• Keine Ergebnisse gefunden

Epsilon Solutions and Duality in Vector Optimization

N/A
N/A
Protected

Academic year: 2022

Aktie "Epsilon Solutions and Duality in Vector Optimization"

Copied!
21
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT THE PERMISSION OF THE AUTHOR

EPSILON SOLUTIONS AND DUALITY IN VECTOR OPTIMIZATION

I s t v d n VdLyi

May 1987 WP-87-43

Working P a p e r s a r e interim r e p o r t s on work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only limited review. Views o r opinions e x p r e s s e d h e r e i n d o not n e c e s s a r i l y r e p r e s e n t t h o s e of t h e Institute o r of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria

(2)

PREFACE

This p a p e r is a continuation of t h e a u t h o r ' s p r e v i o u s investigations in t h e t h e o r y of epsilon-solutions in convex v e c t o r optimization a n d s e r v e s as a t h e o r e t i c a l background f o r t h e r e s e a r c h of SDS in t h e field of m u l t i c r i t e r i a optimization. With t h e stress laid on duality t h e o r y , t h e r e s u l t s p r e s e n t e d h e r e g i v e some insight into t h e problems a r i s i n g when e x a c t solutions h a v e t o b e s u b s t i t u t e d by a p p r o x i m a t e ones. J u s t like in t h e s c a l a r c a s e , t h e available computational techniques f r e - quently l e a d to s u c h a situation in m u l t i c r i t e r i a optimization.

Alexander B. Kurzhanski Chairman

Systems and Decision S c i e n c e s Area

(3)

CONTENTS

1. Introduction

2. Epsilon Optimal Elements 3 . P e r t u r b a t i o n Map a n d Duality

4 . Conical S u p p o r t s 5. Conclusion

6. R e f e r e n c e s

(4)

EPSILON SOLUTIONS AND

DUALITY

IN VECTOR OF'TIMIZATION Istv&n V&lyi

The study of epsilon solutions in v e c t o r optimization problems w a s s t a r t e d in 1979 by S. S. Kutateladze [I]. These t y p e s of solutions a r e i n t e r e s t i n g b e c a u s e of t h e i r relation t o nondifferentiable optimization a n d t h e v e c t o r valued e x t e n s i o n s of Ekeland's v a r i a t i o n a l p r i n c i p l e as c o n s i d e r e d by P. Loridan [2] a n d I . Vdlyi [3], b u t computational a s p e c t s a r e p e r h a p s e v e n more important. In p r a c t i c a l s i t u a t i o n s , namely, we o f t e n s t o p t h e calculations at values t h a t we c o n s i d e r sufficiently close to t h e optimal solution, or use algorithms t h a t r e s u l t i n some a p p r o x i m a t e s of t h e P a r e t o s e t . Such p r o c e d u r e s c a n r e s u l t in epsilon solutions t h a t a r e u n d e r s t u d y in this p a p e r . A p a p e r by D. J. White [4] d e a l s with t h i s i s s u e a n d i n v e s t i g a t e s how well t h e s e solutions a p p r o x i m a t e t h e e x a c t solutions.

Motivated by t h e above, i n t h e p r e s e n t p a p e r w e s t u d y t h e implications in duality t h e o r y of substituting e x a c t solutions with epsilon solutions. Although t h e well known r e s u l t s h a v e t h e i r c o u n t e r p a r t s , o u r findings show t h a t i n some c a s e s s p e - cial caution i s r e q u i r e d .

For t h e s a k e of simplicity i n formulation w e s h a l l r e s t r i c t o u r c o n s i d e r a t i o n t o fin- ite dimensional s p a c e s , a l t h o u g h a l l t h e r e s u l t s h a v e a c o r r e s p o n d i n g v e r s i o n i n in- finite dimensions. Our m a j o r tool i s t h e s a d d l e point t h e o r e m f o r epsilon solutions and t h e techniques used in s t a n d a r d v e c t o r duality t h e o r y . For d e t a i l s s e e I. Vdlyi [5] and t h e book by Y. S a w a r a g i , H Nakayama a n d T. Tanino [6]. A s a c o n s e q u e n c e of t h e f a c t t h a t t h e notion of a p p r o x i m a t e solution c o i n c i d e s with t h a t of e x a c t solution in t h e c a s e when t h e approximation e r r o r i s z e r o , o u r r e s u l t s r e d u c e to those r e l a t e d t o e x a c t v e c t o r optimization. From a n o t h e r point of view t h e y a r e parallel t o t h e t h e o r y of epsilon solutions in t h e s c a l a r valued c a s e as expounded

(5)

e . g , by J . J . S t r o d i o t , V. H. Nguyen a n d N. Heukernes [7], or in t h e v e c t o r i a l c a s e for a b s o l u t e o p t i m a l i t y by I. VAlyi

[a].

In t h i s p a p e r w e g i v e t h e p r o o f s of t h e r e s u l t s p r e s e n t e d a t t h e VII-th I n t e r n a t i o n - a l C o n f e r e n c e o n Multiple C r i t e r i a Decision Making, h e l d b e t w e e n 18-22 August, 1986, in Kyoto, J a p a n .

(6)

- 3 - 2. EPSILON OPTIMAL ELEMENTS

In t h i s s e c t i o n w e r e c a l l s o m e b a s i c n o t i o n s a n d known f a c t s ( ~ ~ i t h o u t p r o o f s ) r e l a t - e d t o &-optimal s o l u t i o n s i n v e c t o r optimization. All t h e v e c t o r s p a c e s t h r o u g h o u t t h e p a p e r a r e r e a l , f i n i t e dimensional a n d o r d e r i n g c o n e s a r e s u p p o s e d t o b e c o n - v e x , p o i n t e d , c l o s e d a n d to h a v e a nonempty i n t e r i o r . X , Y a n d 2 d e n o t e v e c t o r s p a c e s while C a n d

K

a r e t h e p o s i t i v e c o n e s of Y a n d Z r e s p e c t i v e l y . The d u a l s p a c e of Y i s

I"

a n d t h e c o n e of p o s i t i v e f u n c t i o n a l s with r e s p e c t t o CCY, or t h e d u a l of C , i s C + a n d L+(Z,Y)CL(Z,Y) s t a n d s f o r t h e c o n e of p o s i t i v e l i n e a r maps f r o m Z to Y.

F o r t h e v a r i o u s o r d e r i n g r e l a t i o n s h i p s b e t w e e n t w o e I e m e n t s of a n o r d e r e d v e c t o r s p a c e we s h a l l u s e t h e following n o t a t i o n s , f o r e x a m p l e i n Y:

Y 2 2 Y 1 iff y 2 - y 1 E C Y z Z Y 1 i f f Y ~ - Y ~ E C \ t O j y ,

>

y 1 iff y ,

-

y , E i n t ( C )

a n d y z y l will r e f e r t o t h e f a c t t h a t y l € Y d o e s n o t d o m i n a t e y 2 E Y f r o m below.

Now f o r t h e r e a d e r s c o n v e n i e n c e we q u o t e t h e following d e f i n i t i o n f r o m e. g . D. T.

Luc [9].

Definition 2.1.

T h e set H c Y i s C - c o n v e x if H + C c Y i s c o n v e x .

T h e f u n c t i o n f :X+Y i s C - c o n v e x if t h e set

f

f (x ) E Y : x Edom f j i s C - c o n v e x . The set H c Y i s C - c o m p a c t if t h e r e e x i s t s a b o u n d e d set HoCY with t h e p r o p e r t y H c H o +C a n d if H +C CY i s c l o s e d .

Now t u r n to t h e c o n s i d e r a t i o n of E-optimality. T h r o u g h o u t t h e p a p e r t h e v e c t o r s

E,E, ECCY will r e p r e s e n t t h e a p p r o x i m a t i o n e r r o r a n d t h e i r v a l u e will b e f i x e d . Definition 2.2.

T h e v e c t o r y € H i s a n &-minimal e l e m e n t of H c Y , i n n o t a t i o n y E E-min(H), if ( y - E - C ) n H

c

f y - ~ j ,

i t i s weakly &-minimal, i n n o t a t i o n y E E - - w m i n ( H ) , if ( y

-

E - i n t ( C ) ) n H

c

f y

-

c j

(7)

a n d p r o p e r l y &-minimal, i n n o t a t i o n y E E - p m i n ( H ) , if t h e r e e x i s t s a y * € i n t ( C t ) s u c h t h a t < y * , y - E > S < y * , h > V h E H .

The a p p r o x i m a t e l y maximal e l e m e n t s a r e t o b e d e f i n e d in a c o r r e s p o n d i n g m a n n e r

The following s t a t e m e n t s a r e e a s y c o n s e q u e n c e s of t h e d e f i n i t i o n s a n d c l a r i f y t h e r e l a t i o n s h i p s b e t w e e n t h e d i f f e r e n t n o t i o n s of minimal e l e m e n t .

P r o p o s i t i o n 2.1.

S u p p o s e t h a t Then we h a v e

P r o p o s i t i o n 2 . 2 .

& - p m i n ( H ) c e - m i n ( H ) c e w m i n (H) P r o p o s i t i o n 2 . 3 .

C o n s i d e r a s e q u e n c e t r , EC : n E N

1

d e c r e a s i n g to a E C . Then

c - m i n ( H )

c n I&,

- m i n ( H ) : n E N

c

e w m i n (H) a n d

Now t h e d e f i n i t i o n of t h e c o n v e x v e c t o r v a l u e d minimization p r o b l e m a n d t h e c o r r e s p o n d i n g v e c t o r v a l u e d L a g r a n g i a n follows. Then w e r e c a l l t h e r e l a t i o n s h i p s b e t w e e n &-solutions of t h e minimization p r o b l e m a n d e-saddle p o i n t s of t h e L,agran- g i a n .

Definition 2 . 3 . L e t

(8)

be p r o p e r C-convex (and K-convex, r e s p e c t i v e l y ) functions with A = d o m f n d o m g

+ #.

We define t h e minimization problem (MP) a s follows

&-minimize

JO

( F ) (MP)

where F c X is t h e feasibility s e t of t h e problem ( h P ) defined by t h e equality

A s we a l r e a d y pointed i t o u t , t h e c a s e E=O r e p r e s e n t s t h e solutions in t h e usual ( e x a c t ) s e n s e .

The Lagrangian of t h e minimization problem (MP)

@ : A XL

+(z,Y)

-+ I', is defined by t h e equality

The element ( x o , R o ) E X X L (Z,Y) i s a n &-saddle point f o r t h e Lagrangian 9 if t h e following is met:

( a ) @(xo,Ro) E E - m i n [ 9 ( x , R o ) G I' : X E A j

(b) @(x o,Ro) E E-maa: [ @ (I o , R ) E Y : R E L ' ( 2 , ~ ) j

.

Definition 2.4.

We s a y t h a t t h e S l a t e r condition holds f o r t h e problem

(IMP)

if t h e r e e x i s t s a n xlEA with g ( x i ) 0

.

Theorem 2.1.

The element ( z o , R o ) E X X L (Z,Y) i s a &-saddle point of t h e Lagrangian @, iff (a) (P(xo,Ro) E E-min [ @ ( x , R o ) E Y : a: E A{

(b) x o E F

( c ) - E

$

R o

.

!J ( z O )

5

0.

The p r o p e r t y s t a t e d in Theorem 2.1. i s as much n e g a t i v e as positive. Point (c), namely, t u r n s i n t o t h e well-known complementarity condition R o g (I,)

=

0 in t h e case of e x a c t saddle points. When E + O , i t only means t h a t

(9)

w h e r e t h e r i g h t h a n d s i d e is a n unbounded s e t .

T h e o r e m 2.2.

S u p p o s e t h a t t h e p o i n t ( x o , R o ) ~ x L ( Z , Y ) i s a &-saddle p o i n t of t h e L a g r a n g i a n @.

Then xoGY i s a n (&-Ro.g ( x o ) ) -solution of t h e minimization p r o b l e m (PVIP).

F o r t h e a p p r o x i m a t i o n e r r o r e-Ro.g ( z o ) e C w e h a v e 0 5 &-Ro.g ( s o ) 2 2 . E as a c o n s e q u e n c e of t h e p o i n t ( c ) in T h e o r e m 2.1. However, unlike t h e s c a l a r i z e d c a s e , t r a n s i t i v i t y f o r t h e r e l a t i o n of non-domination d o e s n o t h o l d , a n d s o w e c a n n o t claim t h a t xo&Y is a ( 2 ~ ) - s o l u t i o n .

T h e o r e m 2.3.

S u p p o s e t h a t f o r t h e p r o b l e m (MP) t h e S l a t e r condition h o l d s . If z o a i s a p r o p e r

&-solution of t h e p r o b l e m (MP) t h e n t h e r e e x i s t a n o p e r a t o r R o E L + (Z,Y) s u c h t h a t ( x o , R o ) ~ A ~ L '(2,Y) i s a n &-saddle p o i n t of t h e L a g r a n g i a n Q.

(10)

- 7 - 3. PERTURBATION

MAP

A M ) DUALITY

The p r o c e d u r e t h a t w e s h a l l follnw i s s t a n d a r d . We start by defining a p a r a m e t r i z e d family of p r o b l e m s ( t h e family of p e r t u r b e d p r o b l e m s ) t h a t includes o u r o r i g i n a l minimization problem. The primal map will t h e n b e defined as a func- tion taking t h e optimal e l e m e n t s of t h e p e r t u r b e d p r o b l e m s a s v a l u e s , while for t h e dual map t h i s will h a p p e n via t h e Lagrangian. V e c t o r minimization p r o b l e m s usual- ly d o n o t h a v e unique s o l u t i o n s in t h e e x a c t c a s e a n d t h i s i s e v e n m o r e so now.

T h e r e f o r e t h e s e f u n c t i o n s will b e s e t valued maps.

We s h a l l not r e i t e r a t e t h e a n a l o g i e s to t h e known r e s u l t s in e x a c t v e c t o r optimiza- tion o r s c a l a r e-optimization b u t w e should l i k e t o c a l l f o r s p e c i a l a t t e n t i o n t o t h i s issue.

In t h i s s e c t i o n w e s h a l l assume t h a t

(i) f i s C-continuous a n d g i s K-continuous, (ii) A c Y i s c o m p a c t ,

(iii) int (C t, +q5.

We d e f i n e f o r e a c h u €2

and

A s i s w e l l known, u n d e r o u r assumptions, F ( u ) c X i s a c o n v e x s e t a n d Y ( u ) c Y i s C- convex. F u r t h e r m o r e in t h e c a s e when u =O, F ( u ) a n d Y ( u ) c o i n c i d e s with F a n d f ( F ) r e s p e c t i v e l y . Hence t h e following definition of t h e p e r t u r b e d p r o b l e m s (P,) r e a l l y means embedding ( W ) in a p a r a m e t r i z e d set of p r o b l e m s :

Definition 3.1.

We d e f i n e t h e p e r t u r b e d p r o b l e m s as follows

a n d we c a l l t h e s e t valued map defined by t h e e q u a l i t y

t h e primal ( o r &-primal) map.

(11)

Now w e s t a t e t h e b a s i c p r o p e r t i e s of t h e p r i m a l mapping.

P r o p o s i t i o n 3 . 1 . The e q u a l i t y

h o l d s a n d s o ,

W,

i s a C-convex set v a l u e d C-convex map.

P r o o f .

The e q u a l i t y i s a c o n s e q u e n c e of P r o p o s i t i o n 5 . 2 . 1 . of Y. S a w a r a g i , I-I. Nakayama a n d T. Tanino [GI. From t h i s a n d t h e C - c o n v e x i t y of t h e mapping Y(.) t h e whole s t a t e m e n t follows.

P r o p o s i t i o n 3 . 2 .

S u p p o s e t h a t z 1 S f 2 a n d u

tsu2.

Then w e h a v e

a n d

i . e . t h e p r i m a l map i s monotonous i n E a n d C-monotonous i n t h e v a r i a b l e u . P r o o f .

The f i r s t inclusion follows f r o m P r o p o s i t i o n 2.1. On t h e o t h e r h a n d t h e monotonicity of t h e mapping Y(.) t o g e t h e r with P r o p o s i t i o n 3 . 1 . imply

Now t u r n to t h e d u a l map a n d s h a l l u s e t h e c o n s t r u c t i o n o r i g i n a t i n g f r o m T. Tanino a n d Y . S a w a r a g i .

Definition 3 . 2 .

L e t f o r e a c h REL + ( 2 , ~ ) b e

t h e n w e d e f i n e t h e d u a l ( o r &-dual) map b y t h e e q u a l i t y

(12)

a n d t h e d u a l p r o b l e m as

P r o p o s i t i o n 3 . 3 .

The following r e l a t i o n h o l d s f o r e a c h r €[O,l]:

a n d s o , t h e f u n c t i o n D , i s a c o m p a c t , C - c o n c a v e set v a l u e d , C - c o n c a v e map.

P r o o f .

The map

a(.

, R ) i s C - c o n v e x b e c a u s e i t i s a sum of t w o C - c o n v e x f u n c t i o n s . In o t h e r words t h i s means t h a t n ( R ) i s a C - c o n v e x set. By t h e C - c o n t i n u i t y of t h e f u n c t i o n f , t h e K-continuity of g a n d t h e c o m p a c t n e s s of A c X , R ( R ) c X w e c a n a p p l y Lemmas 2.5. a n d 2.4. of D. T. Luc [9] implying f i r s t t h a t R ( R ) c Y i s C - c o m p a c t a n d t h e n t h a t

H e n c e w e c a n c o n c l u d e t h a t D , ( R ) c Y i s C - c o n v e x .

T h e C - c o n c a v i t y of t h e mapping D , is implied b y t h e following s e q u e n c e of rela- t i o n s :

P r o p o s i t i o n 3 . 4 .

D , ( R ) = E-min

u f

W , ( u ) + R , u : u €2' ]

v

R E L '(2,~)

(13)

P r o o f .

The s t a t e m e n t follows f r o m t h e e q u a l i t y

R ( R ) + C = ~ T N , ( U ) + R ~ U : U E Z ~

V R E L ' ( Z , Y )

t h a t w e s h a l l p r o v e .

L e t f i r s t b e y € R ( R ) . Then w e h a v e

Y

= P

( ~ 1 ) + R . 2 ~ 1 w h e r e w e u s e d t h e n o t a t i o n ul =g ( z l ) This implies

b e c a u s e f ( x i ) EY(U H e n c e

y E W e ( u l )

+

C

+

R . u l

c

f W , ( u ) + R . u : uEZ

1.

On t h e o t h e r h a n d , if y E W c ( u l ) + R ~ u l f o r some U ~ E Z t h e n , b y t h e d e f i n i t i o n of t h e p r i m a l map,

a n d c o n s e q u e n t l y t h e r e e x i s t s a x l E A s u c h t h a t

H e n c e w e h a v e

Y

2 P

( 1 1 )

+

R . g ( X I )

o r t h a t y EIZ(R)+C.

W e are a b l e now to f o r m u l a t e t h e weak a n d t h e t h e s t r o n g d u a l i t y t h e o r e m s f o r o u r

&-solutions.

T h e o r e m 3.1.

The r e l a t i o n

Y -&

4 P ( d

h o l d s f o r e a c h z E F a n d y E D , ( R ) with REL ' ( Z , Y ) .

(14)

P r o o f .

By t h e definition of t h e d u a l map,

holds a n d t h e r e s t of t h e conditions e n s u r e R . g ( x l ) s O .

Theorem 3.2.

( a ) S u p p o s e t h a t f o r some x E F a n d

R

EL + ( 2 , ~ ) t h e r e l a t i o n j' ( x ) E D c ( R ) holds.

Then x EX is a n &-solution f o r t h e problem (MP) a n d j ' ( x ) ~ Y i s a n &-maximal element of t h e &-dual problem (D,).

( b ) S u p p o s e t h a t f o r t h e problem (MP) t h e S l a t e r condition h o l d s a n d x EX i s a p r o p e r &-solution of (MP). Then j'(x)EY i s a n &-maximal element of t h e &-dual problem (D ,).

P r o o f .

We p r o v e ( a ) by c o n t r a d i c t i o n . If t h e r e e x i s t s a n x lEF s u c h t h a t j' ( x )

-

E 2 j'( x

t h e n we a l s o h a v e

c o n t r a d i c t i n g t o t h e assumptions. To s e e t h e r e s t , l e t us s u p p o s e t h a t t h e r e e x i s t s a n RIEL + ( 2 , Y ) a n d a y EDc(R1) with t h e p r o p e r t y t h a t

P ( x ) + & ~ Y . This implies a g a i n

t h a t c o n t r a d i c t s t o t h e assumption o n y EY.

We start t h e p r o o f of ( b ) by using Theorem 2.3. to e s t a b l i s h t h e e x i s t e n c e of a n REL ' ( 2 , ~ ) with t h e p r o p e r t y t h a t j'(x)ED,(R). Now ( a ) c a n b e a p p l i e d a n d t h i s c o m p l e t e s t h e p r o o f .

Notice t h a t t h e problem a r i s i n g in Theorem 2.1. d o e s n o t a p p e a r h e r e , o n l y b e c a u s e we use assumptions t h a t a r e s t r o n g e r t h a n t h e &-saddle point p r o p e r t y in t h e c a s e when E # O .

(15)

4. CONICAL SUPPORTS

In t h i s s e c t i o n w e g i v e a g e o m e t r i c i n t e r p r e t a t i o n of t h e d u a l i t y a n d s a d d l e p o i n t t h e o r e m s a n d s u m m a r i z e o u r r e s u l t s in o n e s e q u e n c e of e q u i v a l e n t s t a t e m e n t . This will c l e a r l y show w h e r e d o w e h a v e t h e a n a l o g i e s as e x p e c t e d a n d w h e r e d o p e c u - l i a r i t i e s a r i s e .

The f a c t t h a t t h e f u n c t i o n W , t a k e s v a l u e s among s u b s e t s of a n o r d e r e d v e c t o r s p a c e implies t h a t t h e a p p r o p r i a t e notion of e p i g r a p h i s to b e d e f i n e d in t h e fol- lowing way:

epi W , =

1

( u , ~ ) E Z X Y : y E W , ( U ) + C , u E Z

1

By P r o p o s i t i o n 3.2., of c o u r s e , h e r e we h a v e t h e e q u a l i t y epi W ,

=

e p i Y ( . ) . We e x p e c t t h a t p a s s i n g f r o m e x a c t s o l u t i o n s t o E-solutions a n d f r o m s c a l a r v a l u e s to v e c t o r v a l u e s means t h e c h a n g e f r o m a s u p p o r t i n g h y p e r p l a n e to a n ' & - s u p p o r t i n g ' t r a n s l a t e of a c o n e . This i s i n d e e d s o . Given a n o p e r a t o r R EL + ( 2 , ~ ) let u s , namely, d e f i n e a c o n e MR i n t h e p r o d u c t s p a c e Z X Y as follows:

a n d l e t u s d e n o t e i t s l i n e a r i t y s p a c e of by 1 (rVR), t h a t is l e t b e

This c o n e is c l o s e l y r e l a t e d to t h e s t r u c t u r e of Y a n d 2 , a n d h a s t h e r e g u l a r i t y p r o p e r t i e s f o r m u l a t e d in t h e following p r o p o s i t i o n .

P r o p o s i t i o n 4 .l.

F o r e a c h R E L + ( z , Y ) , M R c Z X Y i s a c l o s e d c o n v e x c o n e s u c h t h a t

w h e r e t h e l i n e a l i t y s p a c e of MR, 1 ( M R ) c Z X Y , i s i s o m o r p h i c to t h e s p a c e Z . P r o o f .

B e c a u s e of t h e p o i n t e d n e s s of t h e c o n e C C Y we h a v e t h a t ( u , y ) f L ( M R ) if a n d only if y =-R.U . NOW t a k e a n y p a i r ( u ,y ) f Z X Y a n d c o n s i d e r t h e r e p r e s e n t a t i o n

E a s y c a l c u l a t i o n s show t h a t

(16)

o n o n e hand a n d t h a t t h e mapping

1 : Z + L(?dR) defined by

i s a n isomorphism.

Definition 4.1.

We s a y t h a t t h e c o n e M c Z X Y &-supports t h e set valued map h : Z Z Y

at t h e point ( u , y ) E g r a p h h if

( - M ) + I ( ~ , Y - E ) ~

n

e p i h c ~ ( u , Y - E ) { .

Analogously, t h e h y p e r p l a n e H c Z X Y & - s u p p o r t s t h e map h at ( u , y ) E g r a p h h if H

+

f O l x ( - C )

+

I ( ~ , Y - E ) ]

n

e p i h c I ( U , Y - - E ) ] .

Let us t a k e now z * €2' a n d y * EY a n d r ER, defining a h y p e r p l a n e in Z X Y , a s fol- lows:

In p a r t i c u l a r , w e use t h e following notation f o r t h e &-supporting h y p e r p l a n e s of e p i W,:

w h e r e

r o

=

s u p

I

r : H ( Z * , Y * , T - < ~ * , & > ) + [ O ~ X C 3 e p i W ,

1

Now w e f o r m u l a t e t h e r e l a t i o n s h i p s between &-supporting c o n e s a n d h y p e r p l a n e s of t h e p e r t u r b a t i o n function W , .

(17)

Proposition 4 . 2 .

(a) Suppose t h a t H ( z * , y * ) c Z x Y is a n &-supporting h y p e r p l a n e of e p i

W,

at t h e point ( u , y ) E g r a p h W,, y* € i n t ( C +) and t h a t f o r t h e c o n e MR C Z xY t h e r e l a - tion

L

(rUR)cH(z*, y* , 0 ) holds. Then MRcZxY & - s u p p o r t s e p i

W,

a t t h e point (u. , y ) E g r a p h W,.

(b) Suppose t h a t MRcZXY &-supports e p i

W,

at t h e point ( u , y ) E g r a p h

W,.

Then t h e r e e x i s t s a n o n z e r o v e c t o r y* EC' and a h y p e r p l a n e H(z* , y * , r ) c Z x Y t h a t &-supports e p i

W,

at t h e point ( u , y ) E g r a p h

W,

arid f o r which t h e r e l a - tion !I (MR)CH(z*, y* , 0 ) holds.

P r o o f .

To p r o v e (a) w e r e a s o n by contradict,ion. If 1URcZxY d o e s not &-support e p i

W,

a t t h e point ( u

,

y ) E g r a p h W , t h e n t h e r e e x i s t s a n o t h e r point ( u l , y l ) E g r a p h

W,

s u c h t h a t

F o r a n y y* Eint (C +), t h i s implies

On t h e o t h e r hand, relying on t h e formula r e p r e s e n t i n g t h e elements of l ( M R ) c Z x Y , and t h e assumption

L

( M R ) c H ( z * , y* , 0 ) we o b t a i n

T o g e t h e r with t h e p r e v i o u s inequality, t h i s implies t h e r e l a t i o n

c o n t r a d i c t i n g t o t h e &-supporting p r o p e r t y of t h e h y p e r p l a n e H(z* , y * ) c Z x Y . Let u s p r o v e now (b). By t h e assumptions we have t h a t

Consider now t h e mapping

defined by t h e equality

(18)

By t h e l i n e a r i t y of t h e map J a n d P r o p o s i t i o n 3 . 1 . we h a v e t h a t J ( e p i W,)cY i s a c o n v e x set, a n d t h e r e f o r e i t c a n b e s e p a r a t e d b y a p o s i t i v e f u n c t i o n a l f r o m t h e c o n e J ( - ( M R ) + ( u , y - E ) ) c Y . If we d e n o t e t h i s f u n c t i o n a l b y ~ * E c + a n d t h e n , b y a r e a s o n i n g s i m i l a r to t h e a b o v e , w e o b t a i n t h a t t h e h y p e r p l a n e H ( R * . ~ * , ~ * , < ~ * , ~ + R . U > ) C Z X Y & - s u p p o r t s e p i W , . T h e i n c l u s i o n L ( M ~ ) C H ( R ' . ~ * , 0 ) follows f r o m t h e c o n s t r u c t i o n .

Now we s u m m a r i z e t h e m a j o r r e s u l t s of t h e p r e v i o u s s e c t i o n s i n t h e f o r m of a set of e q u i v a l e n t s t a t e m e n t s .

T h e o r e m 4.1.

C o n s i d e r a n e l e m e n t ( z o , R o ) E A X L + (z,Y). T h e n t h e following s t a t e m e n t s a r e e q u i v a l e n t :

( a ) T h e p a i r ( z o , R o ) ~ A X L + ( z , Y ) i s a n &-saddle p o i n t of t h e L a g r a n g i a n a . ( b ) (P(X,,R~) E E - m i n I@(X,R,) E Y : x E A ]

x, f F

- & + ~ o . g ( z o ) S 0 .

( c ) x o € A i s a n (&-Ro.g (xo))-solution of t h e p r o b l e m (MP) a n d f ( z , ) ~ Y i s a n (E-RO-g ( x O))-maximal p o i n t f o r t h e d u a l p r o b l e m (D, -Ro.g (=,)).

(d) x o € A i s a n ( E - R o . g ( z o ) ) - s o l u t i o n of t h e p r o b l e m (MP) a n d t h e c o n e iURo E- s u p p o r t s e p i W, at t h e p o i n t ( O , f ( x o ) ) .

P r o o f .

The e q u i v a l e n c e of ( a ) a n d (b) i s s t a t e d in T h e o r e m 2.1.

L e t u s c o n s i d e r now t h e i m p l i c a t i o n f r o m ( b ) to (c). T h a t X,EA i s a n (e-RO.g(xo))- s o l u t i o n of t h e p r o b l e m (MP) follows f r o m T h e o r e m 2 . 2 . , a n d b y t h e d e f i n i t i o n of t h e d u a l map t h i s also m e a n s t h a t ~ ( X ~ ) E D , - ~ , . ~ ( ~ ~ . H e n c e T h e o r e m 3 . 2 . c a n b e a p p l i e d a n d t h i s y i e l d s t h e rest. To see t h e r e v e r s e i m p l i c a t i o n w e n o t e f i r s t t h a t f ( x ~ ) E D ~ - ~ o - g ( ~ d i s a r e f o r m u l a t i o n of t h e f i r s t r e l a t i o n of ( b ) . T h e s e c o n d r e l a -

t i o n follows f r o m t h e f a c t t h a t z o € A i s a n ( e - R o - g ( x o ) ) - s o l u t i o n of t h e p r o b l e m ( W ) . To p r o v e t h e l a s t r e l a t i o n we n o t e f i r s t t h a t b y t h e p o s i t i v i t y of R o € L (Z,Y), t h e i n e q u a l i t y R o , g (xo)dO h o l d s . W e a l s o know t h a t

b e c a u s e f ( x o) EY i s a n (&-Ro.g ( x o%maximal e l e m e n t of t h e d u a l p r o b l e m a n d so we

(19)

p r o v e d t h e t h i r d r e l a t i o n , as well.

( c ) implies (d) b e c a u s e t h e i r f i r s t p a r t s a r e i d e n t i c a l a n d t h e s e c o n d p a r t of (d) i s just a r e f o r m u l a t i o n of t h e f i r s t r e l a t i o n i n (b). T h e l a s t p a r t of t h e a r g u m e n t used to p r o v e t h e implication f r o m (b) t o ( c ) shows t h a t (d) also implies ( c ) .

(20)

5. CONCLUSION

In t h i s p a p e r w e d e v e l o p e d t h e a n a l o g u e of t h e d u a l i t y t h e o r y in v e c t o r optimiza- tion, on o n e h a n d , a n d of t h e s c a l a r valued &-duality r e s u l t s , on t h e o t h e r , f o r E -

solutions in v e c t o r optimization. The significance of &-solutions in v e c t o r optimiza- tion a r i s e s from t h e f a c t t h a t optimization a l g o r i t h m s o f t e n p r o d u c e s u c h r e s u l t s i n s t e a d of t h e e x a c t solutions. Using t h e a b o v e t h e o r y we o b t a i n g u i d a n c e in s i t u a - tions when we want t o use d u a l i t y without knowing t h e solutions e x a c t l y . I t a p p e a r s t h a t t h e duality r e l a t i o n s r e m a i n t r u e , in g e n e r a l , b u t we h a v e t o c o p e with s l ~ c h problems as t h e i n c r e a s e of t h e a p p r o x i m a t i o n e r r o r when we start e . g . f r o m s a d - d l e points.

(21)

6 . REFERENCES

KUTATELADZE, S . S . , Convex &-Programming, S o v i e t Mathematical Doklady, Vol. 2 0 , No. 2 , p p . 391-393, 1 9 7 9 .

LORIDAN P . , &-Solutions in Vector Minimizati.on Problems, J o u r n a l of Optimi- z a t i o n T h e o r y a n d Applications, Vol. 43, No. 2 , p p . 265-276, 1 9 8 4 .

VALYI I., A General Maximality Principle a n d a Fixed Point Theorem in Uniform Space, P e r i o d i c a Mathernatica H u n g a r i c a , Vol 1 6 , No. 2 , p p . 127-134, 1 9 8 5 .

WHITE D. J . , E p s i l o n E m c i e n c y , J o u r n a l of Optimization T h e o r y a n d Applica- t i o n s , Vol. 4 9 , No. 2 , p p . 319-337, 1 9 8 6 .

VAL,YI I., Approximate Saddle Point Theorems i n Vector Optimization, J o u r - nal of Optimization T h e o r y a n d Applications, ( t o a p p e a r )

SAWARAGI, Y., NAKAYAMA H., TANINO T., Theory of Multiobjective Optimiza- t i o n , Academic P r e s s , New York, 1 9 8 5 .

STRODIOT J.J., NCUYEN V.H., HEUKEMES, N., &-Optimal S o l u t i o n s in NondiJ- ferentiable Convex Programming a n d Some Related Questions, Mathematical P r o g r a m m i n g , Vol. 2 5 , pp. 307-328, 1983.

VALYI I., S t r i c t Approximate D u a l i t y in Vector Spaces, optimization, ( t o a p - p e a r ) .

LUC D. T., On D u a l i t y Theory in Multiobjective Programming Jour-nal of Op- timization T h e o r y a n d Applications, Vol. 4 3 , No. 4 , pp. 55'7-582, 1 9 8 4 .

JAHN J., D u a l i t y in Vector Optimization, Mathematical P r o g r a m m i n g , Vol. 2 5 , p p . 343-353, 1 9 8 3 .

NAKAYAMA H., Geometric Consideration of D u a l i t y in Vector O p t i m i z a t i o n , J o u r n a l of Optimization T h e o r y a n d Applications, Vol. 44, pp. 625-655, 1 9 8 4 .

Referenzen

ÄHNLICHE DOKUMENTE

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria... INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... SINGULARITY THEORY FOR NONLINEAR

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg... Helpful discussions with

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... ANNA'S LIFX