresponding t o ap- proximate solutions extending t h e t h e o r y developed by Zowe (19'7'7) f o r one t y p e of optima, o r by Tanino and Sawaragi (1980) f o r a n o t h e r . By t h e s e theorems then w e investigate t h e r e s p e c t i v e duality t y p e problems. The study of this s u b j e c t was s t a r t e d by Hiriart-Urruty (1982) and S t r o d i o t et a l . (1983) in t h e s c a l a r c a s e , and by Kutateladze (19'78) and Loridan (1984) in t h e v e c t o r valued c a s e .

The p a p e r is divided into two p a r t s according t o t h e t y p e of optimality considered.

Chapter 2. c o v e r s t h e c a s e of s t r i c t , o r non-Pareto optimality. This type of optim- ization in o r d e r e d s p a c e s i s r e g a r d e d by many as having little p r a c t i c a l use. This criticism, however is of l e s s f o r c e in t h e approximate case, since f o r some vaiue of t h e approximation e r r o r w e may find soiutions even if e x a c t solutions d o not e x i s t (like t h e s o called utopia point s o often used in t h e P a r e t o case). Anyway, i n t e r e s t in i t a p p e a r s t o be lasting as is shown e. g. by t h e r e c e n t p a p e r of Azimov (1982).

Section 2.1. is devoted t o some basic p r o p e r t i e s of approximate extremal elements in o r d e r e d v e c t o r s p a c e s and in Section 2.2. t h e main r e s u l t s are proved. Appiica- tions expounded in Section 2.3. c l a r i f y t h e relationships between approximate sad- dle points and approximate solutions of t h e primal and dual problems associated t o t h e original problem. In this w e a l s o show t h e connections t o analogous r e s u l t s , namely t h e corresponding Kuhn-Tucker theorems based on t h e c-subgradient cal- culus, obtained by Kutateladze (19'78). In such a way t h e analogy will be complete with t h e t h e o r y developed f o r t h e scaiar case in t h e p a p e r by Strodiot e t al.

(1983). Finally w e give a p a r t i a l generalization t o t h e v e c t o r valued c a s e of

(6)

Golshtein's duality t h e o r e m dealing with generalized solutions of convex optimiza- tion problems and of Tuy's r e s u l t c h a r a c t e r i z i n g well posed problems, i. e. t h o s e w h e r e t h e primai a n d d u a l vaiues coincide. (See 14H in Holmes (1975)).

C h a p t e r 3. d e a l s with P a r e t o , o r nondominated optimality. H e r e we define dif- f e r e n t t y p e s of a p p r o x i m a t e efficient solutions t o v e c t o r optimization problems and deveiop t h e c o r r e s p o n d i n g saddle point t h e o r e m s along t h e logics of Tanino and Sawaragi (1980) o r Luc (1984).

Section 3.1. i s devoted t o definitions a n d some b a s i c p r o p e r t i e s of a p p r o x i m a t e e x - t r e m a i eiements in o r d e r e d v e c t o r s p a c e s a n d in S e c t i o n 3.2. t h e s a d d i e point t h e o r e m s are p r o v e d . As f o r appiications, in Section 3.3. we show t h e equivalence between a p p r o x i m a t e s a d d l e points a n d t h e c o r r e s p o n d i n g primal-dual p a i r s of solutions.

As a consequence of t h e f a c t t h a t t h e notion of a p p r o x i m a t e solution coincides with t h a i of ( e x a c t ) soiution in t n e case when t h e approximation e r r o r i s z e r o , o u r r e s u l t s r e d u c e t o t h o s e obtained in t h e a b o v e mentioned p a p e r s . Throughout t h e p a p e r we r e l y on a knowledge of convex analysis and t h e t h e o r y of o r d e r e d v e c t o r s p a c e s , a n d t h e r e f o r e b a s i c notions a n d f a c t s are used without s p e c i a l expianation.

If needed see e. g. P e r e s s i n i (1967), Holmes (1975) o r Akilov a n d Kutateladze (1970).

All t h e v e c t o r s p a c e s a p p e a r i n g in t h e p a p e r are r e a l a n d o r d e r i n g c o n e s are sup- posed t o b e convex, pointed a n d a l g e b r a i c a l l y closed. In t h e p r e s e n c e of a topolog- ical s t r u c t u r e w e s u p p o s e compatibility, i. e. t h a t t h e o r d e r i n g c o n e i s closed. W e .denote by X a n d V v e c t o r s p a c e s and by ( Z , K ) a n o r d e r e d v e c t o r s p a c e with

core (K) +d, w h e r e core r e f e r s t o t h e a l g e b r a i c i n t e r i o r . Similarly, r c o r e d e n o t e s t h e r e l a t i v e a l g e b r a i c i n t e r i o r . (Y,C) i s a n o r d e r compiete s p a c e , i. e. a v e c t o r l a t t i c e w n e r e e v e r y nonvoid set with a lower bound p o s s e s s e s a n infimum. In o r d e r t o e n s u r e t h e e x i s t e n c e of infima, r e s p , suprema f o r e v e r y (i.e. nonbounded) sets, we supplement t h e s p a c e (Y,C) with t h e elements = a n d -= using t h e notation

Y=Yu!

-=, = j , a n d s u p p o s e t h a t t h e usual a i g e b r a i c a n d o r d e r i n g p r o p e r t i e s hold.

Hence f o r t h e set H c Y , which i s n o t bounded from below, we h a v e inf (H)=-- and inf (@)=a. The dual s p a c e of Y i s Y while t h e topological dual i s rC

.

The c o n e of positive functionais with r e s p e c t t o t h e c o n e C cY, o r t h e dual of C i s C S . The func- tional y* EY d e n o t e s a n eiement of C + . L +(Z,Y) cL (Z,Y), o r A+(Z,Y)cA(Z,Y) s t a n d s f o r t h e c o n e of positive l i n e a r , o r continuous positive l i n e a r maps from Z t o Y, r e s p e c t i v e l y .

(7)

W e r e c a l l now that f o r t h e v a r i o u s o r d e r i n g r e i a t i o n s h i p s between two elements of a n o r d e r e d v e c t o r s p a c e w e s h a l l use t h e foilowing notations f o r exampie in ( Y , C ) :

Yz L Y 1 iff Yz - Y 1 E C Y ~ iff ~Y ~ - Y ~ E C \ Y ~ 0 Y Z

>

y 1 iff y z - Y ? E c o r e ( C )

To d e n o t e o p p o s i t e r e l a t i o n s we u s e symbols Like ;): a n d $. Accordingly

r e f e r t o t h e f a c t t h a t y l ~ Y dominates o r d o e s not dominate y 2 E Y from below, r e s p e c t i v e l y .

The v e c t o r s e , en , e 7 E Y a n d t h e s c a l a r s E , E , dR r e p r e s e n t t h e approximation e r - r o r , of them w e s u p p o s e t h a t e 5 0 , e , 2 0 and e,r_O holds a n d similarly t h a t E , E , a r e nonnegative.

Now t h e usuai definition of t h e main s u b j e c t of s t u d y in t h i s p a p e r foliows, i. e . t h a t of t n e convex minimization p r o b l e n a n d of t h e c o r r e s p o n d i n g v e c t o r valued Lagrangian ( s e e e . g. Zowe (1976)).

Definition 1.1.

Let

p r o p e r convex functions with A

=

d o m j' n d o m h , a n d L E L ( X , V ) . We define t h e minimization problem ( M P ) by way of t h e set of solutions:

where

F = l z EX:^ ~ A , h ( z ) s O , L ( z ) = O j

i s called t h e feasibility s e t of t h e problem ( M P ) .

The a l g e b r a i c Lagrangian of t h e convex minimization problem ( M P )

i s defined by t h e equaiity

(8)

I

eo i f x e ' A

@ L ( ~ , R , S )

= 4

f ( x ) + R . h ( x ) + S - L ( x ) i f x ~ A a n d ~ a + ( Z , Y )

I I --

if X E A and R ~ ' L + ( Z , Y )

with t h e set

cailed t h e domain of @L

.

The element ( z o , R o , S o ) E dom @L i s a s a d d l e point of t h e Lagrangian

aL

if t h e fol- lowing i s met

(i) @ L ( x o , R o , S o ) E M l i Y [ @ L ( ~ , R o , S o ) : z

EX^

(ii) 5,L(zo,Ro,So) ci M k X j 9 L ( x o , R , S ) : ( R , S ) E L (Z,Y) X L(V,Y){

.

Instead of t h e symbol MliY o r MAX, o n e h a s t o s u b s t i t u t e o n e of t h e a p p r o x i m z t e ( o r e x a c t ) notions of minimality or maximality f r o m t h e l a t e r foilowing r e s p e c t i v e de- finitions. Depending on t h i s c h o i c e , w e cali t h e eiements of MIN(W) solutions of tine probiem (MP) of t h e c o r r e s p o n d i n g a p p r o x i m a t e ( o r e x a c t ) t y p e .

The continuous L a g r a n g i a n i s defined as t h e r e s t r i c t i o n of 4L t o X x A(Z,Y) x A(V,Y) and t h e notion of s a d d l e point of t h e continuous Lagrangian @,, i s defined in a c o r r e s p o n d i n g manner.

The a b o v e n o t a t i o n s and conditions are supposed to b e valid t h r o u g h o u t t h e p a p e r a n d will not b e mentioned again.

(9)

2. STRICT OPTKMA

2.1. A p p r o x i m a t e E x t r e m a l P o i n t s and A p p r o x i m a t e Solutions

Now we start with t h e definition of s t r i c t extremal and s t r i c t approximate extremal points, and t h e n w e formulate some simple relationships between approximate ex- tremal points corresponding t o d i f f e r e n t values of t h e approximation p a r a m e t e r . Definition 2.1.1.

Suppose t h a t H C

Y.

Then a n element y EH i s called a s t r i c t minimal element of H, o r

The set

S(e)-MIN(H)

=

jy EH : H c y - e - C j

is called t h e set of s t r i c t e-approximate minimal o r S(e)-minimal points of H.

By convention w e say t h a t

S - M ( $ ) = S ( e ) - M ( 4 )

=

and if H c Y is not bounded from below

S-MIN(H)

=

S ( e ) - M ( H )

=

f - a j Remark 2.1.1.

By t h e pointedness of t h e cone C

cY

t h e set S -MIN(H) cannot have more t h a n one element. If i t h a s one, t h i s obviously means t h a t

in4

(H)

=

S - M ( H ) .

The notions of S(e)-maximal and S-maximal elements are t o b e defined in a corresponding manner.

The statements in t h e following proposition are straightforward consequences of t h e definitions.

(10)

Proposition 2.1.1.

(a) S -Mn\l(H)

=

S ( 0 ) -Mn\l(H)

(b) If 0

5

e l 5 e 2 , t h e n S ( e l ) - M l N ( H )

c

S ( e 2 ) - M I N ( H ) .

( c ) If H c Y i s bounded from below t h e n S ( e ) -MIN(H)=(inf ( H ) + e - C ) n H . Corollary 2.1.1.

Let ( Y , C ) b e equipped with a topological s t r u c t u r e and H

c

Y closed. Suppose t h a t a n e t l e y E C : y E

rj

d e c r e a s i n g t o e E Y e x i s t s with

( a ) S ( e y ) - M l N ( H ) n Y # d V y ~ and r

(b) S ( e y J -MIN(H)

c

Y i s compact f o r some y o d ' . Then S ( e )-MlN ( H ) #

@.

P r o o f .

A s a consequence of t h e closedness of C

c

Y , w e h a v e t h a t e E C , and s o S ( e ) -Mn\l(H) i s well defined. S ( e y ) -Mn\l(H)#@ obviously implies i n f ( H ) # w , and s o w e c a n apply (b) and ( c ) in Proposition 2.1.1. t o conclude t h a t S ( e ) -Mn\l(H) i s t h e i n t e r s e c t i o n of nonvoid compact sets.

Proposition 2.1.2.

Let ( Y , C ) b e equipped with a topological s t r u c t u r e and l e y E C : y E

rj

a d e c r e a s - ing n e t t h a t c o n v e r g e s t o e EY.

Then

P r o o f .

By Corollary 3.2., Chap. 2 . in P e r e s s i n i ( 1 9 6 7 ) w e h a v e e

=

i n f le E C : y E

rj.

Hence by Proposition 2.1.1. t h e l e f t hand s i a e in ( 2 . 1 ) i s a s u b s e t of t h e r i g h t hand s i a e .

F o r t h e r e v e r s e inclusion l e t y E Y b e a n element of S ( e ?) -Mn\l(H) f o r e a c h y E

r.

This means t h a t y E H and f o r e a c h fixed h E H , t h e n e t fh --y + e Y € Y : y € r j i s contained in t h e closed c o n e C cY, h e n c e h --y +e EC a i s o holds.

8

(11)

Corollary 2.1.2.

Let (Y,C) b e equipped with a weakly sequential complete topology, t h e o r d e r i n g cone C c Y normal and suppose t h a t f e n EC : n E N ! i s a decreasing sequence.

Then

e x i s t s and

Proof.

The statement i s a consequence of o u r Proposition 2.1.2. and t h e Corollary 3.5.

Chap. 2. in P e r e s s i n i (1967).

Remark 2.1.2.

A s a consequence of Proposition 2.1.1. t h e case with e =O provides f o r conditions ensuring t h e existence of e x a c t extremal points based on information about ap- proximate ones in t h e previous Proposition and Corollaries.

Now, using Propositions 2.1.1. and 2.1.2. w e formulate a f e w simple p r o p e r t i e s of t h e approximate solutions.

Corollary 2.1.3.

Suppose, t h a t (Y,C) i s equipped with a topoiogical s t r u c t u r e . Then t h e following hold:

(a) S -M.ZiY (MP)

=

S (0) -MhV ( W )

(b) O ~ e l ~ e 2 i m p l i e s S ( e l ) - M I N ( M P ) c S ( e 2 ) - M ( M P ) .

(c) If f e y E C : y E

rj

i s a decreasing net t h a t converges t o e EY, t h e n n IS(e,.)-MnV(MP) : y E

rj

= S ( e )

-

MIN(MP).

(d) If t h e topology of (Y,C) is weakly sequentially complete, t h e cone CCY i s nor- mal, {en E C : n E

N ]

is a decreasing sequence with t h e infimum e EY, t h e n

niS(en)-MIN(MP) : n EN]

=

S(e)-IWN(MP).

(e) Suppose t h a t t h e set f (F) E Y i s closed, ten E C : n E

N ]

is a decreasing se- quence t h a t converges t o e EY, zyEX is a n S(ey)-solution of (MP) f o r e a c h

7 ~ r

and t h e r e is a y o E

r

such t h a t t h e set s ( e Y J - M { f (z) E Y : z EFj C Y

(12)

- 8 -

i s compact. Then ( M P ) h a s a n S(e)-minimal solution.

2.2. The Saddle Point Theorems

The p r e s e n t s e c t i o n i s closely r e l a t e d t o Zowe's r e s u l t s both as f a r as p r o o f s a n d notions are c o n c e r n e d (Zowe (1976) a n d Zowe (1977)). As t h e r e , in t h e case of ex- act solutions, o n e implication between t h e e x i s t e n c e of solutions a n d s a d d l e points i s valid u n d e r f a i r l y g e n e r a l conditions while w e need additional assumptions in t h e case of t h e o t h e r .

Proposition 2.2.1.

If ( z o , R o , S o ) Edom cPL i s a S ( e )-saddie point of t h e Lagrangian cPL , t h e n

P r o o f .

Follows from zo@ a n d (ii) of Definition 1.1. if o n e c o n s i d e r s t h e case (R,S)=(O,O) in S(e)-MAX.

Theorem 2.2.1.

If ( z o , R o , S o ) E dom cPL i s a n S ( e )-saddle point of t h e Lagrangian cPL, t h e n z o E X i s a n S (2.e )-solution of ( M P )

.

P r o o f .

F i r s t w e p r o v e t h a t t h i s implies t h a t zo@.

z o ED follows from t h e r e l a t i o n ( z o , R o , S o ) E dom cPL, Using t h e c h o i c e ( z , R , S ) = ( z o , R , S o ) in (ii) of Definition 1.1. w e obtain t h a t

a n d using ( z , R , S ) = ( z o , R o , S ) t h a t

(13)

If h ( z o) !Z -K, then t h e s t r i c t s e p a r a t i o n theorem applied t o t h e singleton set i h ( z o ) j c Z and t h e algebraically closed convex cone KcZ with a nonempty c o r e (Kothe S e c t . 17, 5, (2)) yields a z* EK+ with

sup

I

< z 4 , - k > : ~ E K

1 =

0

<

< z 4 , h ( z 0 ) > .

Let c EC\ I O j b e a fixed v e c t o r , t o b e specified l a t e r and l e t us define

REL+(z,Y)

with t h e equation

By inequality (2.2) now w e have

Selecting f i r s t a n y c EC\ I0 j, w e see t h a t Ro.h ( z o ) +e +O holds, t h e r e f o r e w e are allowed t o set at a second s t e p

leading t o a contradiction with (2.4).

A similar argument shows t h e impossibility of 1 ( z o ) 2 0 , and s o w e can conclude t h a t z o U .

Again, by t h e definition of @L and t h e S(e)-saddle point, w e have f o r e a c h ( z ,R , S ) E dom GL :

f ( z o ) + R e h ( z o ) + S . L ( z o ) - e $ f ( x ) + R o . h ( z ) + S O . L(z)

+

e

A s a consequence of (zo,Ro,So) E dom @L t h e relation RoEL+(2,Y) hoids and t h e r e - f o r e a substitution ( z , R , S ) = ( z ,O,O) completes t h e proof.

Using t h e topological version of t h e s t r i c t s e p a r a t i o n theorem in t h e a b o v e proof, w e readily obtain t h e following f o r t h e continuous Lagrangian QA.

Theorem 2.2.2.

Suppose t h a t (Y,C), (Z,K) and V a r e equipped with a topological s t r u c t u r e .

(14)

If ( z o , R o , S 0 ) E dom is an S(e)-saadle point of t h e Lagrangian Q A then zo€X is a S (2.e )-solution of (MP).

Definition 2.2.1.

W e say t h a t t h e problem (MP) meets t h e a l g e b r a i c Slater-Uzawa c o n s t r a i n t qualifi- cation if e i t h e r

( i ) t h e r e e x i s t s a n z l € r c o r e (A) with h (zl)€-rcore (K) and 1 ( z l ) =0, or

(ii) no l i n e a r c o n s t r a i n t is p r e s e n t and t h e r e e x i s t s a n z l € A with

Definition 2.2.2.

The problem (MP), where (Y,C), (Z,K) and V are topological s p a c e s meets t h e topo- logical Slater-Uzawa c o n s t r a i n t qualification if t h e r e e x i s t s an zl€int (A) with h ( z l ) € i n t ( K ) and l(zl)=O.

Now f o r t h e convenience of t h e r e a d e r w e quote from Zowe (1976) t h e a l g e b r a i c and topological v e c t o r valued versions of t h e Farkas-Minkowski lemma.

Theorem 2.2.3.

Suppose t h a t t h e minimization problem (MP) meets t h e a l g e b r a i c Slater-Uzawa con- s t r a i n t qualification.

Then t h e following statements a r e equivalent:

( a ) f ( z ) S O vz*

(b) t h e r e e x i s t o p e r a t o r s R EL+(Z,Y), SEL O/,Y) such t h a t f ( z ) + R . h ( z ) + S . I ( z ) & O V Z E A .

Theorem 2.2.4.

Let (Y,C) and ( Z , K ) b e equipped with a topological s t r u c t u r e , X a completely metrizable topological v e c t o r s p a c e and t h e cone C c Y normal. Let f u r t h e r V b e a Hilbert s p a c e with 1 (X)CV a closed s u b s p a c e and suppose t h a t t h e minimization problem (MP) meets t h e topological Slater-Uzawa c o n s t r a i n t qualification.

Then t h e following statements are equivalent:

( a ) f ( z ) S O vz*

(b) t h e r e e x i s t o p e r a t o r s REA+(z,Y), S€AO/,Y) such t h a t f ( z ) + R . h ( z ) + S . L ( z ) z O V Z E A .

(15)

Now w e are a b l e t o formulate and p r o v e t h e c o n v e r s e statements t o Theorems 2.2.1. and 2.2.2.

Theorem 2.2.5.

Under t h e assumptions of Theorem 2.2.3. t h e following holds:

If zo€X is a n S(e)-solution of t h e problem

(MP),

then t h e r e e x i s t o p e r a t o r s R o EL '(2 ,Y) and So EL (V, Y), such t h a t ( z o , Ro,So) E dom Q is a n S ( e )-saddle point of t h e Lagrangian

%.

Proof.

A s z o is a n S(e)-solution, w e c a n apply Theorem 2.2.3. f o r t h e function fl, where

instead of t h e original j'

.

T h e r e f o r e t h e r e e x i s t o p e r a t o r s such t h a t

From Proposition 2.2.1. and (2.5) now w e have

on one hand, and by

on t h e o t h e r , completing t h e proof.

Repeating t h e above p r o c e d u r e with t h e topological Theorem 2.2.4. instead of Theorem 2.2.3. w e obtain:

Theorem 2.2.6.

Under t h e assumptions of Theorem 2.2.4. t h e following holds:

If zo€X is a n S(e)-solution of t h e minimization problem ( M P ) , t h e n t h e r e e x i s t o p e r a t o r s R ~ E A + ( Z , Y ) and S0€A(V,Y), such t h a t (zo,Ro,So) E dom IpA i s a n S ( e ) - saddle point of t h e continuous Lagrangian IpA.

(16)

Remark 2.2.1.

A s a consequence of Proposition 2.1.1. (a) o u r r e s u i t s r e d u c e t o those of Zowe (1977) and Zowe (1976) in t h e c a s e when e =O.

2.3. Primal and Dual Problems

In t h i s section w e place t h e r e s u l t s of Section 3. in t h e context of some r e l a t e d r e s u l t s and apply them t o analyze t h e primal slid dual problems associated with t h e problem (MP).

Definition 2.3.1.

Consider t h e following functions:

and

which w e call t h e (algebraic) s t r i c t primal and dual functions of t h e minimization problem (MP), respectively. The v e c t o r s defined as

and

are t h e (algebraic) s t r i c t value and dual value, respectively.

(17)

The a l g e b r a i c s t r i c t primal and dual problems are formulated by way of t h e sets of solutions:

and

The relationship between t h e original minimization problem ( M P ) and i t s primal problem ( P ) is shown by t h e following proposition, namely t h a t t h e l a t t e r i s just t h e reformulation of a constrained problem into a nonconstrained one.

Proposition 2 . 3 . 1 .

If t h e s p a c e ( Y , C ) is Archimedean then t h e problem ( P ) is equivalent t o ( W ) , i.e.

Proof.

If z E F , t h e n w e h a v e

and t h e r e f o r e

but t h e equality i s valid in t h e c a s e ( R , S )

=

( 0 , O ) .

If z g F because of z g A, t h e n @L ( z , R , S ) = - , and hence P ( x )=-. If x $Z F because of h ( x

)a,

t h e n by t h e s e p a r a t i o n argument in t h e proof of Theorem 2 . 2 . 1 . e n s u r e s t h e existence of a z*

EK+

with <z* ,h ( x ) >

>

0 . This enables u s t o c o n s t r u c t a se- quence of o p e r a t o r s fRn E L + ( Z , Y ) : n E N j with

Let, namely b e c EC\ f 0 { a fixed v e c t o r and define Rn E L + ( Z , Y ) by t h e equation

From t h e Archimedean p r o p e r t y of ( Y , C ) now ( 2 . 6 ) follows, and a similar argument shows P ( z )== in t h e case of 1 ( z ) $ 0 .

(18)

P r o p o s i t i o n 2.3.2.

The primal function P i s convex and t h e duai function D i s c o n c a v e . P r o o f .

The f i r s t s t a t e m e n t d i r e c t l y follows from P r o p o s i t i o n 2.3.1. The domain of t h e d u a l function i s c l e a r l y convex, a n d concavity follows f r o m t h e s u p e r a d d i t i v i t y of t h e

in4

o p e r a t i o n .

P r o p o s i t i o n 2.3.3.

( a ) Tine primai v a i u e i s g r e a t e r o r e q u a l t h a n t h e d u a l value.

(b) If

+

EX i s a n S ( e ) - s o i u t i o n of t h e primai problem ( P ) a n d ( R o , S o ) U (Z,Y)xL (V,Y) i s t h a t of t h e dual problem (D) t h e n P ( z 0 )

r,

D ( R O l S 0 ) .

(c) L e t u s n a v e f o r some x o m , (Ro,So)EL(Z,Y)XL (V,Y)

Then s o i s a n S ( e )-solution of t h e primal problem ( P ) a n d ( R o t s o ) i s a n S(e)-solution of t h e dual problem (D).

P r o o f :

The s t a t e m e n t i s a n obvious c o n s e q u e n c e of t h e definitions.

Riow w e t u r n to t h e c o n s i d e r a t i o n of t h e connection between o u r Hurwitz-type r e s u l t s a n d t h o s e o b t a i n e d b y Kutateladze (1978). In t h i s w e s h a l l r e l y on t h e no- tion of p e r t u r b a t i o n function a n d a p p r o x i m a t e s u b g r a d i e n t s .

Definition 2.3.2.

The function

w h e r e

(19)

i s called t h e p e r t u r b a t i o n function a s s o c i a t e d with t n e problem ( M P ) . Proposition 2.3.4.

Suppose t h a t I? EL + ( z , Y ) , t h e n

inf j p ( z , v )

+

R

.

z + S . v : ( z , v ) € 2 x V

1

= D ( R , S )

P r o o f .

The foilowing equation is a d i r e c t consequence of t h e definitions;

inj' i p ( z , v ) + R . z + S . v : ( z , v ) € 2 x V ! =

T h e r e f o r e we only h a v e t o p r o v e t h a t t h e r i g h t hand s i d e e q u a l s with D ( R , S ) . To d o t h i s c o n s i d e r t h e inclusion

By t h i s a n d t h e definition of t h e dual function D t h e r e l a t i o n 5 always holds. On t h e o t h e r hand R d ' ( 2 , ~ ) implies

a n d h e n c e we a l s o h a v e t h e o p p o s i t e r e i a t i o n .

The definition of a p p r o x i m a t e , o r e-subgradient a n d t h e foliowing t h e o r e m i s t a k e n from Kutateladze (1978).

Definition 2.3.3.

The set

i s called t h e a p p r o x i m a t e , o r e-subdifferential of f at

zom.

Remark 2.3.1.

The statement t h a t O € a e f ( z o ) i s obviously equivalent t o t h e r e l a t i o n z o ES (e ) - M I N ( W ) if t h e r e are no feasibility c o n s t r a i n t s .

(20)

Theorem 2.3.1.

Suppose t h a t t h e problem ( W ) meets t h e a l g e b r a i c Slater-Uzawa c o n s t r a i n t quaiif- ication, t h e n

if and only if

t h e r e e x i s t RoEL +(z,Y), S O E L (V,Y) and e l g o ,

ez.O

with

s u c h t h a t

Theorem 2.3.2.

Suppose t h a t S(e)-MlX(MP)f d and f o r (Ro,So) EL+(z,Y)xL (V,Y)

holds.

Then

P r o o f .

A s t h e conaitions e n s u r e t h e r e i s a xoES(e)-MlN(MP).

Now using t h i s a n d t h e definition of t h e e-subgradient w e o b t a i n

P ( ~ O ) - ~ . ~ S P ( ~ , V ) + ( R ~ . S ~ > - ( ~ , V ) V ( z , v ) E Z X I / : P r o p o s i t i o n 2.3.4. yields

and by feasibility t h e p r o o f i s complete.

Theorem 2.3.3.

Suppose t h a t t h e problem ( W ) meets t h e a l g e b r a i c Slater-Uzawa c o n s t r a i n t qualif- ication, a n d s u p p o s e t h a t S ( e ) -MlX(MP) f 0.

(21)

holds t h e n

P r o o f .

Sy t h e conEitions w e h a v e ar. zoES(e)-MIN(M.P) and h e n c e

Tneorem 2.2.5. e n s u r e s t h e e x i s t e n c e of a p a i r ( R ~ , s ~ ) E L + ( Z , Y ) ~ L (V,Y) such t h a t (zo,R1,S1) E dom @L i s a S(e2)-saddie point f o r t h e Lagrangian

aL,

t h a t i s by t h e definition of t h e probiem (D) and (i) of Definition 1.1. th i s means t n a t

Now P r o p o s i t i o n 2.3.1. implies

f

( z o >

-

2

.

e S D(R1,S1) and as ( R o , S o ) ~ S ( e ) -Mn\l(D), w e a l s o h a v e

From h e r e by Proposition 2.3.4. t h e s t a t e m e n t follows.

Theorem 2.3.4.

Suppose t h a t t h e probiem ( M P ) meets t h e Siater-Uzawa c o n s t r a i n t qualification and c o n s i d e r t h e foiiowing s t a t e m e n t s .

( a ) ( z o , R o , S o ) E dom 9L i s a n S ( e l ) - s a d d l e point f o r

aL.

(b) F o r ( z o,Ro,So) E dom

aL

w e h a v e

with

e' 2 0 , e"

s:

0 and 0

g

e'

+

e" g R o h ( z O )

+

e 2

(22)

Then (a) implies (b) with e2=2.el, a n d (b) implies (a) with el=2.e2.

P r o o f .

If ( a ) holds t h e n a c c o r d i n g to Theorem 2.2.1., xot;S(2.e ) -IUIN(IUP) a n d so Theorem 2.3.1. e n s u r e s (2.11) and. (2.12). On t h e o t h e r hand, by P r o p o s i t i o n 2.2.1. a n d t h e s a d d l e point p r o p e r t y we h a v e

a n d h e n c e

From h e r e by P r o p o s i t i o n 2.3.4. (b) follows.

S u p p o s e now t h a t (b) holds, t h a t i s a g a i n by P r o p o s i t i o n 2.3.4. o n o n e hand we h a v e

As by Theorem 2.3.1. xo€S(e2)-IWN(MP), implying

On t h e o t h e r , b y f e a s i b i l i t y a n d (2.12):

In view of P r o p o s i t i o n 2.3.1. t h e a b o v e c a n b e r e f o r m u l a t e d as:

C o r o i l a r y 2.3.1.

S u p p o s e t h a t t h e problem ( W ) m e e t s t h e Slater-Uzawa c o n s t r a i n t qualification a n d c o n s i d e r t h e following s t a t e m e n t s :

(a) ( x o , R o , S o ) E dom

aL

i s a n S ( e l ) - s a d d l e point f o r t h e L a g r a n g i a n

$

a s s o c i a t - e d with t h e problem ( W ) .

( b ) F o r ( x o , R o , S o ) E dom

eL

w e h a v e

(i) x o € X i s a S(e2)-solution of t h e primal problem (P) a n d

(ii) (Ro,So) EL + (Z,Y) >(L ( V , Y ) is a S ( e 2)-solution of t h e d u a l problem (D).

Then ( a ) implies (b) with e2=4.el, a n d ( b ) implies (a) with el=6.e2.

(23)

Now w e t u r n t o t h e c o n s i d e r a t i o n of generalized solutions.

Definition 2.3.4.

Suppose t h a t (Y,C) i s eqiupped with a topological s t r u c t u r e , a n d Ie7€C : 7 € r j i s a d e c r e a s i n g n e t t h a t c o n v e r g e s t o OEY. Let f u r t h e r z7€X b e a n S(e7)-solution of (MP) f o r e a c h 7

r.

Then we c a l l t h e n e t Iz7€X : y E r j a generalized s t r i c t solu- tion of t h e minimization problem (MP).

Suppose, in addition t h a t t h e r e e x i s t s a n e t f(R7,S7) EL (Z,Y)xL (V,Y) : y € r j with t h e p r o p e r t y t h a t (z7,R7,S7) is a n S(e7)-saddle point f o r t h e Lagrangian

aL.

Then

w e c a l l t h e n e t f(z7,R7,S7) EXxL (Z,Y) >(L (V,Y) : y ~ r j a g e n e r a l i z e d s t r i c t saddle point of t h e i a g r a n g i a n

aL.

Proposition 2.3.5.

F o r t h e s t r i c t vaiue of (MP), v

EY

w e h a v e

v

= in9

[ f (z7) E Y : !z7 E X : 7 E

r{

a generaiized solution, 7 E

r

{ .

P r o o f .

The equaiity i s a d i r e c t consequence of t h e definitions.

Definition 2.3.5.

Suppose t h a t (Y,C) i s equipped with a topological s t r u c t u r e . W e c a l l t h e problem ( M P ) weli posed if t h e r e e x i s t s a n e t i ( z 7,R7,S7) : y ~j such t h a t r

Remark 2.3.2.

By t h e definition of infimum a n d supremum, o u r definition coincides with t h e single r e q u i r e m e n t of v =v* in t h e s c a l a r vaiued case.

Theorem 2.3.5.

Suppose t h a t (Y, C ) i s equipped with a topological s t r u c t u r e a n d t h a t t h e c o n e C c Y i s normal. If t n e Lagrangian Q,L h a s a generalized s a d d l e point, t h e n t h e problem (MP) i s well posed.

P r o o f .

A s a consequence of P r o p o s i t i o n 2.3.3. (a) w e only h a v e t o p r o v e v 5 v * . By t h e definition of t h e g e n e r a l i z e d s a d d l e point, t h e r e e x i s t a d e c r e a s i n g n e t

!e 7 ~ C :

~ ~ r i ,

t h a t c o n v e r g e s t o OEY such t h a t

(24)

Hence f o r e v e r y fixed 6 E w e have

and, by t h e normality of t h e cone C c Y , from h e r e t h e statement follows.

m

Corollary 2.3.1.

Under t h e conaitions of T'neorems 2.2.5. and 2.3.5. t h e e x i s t e n c e of a generalized.

s t r i c t solution t o t h e problem ( M P ) impiies t h a t t h e probiem is well posed.

Proof.

Easiiy follows from t h e combination of t h e quoted theorems.

Remark 2.3.3.

I t i s worth noting t h a t t h e r e v e r s e implication seems not t o hold in t h e vectorial c a s e while i t is trivial f o r s c a l a r s .

Similariy t o t h e preceding, notions and statements of Section 2.3. c a n a l s o b e f o r - mulated in a purely topological way. P r o o f s a r e analogous, but of c o u r s e relying on Theorem 2.2.6. instead of Theorem 2.2.5.

(25)

3. NON-DOMINATED OPTIMA

3.1. A p p r o x i m a t e N o n - d o m i n a t e d E l e m e n t s

Definition 3.1.1.

The v e c t o r y EH is a P(e)-minimal eiement of

HCY

o r a p p r o x i m a t e l y P a r e t o minimal, in notation

WP(e )-minimal, in notation

( y

-

e

-

c o r e (C)) n H

=

@.

H e r e , of c o u r s e , we need t h e condition t h a t c o r e ( C ) + @ a n d s p e a k i n g a b o u t WP- minimality, we always s u p p o s e i t .

a n d P ( y * , &)-minimal, in notation

By convention, we s a y t h a t a l l kinds of minima of t h e void set consist of t h e single element

~ E Y .

The approximately maximal elements are t o b e defined in a c o r r e s p o n d i n g manner.

Remark 3.1.1.

(26)

Our definitions, in t h e case of e =0, o r &=O, r e p r o d u c e t h e usual e x a c t notions of minimality. Weak a p p r o x i m a t e minimality means t h e c o r r e s p o n d i n g a p p r o x i m a t e minimality with r e s p e c t t o t h e (algebraically non-closed) c o n e C'

=

I0 j ucore (C).

The notion of y EY being P ( y * ,&)-minimal means t h a t <y* , y > d R i s a P(&)-minimal element of t h e set y * ( H ) = { < y * , h > E R : h ~ H i .

Remark 3.1.2.

In t h e scalar case t h e d i f f e r e n t notions of a p p r o x i m a t e solutions f o r t h e minimiza- tion problem (MP) coincide a n d t h e r e w e simply s p e a k of &-solutions o r &-saddle points.

Let us formulate some simple f a c t s t h a t are e a s y consequences of t h e definitions b u t are s t i l l i n t e r e s t i n g b e c a u s e t h e y c l a r i f y t h e r e l a t i o n s h i p s between t h e dif- f e r e n t notions of minimal solution. Omitted p r o o f s are t r i v i a l .

Proposition 3.1.1.

Suppose t h a t e l s e 2 and

E ~ B ~ ~ .

Then we h a v e

W P (e ,)

-

MIN (MP)

c

W P (e 2)

-

MIN (MP)

Proposition 3.1.2.

(a) S u p p o s e t h a t we h a v e < y * , e

> >

0. Then

with

e'

=

E . e

<y* , e

>

(b) WP(e)-MRY(MP)

=

u I P ( y * , < y * , e >)-MIN(MP) : y * E

c+\

f O j j.

Proposition 3.1.3.

Suppose t h a t (Y,C) i s equipped with s u c h a weakly sequentially complete topology t h a t t h e o r d e r i n g c o n e C c Y i s normal. Consider a s e q u e n c e !en EC : n R j de- c r e a s i n g t o e EC.

(27)

Then

P ( e ) - M I N ( M P ) c ntP(e,)-MIIY(MP) : n~ Nj c WP(e)-MIN(MP)

and

ntWP (en)-MIIY(MP) : n~ Nj

=

WP(e)-MIN(MP)

Proof.

The f i r s t inclusion i s obvious.

For t h e second l e t us r e a s o n by contradiction and suppose t h a t t h e element x o W i s not WP(e)-minimal. This means t h a t w e can find a n o t h e r x l W with

By normality int ( C ) # $ and t h e r e f o r e int ( C ) = c o r e ( C ) . Hence t h e formula under ( 3 . 1 ) is equivalent t o

A s a consequence of Corollary 3 . 5 . Chap. 2. in Peressini (1967) f o r t h e sequence w e have

Lim f f ( x O ) - e n - P ( x l ) : n ~ N j = f ' ( x ~ ) - e - P ( x l ) E i n t ( C ) , and so, t h e r e exists a n m EN with

This means t h a t J' ( x l ) dominates t h e element f ( x o ) -em EY from below.

The proof of t h e second statement i s analogous.

Proposition 3 . 1 . 4 .

Suppose t h a t t h e sequence

I

E , E R + : n EN j d e c r e a s e s t o E

a+.

Then

(28)

3.2. Saddle Point Theorems

Proposition 3.2.1.

The element (zo,Ro,So) ~ d o m cPL is a P(e)-saddle point of t h e Lagrangian cPL, iff (a) @L(zO,RO,SO) €P(e)-MIN !cPL(z,Ro,So) E

Y :

z E X {

(b) z o E F

(c)

-

e

+

R o

.

h ( z o )

s

0.

Proof.

Condition (a) is identical with t h e f i r s t p a r t of t h e definition. Suppose now t h a t ( z o , R o , S o ) ~ d o m

aL

i s a P ( e )-sacidle point. The definition of dom @L immediately yields (b), and w e have

From t h e definition of t h e P ( e )-saddle point w e a l s o know t h a t

f o r e a c h (R,S)EL (Z,Y)xL (V,Y). Selecting S=So and R =Ro w e obtain

and

respectively. Suppose now t h a t h ( z o ) s O does not hold. Then by t h e s t r i c t alge- b r a i c s e p a r a t i o n theorem ( s e e Kothe (1966) Section 17.5. (2)) applied f o r t h e sets

f h ( z o ) j

cZ

and - K c Z , t h e existence of a functional z*

EK'

is guaranteed with

Let c 2 0 , c EY b e a n a r b i t r a r y , fixed element, and define t h e map REL (Z,Y) as

F o r this o p e r a t o r R w e obviously have REL +(Z,Y) and

(29)

in contradiction with (3.3). A similar argument leads t o contradiction with (3.4), if w e suppose 1 ( z o) +O. H e r e w e define a n o p e r a t o r S EL (T/,Y) as

The last inequality in (c) is a consequence of z and RoEL +(Z,Y), while t h e f i r s t follows from (3.2) if w e choose (R ,S)=(O,O).

To p r o v e t h e r e v e r s e implication, suppose t h a t (a), (b) and (c) are valid. From t h e l a s t two w e have t h e following relations:

f o r e a c h (R , S ) EL +(Z,Y)

xL

(T/,Y) implying t h e missing relationship f o r (zo,Ro,So) ~ d o m

aL

t o b e a P ( e )-saddle point.

Remark 3.2.1.

The p r o p e r t y s t a t e d in Proposition 3.2.1. is as much negative as positive, and t h e r e f o r e i s a f i r s t sign of t h e problems t o b e s e e n in t h e sequel. Point (c), name- ly, t u r n s into t h e well-known complementarity condition

in t h e case of e x a c t saddle points. In g e n e r a l , however i t only means t h a t

and t h e r i g h t hand side h e r e i s a n unbounded set.

The proof of t h e following two statements i s analogous.

Proposition 3.2.2.

The element (zo,Ro,So) Edom @L is a WP(e )-saddle point of t h e Lagrangian @L iff (a) @L ( z o,Ro,So) E WP(e ) -MY @L ( z , R o , s o ) E

Y

: z E X j

(b) z o E F

(c) - e $ R o e h ( z o ) S 0.

Proposition 3.2.3.

The element ( z ,, Ro.So) E d o m

$

is a P ( y

*

, &)-saddle point of t h e Lagrangian @L iff

(a) @ L ( z o , R o , S o ) E P(y*,&)-MlIY [ @ L ( z , R o , S o ) E

p :

z E X !

(30)

(b) zo E F

(c)

-

E

5 <

Y* , R o h (20)

>

5_ 0,

Theorem 3.2.1.

Suppose t h a t t h e point (zo,Ro,So) Edom @L i s a P(e)-saddle point

/

WP(e )-saddle point

/

P ( y + ,&)-saddle point of t h e Lagrangian @ L .

Then zo€X i s a n approximate solution of t h e minimization problem

( M P )

in t h e r e s p e c t i v e s e n s e where t h e approximation e r r o r i s

in t h e f i r s t and second, and

in t h e l a s t case.

Proof.

By Proposition 3.2.1. z o € X i s a feasible point. If z EF is a n o t h e r , then f o r t h e s a m e r e a s o n w e have

and this means

By feasibility I (zo)=O, and s o t h e f i r s t case i s proved.

The proof of t h e r e s t is analogous, with t h e additional use in t h e l a s t case of t h e transitivity of t h e relation on R.

Remark 3.'2.2.

Instead of t h e r e l a t i o n (3.5) f o r t h e approximation e r r o r ~ ' E Y w e have 0 8 e 1 ) 2 . e and O p e ' t 2 . e .

as a consequence of t h e points (c) in Proposition 3.2.1. and 3.2.2., respectiveiy.

However, unlike t h e scalarized case, transitivity f o r t h e relation of non- domination or weak non-domination does not hold, and s o we cannot claim in Theorem 3.2.1. t h a t zo€X is a P(2.e)-solution o r WP(2.e)-solution.

(31)

Theorem 3.2.2.

Suppose t h a t t h e problem (MP) meets t h e a l g e b r a i c Slater-Uzawa c o n s t r a i n t qualif- ication. If zo€X i s a P ( y * ,&)-approximate solution of t h e problem, t h e n t h e r e ex- i s t o p e r a t o r s R o G ' ( 2 , ~ ) a n d SOEL (V,Y) such t h a t ( z o , R o , S o ) ~ dom @L i s a P ( y * ,&)-saddle point of t h e Lagrangian IPL.

P r o o f .

I t i s supposed t h a t z o € X i s a n &-solution of t h e s c a l a r valued optimization problem m i n

I

< y * , f ( z ) > E R : z E A, h ( z ) 5 0 , l ( z ) = 0 j

By Theorem 2.2.5. in t h e s c a l a r valued c a s e , t h e r e e x i s t functionals T * ~ U + a n d S*~EV' e n s u r i n g t h a t ( ~ ~ , r * ~ , s * ~ ) i s a n &-saddle point f o r t h e Lagrangian c o r r e s p o n d i n g t o t h e a b o v e s c a l a r problem, i.e.

If c EC i s a n element with <y* , c >=I, t h e n defining R o EL ' ( 2 , ~ ) a n d S O E L (V,Y) with t h e following c o r r e s p o n d e n c e s ,

t h e t h e o r e m i s p r o v e d .

Theorem 3.2.3.

S u p p o s e t h a t t h e problem (MP) meets t h e Slater-Uzawa c o n s t r a i n t qualification, and c o r e ( C ) # @ . If zo€X i s a WP(e)-solution of t h e problem ( M P ) t h e n t h e r e e x i s t o p e r a t o r s RoEL '(2,Y) a n d S O E L (V,Y) s u c h t h a t ( z o , R o , S o ) ~ d o m

aL

i s a WP(e)-

s a d d l e point of t h e Lagrangian @ L . P r o o f .

By point ( c ) in Proposition 3.1.2. t h e r e e x i s t s a n y * E C + such t h a t z o € X i s a P ( y * , < y * , e >)-solution of ( M P ) a n d s o Theorem 3.2.2. implies t h a t t h e r e e x i s t a P ( y * , <y* , e >)-saddle point f o r Now, obviously y * EC' i s s t r i c t l y positive f o r t h e c o n e C1=core ( C ) u f O j . From a n a r g u m e n t similar t o t h e o n e used in t h e proof of

(32)

(b) in P r o p o s i t i o n 3.1.2. w e c a n conclude t h a t t h i s P ( y * , <y* ,e >)-saddle point i s a WP(e )-sacidle point as well.

w

Remark 3.2.3.

A r e s p e c t i v e t h e o r e m c o n c e r n i n g P(e)-solutions cannot. b e s t a t e d as a y * EC+, which i s s t r i c t l y positive f o r t h e whole c o n e C CY, d o e s not always e x i s t .

3.3. Primal and Dual Functions

In t h i s final s e c t i o n w e only d e a l with t h e s c a l a r i z e d case, i. e. P ( ~ * , E ) - t y p e minimality, as o t h e r w i s e being t h e solution of t h e r e s p e c t i v e a p p r o x i m a t e primal problem c a r r i e s l i t t l e information, as i s indicated in Remark 3.3.1.

Definition 3.3.1.

W e c a l i t h e following set valued maps t h e a p p r o x i m a t e primal a n d d u a l functions of t h e minimization problem ( M P ) :

and

The a p p r o x i m a t e primal a n d d u a l problems ( P ( y * , E)) a n d (D(y* , E ) ) are defined in terms of t h e functions P ( y * , E ) a n d D ( y * ,E). Accordingly z o E X o r (Ro,So)EL +(z,Y)%L (V,Y) i s a solution of t h e a p p r o x i m a t e primal or d u a l problems, if

(33)

respectively.

Proposition 3.3.1.

Proof.

For z E F w e have

@ , ~ ( z , R , S ) E Y u !-,a{ : R € L f ( Z , Y ) , S €L(V,Y) j

=

Remark 3.3.1.

If w e define e.g. t h e approximate primal problem ( P ( e ) ) in a corresponding manner t o Definition 3.3.1. then t h e analogue of Proposition 3.3.1. i s valid, and in such a way t h a t t h e set P ( e ) ( z ) is not bounded from below if z E F and h ( z ) # O . A s a consequence, i t would have only -a a s a solution. A s w e know from e.g. Luc (1984) t h i s i r r e g u l a r i t y d i s a p p e a r s if e =O.

Proposition 3.3.2.

(a) If zo€X i s a P ( y * ,&)-solution of t h e problem ( W ) t h e n i t is a solution of t h e problem ( P ( y * ,&)).

(b) If zo€X i s a solution of t h e problem ( P ( y * ,&)) t h e n i t i s a P ( y * ,4&) solution of t h e problem ( W ) . Proof.

(a) By Proposition 3.3.1. w e have f o r all z E F t h a t

T h e r e f o r e i t i s sufficient t o p r o v e t h a t

Again by t h e last proposition:

(34)

Hence by t h e definition of P ( y * ,3&) -MAV, t h e validity of (3.6) follows from t h e ine- quality:

And t h i s is a consequence of t h e relation w e supposed.

(b) Let us suppose now t h a t zo€X solves ( P ( y * ,&)), i.e. t h e r e e x i s t s a n

Belonging t o t h e f i r s t set means t h a t

where c o € C a n d OS<y* ,c O > S & . AS w e have f o r all z EX\F t h a t P ( y * , ~ ) ( z ) = t = j , i t is enough t o consider z EF, impiying

Hence belonging t o t h e second set implies:

and by (3.7)

< y * , f ( z o ) > - 4 c S < y * , f ( z ) >

vz EX.

Definition 3.3.2.

The element (zo,Ro,So) EXXL (Z,Y)

xL

(V,Y) i s called a P ( y * ,&)-dual p a i r of solu- tions if

(i)

z o E

X

i s a solution of t h e problem ( P ( y * , E ) )

and (ii)

(35)

Remark 3.3.2.

The definition could equivalently b e formulated as: x o € X and (RolSo)EL(Z,Y)XL (V,Y) i s a solution of t h e primal and t h e dual problem r e s p e c - tively, where t h e latter i s valid by way of j' (xo)€Y.

Theorem 3.3.1.

(a) If (xo,Ro.So) Edom cPL i s a P ( y * ,&)-saddle point of t h e Lagrangian IPL, t h e n i t is a P ( y * ,&)-dual p a i r of solutions.

(b) If ( z o l R o , S o ) EXXL ( Z , Y ) U (V,Y) i s a P ( y * , &)-dual p a i r of solutions t h e n i t is a P ( y * ,2&)-saddle point of t h e Lagrangian cPL

.

Proof.

(a) On one hand by Proposition 3.3.1. w e h a v e

On t h e o t h e r , by Theorem 3.2.1. w e know t h a t x o € X i s a P ( y * ,2e)-solution of t h e problem

(W).

Together with Proposition 3.3.1. t h i s yields t h e r e l a t i o n

This p r o v e s t h e f i r s t requirement of (xo,Ro,So) E$ being a P ( y * ,&)-dual p a i r of solutions. If (xo,Ro,So) E dom

aL

i s a P ( y * ,&)-saddle point t h e n by (c) in Proposi- tion 3.2.3. w e h a v e

and a l s o by t h e definition of t h e saddle point

If w e combine t h e s e two r e i a t i o n s then w e obtain

a n d a s a consequence

(36)

W e a l s o h a v e t o p r o v e t h a t

If t h i s i s n o t s o t h e n t h e r e e x i s t R EL ( Z , Y ) , S EL ( V , Y ) a n d y l ~ ( y * , . z ) ( R , S ) such t h a t

H e r e i t i s n e c e s s a r y t h a t R E L + ( Z , Y ) b e valid b e c a u s e o t h e r w i s e D(y* , & ) ( R , S )

= I --I

a n d consequently <y* , y >=-w. T h e r e f o r e

f o r some

z l W .

Using ( c ) in P r o p o s i t i o n 3.2.3 a n d t h e formula u n d e r (3.8), w e ob- t a i n

This, a n d y € D ( y * , & ) ( R , S ) , however, c o n t r a d i c t to (3.9). S o t h e s e c o n d r e q u i r e - ment i s p r o v e d .

( b ) By t h e f i r s t p a r t of t h e definition of t h e P ( y * ,&)-dual p a i r of solutions, t h e conditions imply t h a t w e P ( y * , .z)(z0), and, t h e r e f o r e z o W . By t h e s e c o n d w e know t h a t - 0 4 D ( y * , 2 & ) ( R o , S o ) a n d t h e r e f o r e R o e + ( Z , Y ) . Hence, ( z o , R 0 , S o ) € d o m GL holds. A s a c o n s e q u e n c e of

z

w e h a v e

a n d so

implies

From (3.10) i t also follows t h a t

(37)

B y (3.11) (3.12) and t h e relation

sow,

Proposition 3.2.3. holds and t h e r e f o r e

sow

is a P ( y * ,2e)-saddle point of

aL.

8

(38)

4. REFERENCES

Akilov, G. N., Kutateladze, S. S . , (1978) Ordered Vector Spaces, Nauka, Novosi- b i r s k . (in Russian)

Azimov, A. Ja., (1982) Duality in Vector Optimization Problems, Soviet Mathematical Dokladi, Vol. 26. No. 1. pp. 170-174.

Corley, H.W. (1981) Duality Theory with Respect t o Cones. Journal of Mathemati- c a l Analysis and Applications, 84, pp. 560-568.

Holmes, R.B. (1975) Geometric Functional Analysis, Graduate Tests in Mathematics, S p r i n g e r , Berlin-Heidelberg-New York

Kothe G. (1966) Topologische Lineare Raume I., S p r i n g e r , Berlin-Heidelberg-New York.

Kutateladze, S.S. (1980) c-subdifferentials and E-optimality, Sibirskii Matema- ticheskii Zhurnal, Vol. 21, pp. 120-130, (in Russian).

Loridan, P . (1984) &-Solutions in Vector Minimization Problems, Journal of Optimi- zation Theory and Applications, Vol. 43, No. 2 , pp. 265-276.

Luc, D.T. (1984) On Duality Theory in Multiobjective Programming, Journal of Op- timization Theory and Applications, Vol. 43, No. 4, pp. 557-582.

Peressini, A.L. (1967) Ordered Topological Vector S p a c e s , H a r p e r and Row, N e w York, Evanston and London.

Tanino, T., Sawaragi, Y. (1980). Duality Theory in Multiob jective Programming.

Journal of Optimization Theory and Applications, 31, pp. 509-529.

Strodiot, J. J., Nguyen, V. H., Heukemes, N. (1983) &-optimal Solutions in Nondif- f e r e n t i a b l e Convex Programming and Some Related Questions, Mathematical Programming, 25. pp 307-328.

Vdlyi, I. (1985a) On Duality Theory Related t o Approximate Solutions of Vector Op- timization Probiems. In: Nondifferentiable Optimization: Motivations and Ap- plications, V.F. Demyanov, D. Pallaschke Eds. L e c t u r e Notes in Economics and Mathematical Systems, Vol. 255, S p r i n g e r , Berlin-Heidelberg-New York-Tokyo.

Vdlyi, I. (1985b) Approximate Saddle Point Theorems in Vector Optimization (to ap- p e a r )

(39)

Zowe, J (1976) Konvexe Funktionen und Konvexe D u a l i t a t s t h e o r i e in g e o r d n e t e n Vektorraumen, Habilitationsschrift dem Naturwissenschaftlichen F a c h b e r e i c h IV d e r Bayerischen Julius-Maximilians-Universitat Wiirzburg, Wiirzburg.

Zowe, J. (1977) The Saddle P o i n t Theorem o r Kuhn a n d T u c k e r in O r d e r e d Vector S p a c e s , J o u r n a l of Mathematical Analysis a n d Applications, Vol. 57, pp. 41-55.

Referenzen

ÄHNLICHE DOKUMENTE

We present an approach for generating synthetic fea- ture spaces of varying discrimination power, modeling main characteristics from real world feature vector extractors.. A simple,

This problem for real systems of petrol outlets has large dimension that leads to computational difficulties in numerical solution of the problem using traditional linear

Allgemein kann allerdings formuliert werden, dass alle drei Stücke die formalen Be- dingungen erfüllen, als Zusammenhang zwischen motivischen Keimzellen und formaler

As an indication of how singularity-theory arguments can be employed to study constraint perturbations, let us examine the classical Kuhn-Tucker conditions using

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg,

Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organi- zations supporting the

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... SINGULARITY THEORY FOR NONLINEAR

Hence, in the second part of this paper, w e will define the supremum of Y essentially by W -supY and develop the conjugate duality in multiobjective optimization... Part