• Keine Ergebnisse gefunden

Lipschitzian Stability in Optimization: The Role of Nonsmooth Analysis

N/A
N/A
Protected

Academic year: 2022

Aktie "Lipschitzian Stability in Optimization: The Role of Nonsmooth Analysis"

Copied!
23
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Working Paper

IJPSCHITZIAN STABILITY IN OPTJMIZATION:

THE ROLE OF NONSMOOTH ANALYSIS

R. T. RockqfeLLar

September 1986 WP-86-46

International Institute for Applied Systems Analysis

A-2361 Laxenburg, Austria

(2)

NOT FOR QUOTATION

WITHOUT THE PERMISSION OF THE AUTHOR

LZPSCHITZIAN STABILITY IN OPTIMIZATION:

THE ROLE OF NONSMOOTH ANALYSIS

September 1986 WP-86-46

Working Papers are interim r e p o r t s on work of t h e International Institute f o r Applied Systems Analysis and have r e c e i v e d only limited review. Views or opinions e x p r e s s e d h e r e i n d o not necessarily r e p r e s e n t those of t h e Institute or of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

(3)

FOREWORD

This p a p e r i s t h e s u r v e y of r e c e n t developments in nonsmooth analysis and i t s applications t o optimization problems. A t f i r s t t h e motivations of nonsmooth analysis are discussed and concepts of derivative f o r Lipschitzian and lower sem- icontinuous functions are presented. Then t h e concepts of nonsmooth analysis are used t o g e t sensitivity r e s u l t s f o r g e n e r a l nonlinear programming problems and t o c l a r i f y t h e i n t e r p r e t a t i o n of t h e Lagrange multipliers. Promising directions of f u r t h e r r e s e a r c h are indicated.

A. Kurzhanski Chairman System and Decision Sciences Program

(4)

CONTENTS

Abstract Introduction

1 Origins of Subgradient Ideas

2 Lagrange Multipliers and Sensitivity 3 Stability of Constraint Systems References

(5)

7HPSCEIEZIFL,Y

S Y & L ? Z Y

LN

O P T E I Z A T I 3 K :

TEE ROLE OF NONSKO3TH Ahr&YSiS

R.T. Rockafellar'

The motivations of nonsmooth znzlysis a r e ciiscussed. Appiications a r e given t o Line sensitivity of optimal vaiues, t h e i n t e r p r e t a t i o n of i a g r a n g e multipliers, a n d t h e s t a b i i i t y of c o n s t r a i n t systems uncier p e r t u r b n t i o n .

it h a s b e e n r e c o g n i z e d f o r some time t h a t t h e tools of c i a s s i c a l anniysis a r e n o t a d e q u a t e f o r a s a t i s f a c t o r y t r e a t m e n t of problems of optimization. Tnese toois work f o r t h e c h a r a c t e r i z a t i o r , of locaily optimal solutions t o problems w h e r e a smooth (i.e.

continuously d i f f e r e n t i a b l e ) function is minimized o r maximized. s u b j e c t t o finiteiy mar,)' smooth equality c o n s t r a i n t s . They a i s o s e r v e in t h e study of p e r t u r b a t i o n s of such con- s t r a i n t s , namely t h r o u g h t h e implicit function t h e o r e m a n d i t s consequences. A s soon as inequality c o n s t r a i n t s a r e e n c o u n t e r e d , however, t h e y begin t o fail. One-sided d e r i v a t i v e conditions start t o r e p l a c e two-sided conditions. Tangent c o n e s r e p i a c e t a n g e n t s u b s p a c e s . Convexity a n d convexification e m e r g e as more n a t u r a l t h a n l i n e a r - ity a n d linearization.

i n problems w h e r e inequality c o n s t r a i n t s actualiy predominate o v e r equations, as i s t y p i c a l in most modern a p p l i c a t i o n s of optimization, a qualitative c n a n g e o c c u r s . Ko l o n g e r i s t h e r e a n y simple way of recognizing which c o n s t r a i n t s a r e a c t i v e in a neigh- borhood of a given point of tine f e a s i b l e set, s u c h as t h e r e would b e if t h e s e t w e r e z c u b e o r simplex, s a y . The b o u n d a r y of t h e f e a s i b l e set d e f i e s e a s y d e s c r i p t i o n a n d may b e s t b e t h o u g h t of as a nonsmooth h y p e r s u r f a c e . I t d o e s not t a ~ e long t o r e a i i z e t o o t h a t t h e g r a p h s of many of t h e o b j e c t i v e functions which n a t u r a l l y a r i s e a r e nonsmooth in a simirar way. Tnis i s t h e motivation f o r much of t h e e f f o r t t h a t n a s gone i n t o

* Research supported in port b y a grant f r o m t h e Nationai Science Foundation a t t h e U n i v e r s i t y oi Washington, S e a t t i e .

(6)

introducing a n d deveioping v a r i o u s c o n c e p t s of "tangent cone!', "normal cone", "direc- tional d e r i v a t i v e " a n d "generaiized g r a d i e ~ t " . Tnese c o n c e p t s n a v e c n z n g e d t h e f a c e of optimization t h e o r y and given b i r t h t o a new s u b j e c t , nonsxro~th analysis, which is affecting o t h e r areas of matnematics as weil.

An i m p o r t a n t aim of nonsmooth analysis i s the formuiztion of generaiized neces- s a r y o r s u f f i c i e n t conditions f o r optimality. This in t u r n r e c e i v e s impetus frorr.

r e s e a r c h in numerical methods of optimization t h z t invoive nonsinooth functions gen- e r a t e d by decomposition, e x a c t penalty r e p r e s e n t a t i o n s , a n d t h e iike. The idea essen- tiaily i s t o provide tests t h a t e i t h e r establish ( n e a r ) optimaiity ( p e r h a p s s t z t i o n a r i t y ) of t h e point a l r e a d y a t t a i n e d o r g e n e r z t e a f e a s i b i e d i r e c t i o n of improvement f o r mov- ing t o a b e t t e r point.

Sonsmooth a n z i y s i s z i s o h a s o t h e r i m p o r t a n t aims, however, which shouid not b e overlooked. Tnese include t h e s t u d y of sensitivity a n d s t a b i l i t y with r e s p e c t t o p e r t u r - bations of o b j e c t i v e a n d c o n s t r a i n t s . In a n optimization problem t h a t d e p e n e s on a p a r a m e t e r v e c t o r v , now t o v a r i a t i o n s in ' ~ i a f f e c t t h e optimal value, t h e optimzl soln- tion set, a n d t h e f e a s i b l e solution s e t ? Can anything b e s a i d a b o u t rates of c h a n g e ?

This i s w h e r e Lipschitzian p r o p e r t i e s t a k e on s p e c i a l significance. They a r e i n t e r m e d i a t e between continuity and d i f f e r e n t i a b i l i t y a n d c o r r e s p o n z t o bounds on possible r a t e s of c h a n g e , r a t n e r t h a n rates themselves, which may not e x i s t , at l e a s t in t h e c l a s s i c a l s e n s e . Like convexity p r o p e r t i e s t h e y c a n b e passed along t h r o u g h v a r i - ous c o n s t r u c t i o n s w h e r e t r u e d i f f e r e n t i a b i l i t y , e v e n if one-sided, would b e i o s t . F u r t h - e r m o r e , t h e y c a n b e formulated in geometric t e r m s t h a t s u i t t h e s t u d y multifunctions (set-valued mappings), a s u b j e c t of g r e a t importance in optimization t n e o r y b u t f o r which c l a s s i c a l notions a r e aimost e n t i r e l y lacking.

I t i s in t h i s l i g h t t h a t t h e d i r e c t i o n a l d e r i v a t i v e s and s u b g r a d i e n t s introduced by F.H. C l a r k e

[I]

[2] snould b e judged. C l a r k e ' s t h e o r y empnasizes Lipscnitzian p r o p e r - t i e s and s t u r d i l y combines convex anaiysis and c i a s s i c a l smooth a n a i y s i s in a singie framework. A t t h e p r e s e n t s t a g e of development, thanits t o t h e e f f o r t s of many indivi- duals, i t h a s a l r e a d y h a d s t r o n g e f f e c t s on almost e v e r y area of optimization, from non- l i n e a r programming t o t h e c a i c u l u s of v a r i a t i o n s , an^ a l s o on mathematicai questions beyond t h e domain of optimization p e r s e .

This is n o t t o s a y , nowever, t h z t C l a r ~ e ' s d e r i v a t i v e s and s u b g r a d i e n t s are t h e only o n e s t h a t h e n c e f o r t h need t o b e c o n s i d e r e z . S p e c i a l s i t u a t i o n s c e r t a i n l y do r e q u i r e s p e c i a i insignts. i n p a r t i c u i a r , t h e r e a r e cases w h e r e s p e c i a l one-sided f i r s t and second d e r i v a t i v e s t h a t a r e more finely tuned t h a n C i a r k e ' s are worth introducing.

Significant and useful r e s u i t s c a n be oblained. ir, such manner. But s u c h r e s u l t s a r e likely t o b e r e l a t i v e l y limited in s c o p e .

(7)

I ; h e power anC g e n e r a i i t y of t h e kind of nonsmooth anaiysis t h a t i s b a s e d or, C i a r k e ' s i i e a s c a n b e c r e d i t e d t o t h e foliowing f e a t u r e s , in summary:

( a ) Applicability t o a huge c l a s s of functions and o t h e r o b j e c t s , such as sets acd.

mxitifunctions.

(b) Emphasis on geometric c o n s t r u c t i o n s and. i n t e r p r e t a t i o n s .

( c ) Reduction t o c l a s s i c a l analysis in t h e p r e s e n c e of smoot'nness a n d t o convex analysis in t h e p r e s e n c e of convexity.

(d) Unified formulation of optimality conditions f o r a wide v a r i e t y of probiems.

( e ) Comprehensive calculus of s u b g r a d i e n t s a n d normal v e c t o r s which makes pos- s i b l e a n e f f e c t i v e specialization t o p a r t i c u i a r c a s e s .

(f) Coverage of sensitivity and s t a b i l i t y questions and t h e i r r e l a t i o n s h i p t o L a g r a n g e multipliers.

(g) Focus on iocal p r o p e r t i e s of a "uniform" c h a r a c t e r , which are l e s s likely t o b e u p s e t o y slight p e r t u r b a t i o n s , f o r i n s t a n c e in t h e s t u d y of d i r e c t i o n s of d e s c e n t .

(h) Versatility in infinite as well as finite-dimensional s p a c e s a n d in t r e a t i n g t h e

. .

i n t e g r a l functionals and d i f f e r e n t i a i inciusions t h a t a r i s e in optima: c o n r o i , s t o c h a s t i c programming, a n d e i s e w n e r e .

In t h i s p a p e r we a i r , at putting t h i s t'neory in a n a t u r a l p e r s p e c t i v e , f i r s t by dis- cussing i t s foundations in analysis and geometry a n d t h e way t h a t Lipschitzian p r o p e r - t i e s come t o occupy t h e s t a g e . Tnen we s u r v e y t h e r e s u l t s t h a t h a v e b e e n o b t a i n e d r e c e n t l y on sensitivity a n d stability. Such r e s u i t s a r e n o t y e t famiiiar t o many r e s e a r c n e r s who c o n c e n t r a t e o n optimality c o n l i t i o n s and. t h e i r u s e in aigorithms.

N e v e r t h e l e s s t h e y s a y much t h a t b e a r s on numerical m a t t e r s , and t h e y d e m o n s t r a t e well t h e s o r t of challenge t h a t nonsmooth a n a i y s i s i s now a b l e t o meet.

1. CXIGZ<S OF SUBGRADIEhT DEBS

i n o r d e r t o gain a foothold on t h i s new t e r r i t o r y , i t i s b e s t t o begin by thinking a b o u t functions f : Rn

+R

t h a t a r e not n e c e s s a r i l y smooth S x t h a v e s t r o n g one-sided.

d i r e c t i o n a l d e r i v a t i v e s in t h e s e n s e of

Examples a r e ( f i ~ i i e ) convex functions [ 3 ] an6 subsmoctiz functions, t h e i a t t e r being by definition re;reser;table ioca:iy e s

(8)

w n e r e S is a compact s p a c e (e.g., a f i n i t e , d i s c r e t e index s e t ) and ff,

1

s ES

1

i s a family of smooth functions whose vaiues and d e r i v a t i v e s depend continuously on s znd z jointly. Subsmooth functions w e r e i n t r o d u c e d in [4]; a l l smooth functions a n d a l l finite convex functions on

R~

a r e in p a r t i c u l a r subsmooth.

The formula given h e r e f o r f ' ( z ; A ) d i f f e r s from t h e more common one in t h e l i t e r a t u r e , w h e r e t h e iimit A'-A i s omitted (weak one-sided d i r e c t i o n a l d e r i v a t i v e ) . I t corresponcis in s p i r i t t o t r u e ( s t r o n g ) differentiability r a t h e r t h a n weak d i f f e r e n t i a - bility. Indeed, uncier t h e assumption t h a t f ' ( z , h ) e x i s t s f o r a l l h ( a s in (1.1)), one h a s f d i f f e r e n t i a b l e at z if and only if f ' ( z ; h ) i s l i n e a r in A. Then t h e one-sided limit

t

&O i s a c t u a l l y r e a l i z a b l e as a two-sided Limit t -9.

The c l a s s i c a l c o n c e p t of g r a d i e n t a r i s e s from t h e duality between l i n e a r functions on

R n

a n c v e c t o r s in

R n .

To s a y t h a t f ' ( z ; h ) i s l i n e a r in A i s t o s a y t h a t t h e r e i s a v e c t o r y E

R n

with

f ' ( z ; h )

=

y .A f o r a l l A. (1.3)

Tnis y i s c a l l e d t h e g r a d i e n t of f at z a n d i s denoted by Of ( 2 ) .

In a similar way t h e modern c o n c e p t of s u b g r a d i e n t a r i s e s f r o m t h e duality between s u b l i n e a r functions o n

R n

and convex s u b s e t s in

R n .

A function L i s said t o b e s u b l i n e a r if i t s a t i s f i e s

when Al 2 0 ,

. .

,A, 2 0.

I t i s known from convex anaiysis [3, $131 t h a t t h e finite s u b l i n e a r functions L on

R~

are p r e c i s e l y t h e s u p p o r t functions of t h e nonernpty compact s u b s e t s Y of

R n :

e a c h L c o r r e s p o n d s t o a unique I' by t h e formuia

L ( h ) = m a x y . h f o r a l l A.

Y EY

(1.5)

Linearity c a n b e identified with t h e case w h e r e 1' consists of just a single v e c t o r y . I t t u r n s o u t t h a t when f is c o w e x , and more g e n e r a l l y when f is subsmooth [4], t h e d e r i v a t i v e f ' ( z , A ) i s always s u b l i n e a r in A. E e n c e t h e r e is a n o n e n p t y compact s u b s e t Y of

R"

: uniqueiy d e t e r m i n e e , such t h a t

f f ( z ; h ) = m a x p . h f o r a l l h. ( I . 6)

y EY

(9)

This s e t i' i s denoted by

af

( z ) , a n d i t s elements y a r e called s u b g r a d i e n t s of f a t z . With r e s p e c t t o any l o c a i r e p r e s e n t a t i o n (1.4), o n e h a s

Y = c o t V f s ( z ) : s - { , w n e r e S , = a r g m a x f , ( z ) ( I . 7)

s € s

( c o

=

convex hull), b u t t h e set Y

= Zf

( z ) i s of c o u r s e by i t s definition independent of t h e r e p r e s e n t a t i o n used.

In t h e case of f convex [3, $231 o n e c a n define s u b g r a d i e n t s at z equivalently as t h e v e c t o r s y such t h a t

f ( 2 ' ) 2 f ( z )

+

y . ( z f - z ) f o r a l i z'. (1.8)

F o r f subsmooth t h i s g e n e r a l i z e s t o

f ( z f ) 2 f ( z )

+

~ . ( z ' z )

+

o ( j 2'-z i i ), ( I . 9)

b u t caution must b e e x e r c i s e d h e r e a b o u t f u r t h e r g e n e r a l i z a t i o n t o functions f t h z t are not subsmooth. Although t h e v e c t o r s y satisfying (1.9) d o always form a ciosed convex s e t I' at z , r e g a r d l e s s of t h e n a t u r e of f

,

t h i s set

Y

d o e s not yieid a n e x t e n s i o n of formula (1.5), n o r d o e s i t c o r r e s p o n d in g e n e r a l t o a r o b u s t c o n c e p t of d i r e c t i o n a l d e r i v a t i v e t h a t c a n be used as a s u b s t i t u t e f o r f ' ( z ; h ) in (1.6). F o r a number of y e a r s , t h i s i s wnere s u b g r a d i e n t t h e o r y came t o a halt.

A way a r o u n d t h e impasse w a s d i s c o v e r e d by C l a r k e in h i s t h e s i s in 1973. C l a r k e took up t h e study of functions f : Rn + R t n a t a r e l o c a l l y L t p s c h i t z i a n

:n

t h e s e n s e of t h e d i f f e r e n c e quotient

being bounded on some neighborhood, of e a c h point z . This c l a s s of h n c t i o n s i s of i n t r i n s i c value f o r s e v e r a l r e a s o n s . F i r s t , i t includes a l l subsmooth functions and. co2- sequently a l l smooth functions a n d a!! finite convex functions; i t a l s o inciudes a l l f i n i t e c o n c a v e functions a n d a l l f i n i t e saddie functions (which a r e convex in o n e v e c i o r a r g u - n e s t and. c o n c a v e in a n o t h e r ; see [3, $351). Second, i t is p r e s e r v e d u n d e r taking l i n e a r combinations, pointwise maxima and minima of coliections of functions (with c e r t z i n mild assumptions), i n t e g r a t i o n nnd o t h e r o p e r a t i o n s of ob-.:ious i m p o r t a n c e in optimiza- tion. ThirC, i t e x h i b i t s p r o p e r t i e s that a r e closely r e l a t e d t o differentiabiLity. T h e loczl b o ; l n d e ~ n e s s of t h e d i f f e r e n c e quotient (1.12) is such z p r o p e r t y i t s e l f . In f a c t when f i s iocoi!:: Lipschitzinc, t h e gra2ier.t Cf ( z ) e x i s t s f o r aii S c t z negiigi'zie set of points z ir. R n ( t h e c i a s s i c a l theorern of Xzdemacher, s e e

51).

(10)

C l a r k e d i s c o v e r e d t h a t wnen f is ioczlly Lipscnitzian, t h e s p e c i a l d e r i v a t i v e expressior.

i s always a f i n i t e s u b i i n e a r function of h . Hence t h e r e e x i s t s a unique nonempty com- p a c t convex set

Y

s u c h t h a t

f " ( ~ ; h ) = m a x y . h f o r a l l h.

Y EY

Moreover

Q " ( x ; h )

=

f ' ( z ; h ) f o r a:i h when f i s subsmooth. (1.13)

Thus in denoting t h i s s e t 'I' by

af

( x ) and cailing its elements s u b g r a d i e n t s , o n e a r r i v e s at c n a t u r a l e x t e n s i o n of nonsmooth a n a l y s i s t o t h e c i a s s of a l l locally Lipschitzizn functions. Many powerful f o r m ~ l a s z n 6 r u i e s h e v e b e e n e s t a b l i s h e d f o r caiculating or estimating L3f ( x ) in t h i s b r o a d c o n t e x t , b u t i t is n o t o u r aim t o go into them h e r e ; see [2] a n d [ S ] , f o r instance.

I t should b e mentioned t h a t C l a r k e himself did not i n c o r p o r a t e t h e limit h f + n i n t o t h e definition of f " ( z ; h ) , b u t b e c a u s e of t h e Lipschitzian p r o p e r t y t h e value obtained f o r f " ( z ; h ) i s t h e same e i t h e r way. By writing t h e formuia with h '+n o n e is a b l e t o s e e more c l e a r l y t h e r e l a t i o n s h i p between f " ( x ; h ) a n d Q ' ( x ; h ) a n d a l s o t o p r e p a r e t n e ground f o r f u r t h e r e x t e n s i o n s t o functions Q t h a t a r e mereiy lower sem- icontinuous r a t h e r t h a n Lipschitzian. (For s u c h functions o n e w r i t e s x ' -f z in p i a c e of x'

-

x t o i n d i c a t e t h a t x i s t o b e a p p r o a c h e d by x' only in s u c h a way t h a t f ( s f ) -+ Q ( x ) . More will b e said a b o u t t h i s i a t e r . )

Some p e o p l e , naving gone aiong with t h e developments up until t h i s point, begin t o balk a t t h e " c o a r s e " n a t x r e of t h e C l a r k e d e r i v a t i v e f " ( z ; i L ) in certair; c a s e s w h e r e f is not subsmooth and n e v e r t h e l e s s i s being minimized. F o r exampie, if

/ I I

f ( x )

= -

z i 1 l2 one h z s f O(S;h j

=

! h I, w h e r e a s f ' ( C ; h ) e x i s t s t o o b u t

I I

f '(9;i;)

= -

h . Thzs f ' r e v e a i s t h a t e v e r y h +O gives a d i r e c t i o n of d e s c e n t f r o x 0 , in t h e s e n s e of yie!tin,n f '(C;n)<O, b u t f " r e v e z i s no such thing, inasmuch as f " ( 3 ; h )

>

3. Becznse of t h i s i t is f e a r e d t h a t f O does not embody zs muck i n f o ~ m a t i o r : as f ' anci t h e r e f o r e may n o t b e eaiire'ly s u i t a b l e f o r t h e statement of n e c e s s a r y condi- tions f o r a minimur,, i e t alone for e m ~ i n y m e n t ir; aigoritnms of d e s c s n t .

(11)

Clearly f " cannot repLace f ' in e v e r y situation where t h e two may d i f f e r , n o r k a s t h i s e v e r been suggested. E u t even in f a c e of this c a v e a t t h e r e a r e zrguments t o b e made in f z v o r of f O t h a t may heip t o iliumilnate its n a t u r e a n e t h e sxpporting motiva- tion. The Ciarke derivative f O i s o r i e n t e d towards minimizztion probiems, in c o n t r n s t t o f ', which is n e u t r a i between minimization and mzxinizztior,. 1;: n?ditior,, it.

emphasizes a c e r t a i n uniformity. A v e c t o r

n

witk f " ( x ; h )

<

C provides a d e s c e n t direction in a s t r o n g s t a b l e sense: t h e r e i s a n E

>

0 such t h a t f o r all z ' n e a r z , h' n e a r h , and positive t n e a r 0 , one has

f ( z ' f t h ' )

<

f ( z ' )

- t ~ .

A v e c t o r h with f '(z;h)

<

0 , or, t h e o t h e r hand, provides descent oniy from x ; at points x ' a r b i t r a r i l y n e a r t o z i t may give a direction of a s c e n t instead. This instabil- ity is not without numericai consequences, since z might b e r e p i a c e d by z' b e t o round-of f

.

An algorithm t h a t r e l i e d on finding a n h with f ' ( x ; h )

<

0 in c a s e s where f " ( x ; h ) 2 0 f o r ail h (such an x is said t o b e s u b s t a t i o n a r y point) seems unlikely t o b e v e r y r o b u s t . Anyway, i t must b e realized. t h a t in executing a method of descent t h e r e is v e r y little c h a n c e of actually a r r i v i n g aiong t h e way at a point x t h a t is subs- tationary but not a local minimizer. One is easily convinced from examples t h a t such 2

mishap can oniy be t h e consequence of an unfortunate cnoice of t h e s t a r t i n g point and d i s a p p e a r s under t h e slightest p e r t u r b a t i o n . The situation resembles t h a t of cycling in t h e simplex method.

F u r t h e r m o r e i t must b e understood t h a t because of t h e orientation of t h e defini- tion of f o towards minimization, t h e r e is no justice in holding t h e notion of substa- tionarity up t o any i n t e r p r e t a t i o n o t h e r t h a n t h e following: a substationary point is e i t h e r a point where a locai m i n i m u m is attained o r one where p r o g r e s s towards a local minimum is "confusedv. Sometimes, f o r instance, one n e a r s cited a s a failing of f o t h a t f ' is a b l e t o distinguish between a iocal minimum and a local maximum in having f ' ( x ; h ) 2 0 f o r all h in tine f i r s t c a s e , but f ' ( x ; h )

s

0 f o r ail ir ir, t h e second, whereas f " ( z ; h ) r 0 f o r all h in both cases. But t h i s is unfair. A one-sided orientation in nonsmooth anaiysis is merely a r e f l e c t i o n of t h e f a c t t h a t in virtually all applications of optimization, t h e r e is unambiguous i n t e r e s t in e i t h e r maximization o r minimization, but not both. For t h e o r e t i c a l p u r p o s e s i t might as well b e minimization.

Certainly t h e idea t h a t a f i r s t - o r d e r concept of derivative, such as we a r e dealing with h e r e , i s obliged t o provide conditions t h a t distinguish effectively between 2 Local minimum and a local maximum i s out of line f o r o t h e r reasons. Classical anaiysis maites no attempt in t h a t d i r e c t i o n , without second derivatives. Presumably: second

(12)

d e r i v a t i v e c o n c e p t s in nonsmooth analysis will eventually f u r n i s h t h e a p p r o p r i a t e ais- tinctions, c f . Chaney

[?I.

A final n o t e o n t h e question of f a v e r s u s f' i s t h e r e m i n d e r t h a t f " ( x ; h ) i s defined f o r any locally Lipschitzian funciion f and even more g e n e r a l l y , w h e r e a s f ' ( x ; h ) i s only defined f o r functions f in a n a r r o w e r c l a s s .

An important goal of nonsmooth analysis i s not only t o make full u s e of Lipschitz continuity when i t i s p r e s e n t , b u t a l s o t o p r o v i d e c r i t e r i a f o r Lipschitz continuity in c a s e s where i t c a n n o t b e known a p r i o r i , along with c o r r e s p o n d i n g e s t i m a t e s f o r t h e local Lipschitz c o n s t a n t . F o r t h i s p u r p o s e , i t i s n e c e s s a r y t o e x t e n d s u b g r a d i e n t t h e o r y t o functions t h a t might n o t b e locally Lipschitzian o r e v e n continuous e v e r y - w h e r e , b u t merely lower semicontinuous. Fundamental examples of s u c h functions in optimization are t h e so-called m a r g i n a l functions, which give t h e minimum value in a p a r a m e t e r i z e d problem as a function of tine p a r a m e t e r s . Such functions c a n e v e n t a k e on cm.

E x p e r i e n c e with convex a n a l y s i s a n d i t s a p p l i c a t i o n s shows f u r t h e r t h e d e s i r a b i l - ity of being a b l e t o treat t h e i n d i c a t o r functions of sets, which p l a y a n e s s e n t i a l r o i e iri t h e p a s s a g e between analysis a n d geometry.

In f a c t , t h e i d e a s t h a t h a v e b e e n d e s c r i b e d s o f a r c a n b e extended. in a powerful, consistent manner t o t h e c l a s s of a l l lower semicontinuous functions f :

R n -, R ,

w h e r e

R - =

[-=,-I (extended r e a l number system). T h e r e are two compiementary ways of doing t h i s , with t h e same r e s u l t . In t h e continuation of t h e a n a l y t i c a p p r o a c h w e h a v e b e e n following until now, a m o r e s u b t l e d i r e c t i o n a i d e r i v a t i v e formula

i s introduced and shown t o a g r e e with f " ( z ; h ) whenever f i s locally Lipschitzian a n d indeed whenever f " ( z ; h ) (in t h e e x t e n d e d definition with x ' J ~ Z , as mentioned ear- l i e r ) i s not

+-.

Moreover f ' ( z ; h ) i s p r o v e d always t o b e a lower semicontinuous, sub- l i n e a r function of h (extended-real-valued). From convex analysis, t h e n , i t follows t h a t e i t h e r f '(z;O)

= --

o r t h e r e i s a nonempty closed convex set Y CRn, uniquely determined, witin

f ' ( z ; h )

=

s u y - h f o r a l l h .

't

Y E

T l a i s ' i s t h e a p p r o a c h followed in R o c k a f e l l a r [8], [9]. One t h e n a r r i v e s at t h e c o r r e s p o n d i n g geometric c o n c e p t s by taking f t o b e t h e i n d i c a t o r 6C of a cioseG set C . F o r any z E C , t h e functior, h 4 6 ; ( z l k ) is :tself t'ne i n d i c a t o r of z c e r t a i n ciosed s e t

(13)

T C ( z ) which h a p p e n s aiways t o b e a convex c o n e ; t h i s is t h e Clarite t a n g e n t c o n e t o C at x . The suhgraciient set

on t h e o t h e r h a n d , is a ciosed convex s e t t o o , t h e C l a r k e n o r m a l c o n e t o C t o x . The two c o n e s a r e p o l a r t o e a c h o t h e r :

In a more g e o m e t r i c a p p r o a c h t o t h e d e s i r e d extension, t h e t a n g e n t c o n e T C ( z ) a n d normal c o n e NC(z) c a n f i r s t b e defined in a d i r e c t manner t h a t accorcis with t h e p o l a r i t y r e i a t i o n s (1.16). Then f o r a n a r b i t r a r y lower semicontinuous function f :

R" +R -

a n d point x at which f i s ? k i t e , o n e c a n f o c u s on TE(z, f ( z ) ) and NE(x ,f ( x ) ) , w h e r e E i s t h e e p i g r a p h of f (a closed s u b s e t of

R n

+I). The c o n e TE ( z , f ( x ) ) i s itself t h e e p i g r a p h of a c e r t a i n function, nameiy t h e s u b d e r i v a t i v e h '4

f '(x ;h), w h e r e a s t h e c o n e NE ( x , f ( z ) ) p r o v i d e s t h e subgradients:

Tine p o l a r i t y between TE (x , f ( z )) a n d NE ( z , f ( z )) yieids t h e subderivative-subgraciient r e l a t i o n (1.14). ( C l a r k e ' s original extension of i3f t o lower semicontinuous functions

[I]

followed t h i s g e o m e t r i c a p p r o a c h in defining normal c o n e s d i r e c t l y a n d t h e n invok- ing (1.17) as a definition f o r s u b g r a d i e n t s . He did n o t f o c u s much o n t a n g e n t c o n e s , however, o r p u r s u e t h e idea t h a t TE (x , f (x )) might c o r r e s p o n d t o 2 r e i a t e d c o n c e p t of d i r e c t i o n a l d e r i v a t i v e . )

The d e t a i l s of t h e s e equivaient forms of extensior, need n o t occupy u s h e r e . The main thing t o u n d e r s t a n d i s t h a t t h e y yield a b a s i c c r i t e r i o n f o r Lipschitzian con- tinuity, as follows.

TEEOREM 1 ( R o c k a f e l i a r [lo]). For a Lower s e m i c o n t i n u o u s f u n c t i o n f : Rn ->h'

-

actuaLLy t o be L i p s c n i t z i a n o n some n e i g h b o r h o o d of t n e p o i n t z , i t i s sufficierct ( a s weLL as n e c e s s a r y ) t n a t t n e s z b g r a d i e n t s e t

af

(z) be rconempty a n d b o u n d e d . T h e n o n e has

f ( x " > - f ( , - ' 1

-

I I

iim s a y r -r *

-

"

_..

* '

-

Y rriax E s f ) y ..

(14)

Tnis c r i t e r i o n c a n b e a p p l i e 2 without e x a c t ~ n o w i e d g e of

Bf

( x ) b u t only ar, esti- mate t h a t

4

f Gf ( z ) C I' f o r some s e t Y. If Y i s boundec, one may conciude t h a t f is locally i i p s c h i t z i a n around. x . if i t is known t h a t y

< X

f o r a i l y EY, o n e h a s from (1.19)

j f (z")

-

f (2') ! S X ~ X ' ~ - X ~ ! f o r Z ' a n d x" n e a r z.

2. LAGRANCE KULTPLIERS

AND

SENSITIVITY

Many ways h a v e been found f o r cieriving optimzLity conciitions f o r probiems with c o n s t r a i n t s , b u t not a l l of them p r o v i d e full information a b o u t t h e L a g r a n g e multipliers t h a t are obtained. The test of a good method i s t h a t i t should l e a d t o some s o r t of i n t e r p r e t a t i o n of t h e multiplier v e c t o r s in t e r m s of sensitivity o r g e n e r a l i z e d rates of c h a n g e of t h e optimal value in t h e problem with r e s p e c t t o p e r t u r b a t i o n s . Unti! q u i t e r e c e n t l y , a s a t i s f a c t o r y i n t e r p r e t a t i o n along s u c h lines w a s a v a i l a b l e only f o r convex programming a n d s p e c i a l c a s e s of smooth nonlinear programming. Now, however, t'nere a r e g e n e r a l r e s u l t s t h a t a p p l y t o a l l kinds of probiems, a t l e a s t in R n . These r e s u l t s d e m o n s t r a t e well t h e power of t h e new nonsmooth analysis and a r e n o t matched b y any- thing achieved by o t h e r techniques.

Let u s f i r s t c o n s i d e r a nonlinear programming probiem in i t s canonical p a r a m e t e r - izatior,:

( p ,

>

minimize g (z ) s u b j e c t t o x E K a n d gi ( z ) + u i 5 0 f o r -I =l,

...,

r ,

=

!If o r i =s+l,

...,

m ,

w h e r e g ,gl,...,gm are iocally Lipscnitzinn f ~ n c t i o n s on R n znd K i s a closed s u b s e t of R n ; t h e ui ' S are p a r a m e t e r s and. form a v e c t o r u ERm. Q y anniogy with what i s known in p a r t i c u l a r c a s e s of (P,), o n e can formulate t h e p o t e n t i a l optimality condition on a f e z s i b l e solution z , namely t h a t

m m

0 E a g ( z )

+ t i

=iyi Bgi ( x )

+

N K ( x ) with yi 2 0 and yiLgi

( z ) - u i l =

0 f o r i = i ,

...,

s ,

a n d a corresponciing constraint qualification at x

t h e only v e c t o r y = ( y ;,

. . .

, y,) satisfying t h e version of (2.1) in which t h e term 6g (z) i s omitted is p =C.

(15)

. .

In s m o o t h p r o g r a m m i n g , w h e r e t h e f u n c t i o n s g , g l ,

. . .

, g , are ail cont.~i~uo;;z!)r d i f f e r e n t i a b l e a n d t h e r e i s n o a b s t r a c t c o n s t r a i n t z E K , t h e f i r s t r e l a t i o n i n (2.1) r e d u c e s t o t n e g r a d i e n t e q u a t i o n

0 = Vg ( z )

-+ C E l y i

t g i ( z ) ,

a n d o n e g e t s t h e c l a s s i c a l Kuhn-Tucker conditions. T h e c o n s t r a i n t q u a l i f i c a t i o n i s t h e n e q u i v a l e n t (by d u a l i t y ) t o t h e well known o n e of M a n g a s a r i a n a n d Fromovitz.

In c o n v e z p r o g r a m m i n g , w n e r e g , g l , ...,g, a r e ( f i n i t e ) c o n v e x f a c t i o n s , g, + l , . . . , g , are a f f i n e , a n d K i s a c o n v e x set, condition (2.1) i s a l w a y s s u f f i c i e n t f o r optimality. U n d e r t h e c o n s t r a i n t q u a l i f i c a t i o n (2.2), which in t h e a b s e n c e of e q u a l r t y c o n s t r a i n t s r e d u c e s t o t h e Slater c o n d i t i o n , i t i s also n e c e s s a r y f o r o p t i m a l i t y .

F o r t h e g e n e r a l case of (P,) o n e h a s t h e following r u i e a b o u t n e c e s s i t y .

THEOREM 2 ( C l a r k e [ I l l ) . S u p p o s e z is a LocaLLy optimaL s o L u t i o n to

(F,)

a t w h i c h t h e c o n s t r a i n t q u a L i f i c a t i o n (2.2) is s a t i s f i e d . T h e n t h e r e is a muLtipLier v e c t o r y s u c h that t h e o p t i m a L i t y c o n d i t i o n (2.1) is s a t i s f i e d .

This i s n o t t h e s h a r p e s t r e s u l t t h a t may b e s t a t e d , a l t h o u g h i t i s p e r h a p s t h e sim- p l e s t . C l a r k e ' s p a p e r [ll] p u t s a p o t e n t i a l l y s m a i l e r set in p i a c e of N K ( z ) a n d p r o v i d e s a l o n g s i d e of (2.2) a less s t r i n g e n t c o n s t r a i n t q u a l i f i c a t i o n in terns of "caimness" of (P,) with r e s p e c t t o p e r t u r b a t i o n s of u . H i r i a r t - U r r u t y [12] a n d R o c k a f e l l a r [13]

c o n t r i b u t e s o m e a l t e r n a t i v e ways of writing tine s u j g r a d i e n t r e l a t i o n s . F o r o u r F u r - p o s e s h e r e , let i t s u f f i c e t o mention t h a t T h e o r e m 2 r e m a i n s t r u e when t h e optimality condition (2.1) i s given in t h e s l i g h t l y s h a r p e r a n d m o r e e i e g a n t f o r m :

0 E a g ( z )

+

y a G ( z ) + N K ( z ) with y € N C ( G ( z ) i u ) ,

w h e r e G ( z )

=

( g l ( z ) , . . . , g , ( z ) ) a n d

C = ~ W ~ ~ / W ~ S O f o r i = L ,..., s and wi=O f o r - I = s + l ,

...,

m ] . (2.4)

T h e n o t a t i o n 5 G ( z ) r e f e r s t o C l a r k e ' s g e n e r a l i z e d J a c o b i a n [2] f o r t h e mapping G ; o n e h a s

(16)

Theorem 2 h a s t h e shining v i r t u e of combining t h e n e c e s s a r y conditions f o r smooth programming and. t h e o n e s f o r convex programming into a single statement. Moreover i t c o v e r s subsmooth programming a n d much m o r e , a n d i t aliows f o r a n a b s t r a c t con- s t r a i n t in t h e form of x K f o r a n a r b i t r a r y ciosed set K. Formuias f o r caiculating t h e normal c o n e NK(x) in p a r t i c u l a r c a s e s c a n t h e n b e used t o a c h i e v e additional s p e - c ializations.

W'nat Theorem 2 d o e s n o t d o i s p r o v i d e any i n t e r p r e t a t i o n f o r t h e muitipliers y i . In o r d e r t o a r r i v e at such a n i n t e r p r e t a t i o n , i t i s n e c e s s a r y t o look m o r e ciosely zi t h e p r o p e r t i e s of t h e marginai function

p ( u )

=

optimai value (infimum) in(P, ). (2.6)

Tinis i s a n extended-real-valued function on R m which i s lower semicontinuous when t h e following mild i n f - b o u n d e d n e s s c o n d i t i o n is fulfilled:

F o r e a c h

2L

€ R m , a c R a n d E > 0 , t n e s e t o f ali x K (2.7) satisfying g ( x )

s

c , g i ( x ) 5 u i

-

+ E f o r i

=I, ..

. , s , a n d

u i

-

-E 5 gi ( 2 ) 5

Gi

+& f o r i =S

+I, ...,

m , i s bounded in R n .

This condition a l s o implies t h a t f o r e a c h u with p ( u )

<

(i.e. with t h e c o n s t r a i n t s of (P,) c o n s i s t e n t ) , t h e set of all (globally) optimal solutions t o (P,) i s nonempty and com- p a c t .

In o r d e r t o state t h e main g e n e r a l r e s u l t , w e let

Y(u )

=

set of aii multiplier v e c t o r s y t h a t s a t i s f y (2.1) f o r some optimal soiution x t o (P, ).

THEOREM 3 ( Z o c k a f e l l a r r13-j). S u p p o s e t h e i n f - b o u n d e d n e s s c o n d i t i o n (2.7) i s s a t i s f i e d . Let u be s u c h t h a t t h e c o n s t r a i n t s of (P,) a r e c o n s i s t e n t and e v e r y o p t i m a l s o l u t i o n x to (P,) s a t i s f i e s t h e c o n s t r a i n t q u a l i f i c a t i o n (2.2). Then 8 p ( u ) is a n o n e m p t y compact s e t w i t h

8 p ( u ) ~ c o Y ( u ) and e x t a p ( u ) c Y ( u ) . (2.9)

(where "ext" d e n o t e s e z t r e m e points]. In p a r t i c u l a r p is Locally L i p s c h i t z i a n a r o u n d u w i t h

(17)

p 0 ( u ; h ) S s u p y . h f o r a l l h.

Y EY(u )

I I

I n d e e d , a n y

X

s a t i s f y i n g ' y i

< X

f o r a l l y EY(u) s e r v e s as a l o c a l L i p s c h i t z ccn- s t u n t :

I

i p ( u " ) p ( u ' ) is h !u"-ii'l w h e n u ' a n d u " a r e n e a r u. (2.11)

F o r smooth programming, t h i s r e s u l t was f i r s t proved. by Cauvin [14]. S e demon- s t r a t e 2 f c r t h e r t h z t when (P,) h a s a unique optimal solution z , f o r which t h e r e i s a unique multiplier v e c t o r y , s o t h a t Y ( u )

=

y j , t h e n actually p i s d i f f e r e n t i a b l e at u with V p ( u ) = y

.

F o r convex programming one knows ( s e e [3]) t h a t ap ( u )

=

'17(u ) always ( u n d e r o u r inf-boundedness assumption) a n d consequently

Minimax formulas t h a t give p f ( u ; k ) in c e r t a i r . c a s e s of smooth programming w h e r e 'IP(u) i s not just a singleton car, b e f o r exampie found, in Demyanov znd Yaiozemov ;:5] a n d Rocirafeliar [IS]. Aside from s u c n s p e c i a l csses t h e r e a r e no formxias iznowr, f o r p f ( u ; n ) . S e v e r t h e l e s s , Theorem 3 d o e s p r o v i d e z n e s t i m a t e , b e c z c s e p ' ( u ;h ) I p "(21 ;i; ) whenever p ' ( u ; h ) e x i s t s . ( i t i s i n t e r e s t i n g t o n o t e in t h i s cor,nec- tion t h a t b e c a u s e p i s Lipscnitzian a r o u n d u by Theorem 3, i t i s actua!!y d i f f e r e n t i a b l e aimost e v e r y w h e r e a r o u n d u by R a a e m a c h e r ' s theorem.)

Theorem 3 h a s r e c e n t l y b e e n b r o a d e n e d in [ 6 j t o include more g e n e r a l kines o i p e r t u r b z t i o n s . Consider t h e p a r a m e t e r i z e d problem

(Qv

>

minimize f (v ,z ) o v e r a l i z satisfying

F ( v , z )

c

C a n 6 (v , z ) E D ,

where v i s a p a r a m e t e r v e c t o r in R d , t i e functions f : Rd x Rn -R and F: Rd x Rn -Rm a r e locally Lipschitzian, a n d t h e s e t s C cRm a n 6

D c

R d xRn a r e closed. H e r e C couid b e t h e c o n e in (2.4), in which e v e n t t h e c o n s t r a i n t F ( v ,,-) E C would r e d u c e t o

f i ( 2 , ~ ) I 0 f o r i =l, ..., S ,

=

0 f o r i =s

+I, ...,

m ,

b u t t n i s c h o i c e of C i s n o t r e q u i r e d . The condition ( v ,z j E

D

may e q u i v a i e z t ! ~ 5 e writ- t e n as z E I'(v), where F is tile ciosed multifunction whose g r a p h is D. I t r e p r e s e n t s t h e r e f o r e a n a b s t r a c t c o n s t r a i n t t h a t c a n v a r y with v . A fixed z c s t r a c t c o n s t r a i n t

(18)

x E K c o r r e s p o n d s t o r ( v ) = K , D = R d X K .

In t h i s m o r e g e n e r a l s e t t i n g t h e a p p r o p r i a t e optimality condition f o r a f e a s i j l e solution x t o ( 9 , ) i s

f o r some y a n d z with y m c ( F ( v , x ) ) ,

and t h e c o n s t r a i n t qualification i s

t h e oniy v e c t o r p a i r ( y ,z ) satisfying t h e v e r s i o n of ( 2 . 1 3 ) in which t h e t e r m af ( v , z ) i s omittee is ( y ,z ) = ( 0 , 0 ) .

TIYEOREI! 4 ( R o c k a f e l l a r [ 6 , $81). S u p p o s e t n a t x is a l o c a l l y o p t i m a l s o l u t i ~ n to (9,) a t w h i c n t h e c o n s t r a i n t q u a l i f i c a t i o n ( 2 . 1 4 ) is s a t i s f i e d . Then t h e r e i s a m u l t i p l i e r p a i r ( y ,z) s u c h t h a t t h e o p t i m a l i t y c o n d i t i o n ( 2 . 1 3 ) i s s a t i s f i e d .

Theorem 4 r e d u c e s t o t h e v e r s i o n of Theorem 2 having ( 2 . 3 ) in p l a c e of ( 2 . 1 ) when

( Q , ) i s t a k e n t o b e of t h e form

( P )

namely when

f ( v , x ) = g ( x ) , F ( v , x ) = G ( x ) + v , D = R m Y. K ( R ~ = R ~ ) , anci C is t h e c o n e in ( 2 . 4 ) . F o r tine c o r r e s p o n d i n g v e r s i o n of Theorem 3 in terms of tine marginal function

q ( v )

=

optimal value in (Q, ) , ( 2 . 1 5 )

w e t a k e inf-boundeaness t o mean:

F o r e a c h

-7 md

: a ER a n d E >0, t h e set of a!; z satisfying f o r some v wiik

!

v

-C !

5 E

t h e c o n s t r s i n t s F ( v , x ) EC, ( v , z ) E D , and having f ( v ,z) 5 a, i s bounded in

R n

Again: t h i s p r o p e r t y e n s u r e s t h a t q i s lower semicontinaous, and t h n t f o r e v e r y 2; f o r which t h e c o n s t r a i n t s of ( Q , ) a r e c o n s i s t e n t , t h e set of optimai soiutions t o ( Q , ) i s nonempty and compact. Let

Z ( v )

=

set of a l l v e c t o r s z t h a t s z t i s f y t h e multiplier ( 2 . : 7 )

(19)

-

15 -

condition (2.13) f o r some optimal solution z t o (Q,) and v e c t o r y .

THEOREX 5 (Rockafellar i6, $81). Suppose t h e i n f - b o u n d e d n e s s c o n d i t i o n (2.16) i s s a t i s f i e d . Let v be s u c h t h a t t n e c o n s t r a i n t s of (Q,) are c o n s i s t e n t a n d e v e r y optimal s o l u t i o n z to (Q,) s a t i s f i e s t n e c o n s t r a i n t quaLifzcation (2.14). Ther, B q ( v ) i s a n o n e m p t y compact set w i t h

Bq(v) c c o Z ( v ) a n d e x t 6 q ( v ) c Z ( v ) . (2.18)

I n p a r t i c u l a r q i s Locally L i p s c h i t z i a n a r o u n d v w i t h q 0 ( 2 ; ; h ) I s u p z - h for all n.

z E Z ( V )

, 8

A n y A s a t i s f y i n g i z i

<

h for aLL z E Z ( v ) serves a s a Local L i p s c h i t z c o n s t a n t : : q ( v " ) - q ( v ' ) ~ ~ h l v " - - v r ; w h e n v ' a n d v " a r e n e a r v. (2.20)

The g e n e r a l i t y of t n e c o n s t r a i n t s t r u c t u r e in Theorem 5 will make possibie in t h e n e x t section a n application t o t h e study of multifunctions.

3. STABILITY OF CONSTRkr'NT SYSTEKS

The sensitivity r e s u l t s t h a t h a v e just been p r e s e n t e d are c o n c e r n e d with wnat h a p p e n s t o t h e optimal vaiue in a probiem when p a r a m e t e r s v a r y . I t t u r n s o u t , though, t h a t they car, be applied t o t h e study of what h a p p e n s t o t h e f e a s i b l e solution s e t and t h e optimal solution s e t . In o r d e r t o explain t h i s and indicate t h e main r e s u l t s , w e must c o n s i d e r t h e kind of Lipschitzian p r o p e r t y t h a t p e r t a i n s t o multifunctions (set-valued mappings) and t h e way t h a t t h i s car, b e c h a r a c t e r i z e d in t e r m s of a n a s s o c i a t e d dis- t a n c e function.

Let

Y: R d 3"

b e a closed-valued multifunction, i.e. r ( v ) i s f o r e a c h 2; E

R d

a closed s u b s e t of

R n ,

possibly empty. The motivating exampies a r e , f i r s t , r ( v ) t z k e n t o b e t h e s e t of a l l f e a s i b l e soiutions t o t h e pnrameterized optimization problem

(9,)

a b o v e , and s e c o n i , ? ( v ) t a k e n t o b e t h e s e t of a l l optimal s o i ~ t i o n s t o (Q,).

One s a y s t h a t r ( v ) i s Locally L i p s c h i t z i a n arocr.6 2; if f o r a i l 2;' arid v " irl some neighborhood of v one h a s T(z; ') an2 T(v ") nonempty and bounded with

(20)

f i e r e B d e n o t e s t h e cioseci unit ball in Rn and

X

i s a Lipschitz c o n s t a n t . This p r o p e r t y c a n b e e x p r e s s e d equivalently by means of t h e c l a s s i c a l Hausdorff m e t r i c on t n e s p a c e of a l l nonempty compact s u b s e t s of Rn :

h a u s ( r ( v "), r ( v ')) 5

X !

v " -u '

i

when v ' a n d v " a r e n e a r v . (3.2)

I t is i n t e r e s t i n g t o n o t e t h a t t h i s i s a "differential" p r o p e r t y of s o r t s , inasmuch as it d e a l s with rates of c h a n g e , o r at l e a s t bounds o n s u c h rates. Until r e c e n t l y , however, t h e r e h a s n o t b e e n any v i a b l e p r o p o s a l f o r "differentiation" of

r

t h a t might b e associ- a t e d with i t . A c o n c e p t investigated by Aubin [I71 now a p p e a r s promising as a candi- d a t e ; see t h e end of t h i s s e c t i o n .

Two o t h e r definitions a r e needed. The multifunction

r

i s l o c a l l y b o u n d e d at v if t h e r e i s a neighbornood V of v a n d a bounded set S cRn s u c h t h a t r ( v ') cS f o r a l l V ' E V . I t i s closed at v if t h e e x i s t e n c e of s e q u e n c e s ivk

1

and izk

!

with v k 4 0 , zk E r ( v k ) a n d z k -+z impiies z ~ r ( v ) . Finaily, w e i n t r o d u c e f o r

7

t h e d i s t a n c e f u n c t i o n

d r ( v , w )

=

d i s t ( r ( v ) . ~ . )

=

min - z -zu

.

I Er(v )

The following g e n e r a l c r i t e r i o n f o r Lipschitz c ~ n t i n u i t y c a n t h e n b e s t a t e d .

THEOREM 6 ( R o c k a f e l l a r [ 1 8 ] ) . The m u l t i f u n c t i o n

r

i s l o c a l l y L i p s c h i t z i a n a r o u n d v i f a n d o n l y i f

r

i s closed a n d l o c a l l y b o u n d e d at v w i t h r ( v )

+ 6 ,

a n d i t s d i s t a n c e f u n c t i o n d i s l o c a l l y L i p s c h i t z i a n a r o u n d ( v ,z ) f o r e a c h x c F(v ).

The c r u c i a l f e a t u r e of t h i s c r i t e r i o n i s t h a t i t r e d u c e s t h e Lipschitz continuity of

I?

t o t h e Lipschitz continuity of a function d r which i s actually t h e marginal function f o r a c e r t a i n optimization problem (3.3) p a r a m e t e r i z e d by v e c t o r s v a n d w

.

This p r o b - lem f i t s t h e mold of

(Q,),

with v r e p i a c e d by ( v , w ) , and i t t h e r e f o r e comes uncier t h e c o n t r o l of Theorem 5: in a n adapted. f o r m . One is r e a d i l y a b l e by t h i s r o u t e t o cierive t h e following.

TKEOREK 7 ( R o c k a f e i l a r [18]). Let

I?

be t h e m u l t i f u n c t i o n t h a t a s s i g n s t o e a c h v E R d t h e set of a l l feasible s o l u t i o n s to problem ( 8 , ) :

r ( z i )

=

{ Z ! ~ ( v , z ) E C a n d ( v , z ) E

D f .

(3.4)

(21)

S u p p o s e for a g i v e n v t h a t

r

i s Locally b o u n d e d a t z:, a n d t h a t r ( v ) i s n o n e m p t y w i t h t h e c o n s t r a i n t q u a l i f i c a t i o n (2.14) s a t i s f i e d b y e v e r y x c r ( z ; ) . T h e n

r

i s l o c a l l y L i p s c n i t z i a n a r o u n d v

.

COROLLARY. Let

r : R d = R n

be a n y m u l t i J u n c t i o n w n o s e g r a p h D

= I

( v ,x )

!

z E ~ ( V )

1

i s closed. S u p p o s e for a g i v e n v t h a t

r

i s l o c a l l y b o u n d e d a t v , a n d t h a t r ( v ) i s n o n e m p t y w i t h t h e f o l l o w i n g c o n d i t i o n s a t i s f i e d j ' o r e v e r y z € ? ( v ) : t h e o n l y v e c t o r z w i t h ( z ,0 ) E ND(v ,z) i s z

=

0. ( 3 . 5 )

T h e n

r

i s l o c a l l y L i p s c h i t z i a n a r o u n d v .

The c o r o l l a r y i s just t h e c a s e of t h e t'neorem w h e r e t h e c o n s t r a i n t F ( v ,z) E C i s triviaiized. I t c o r r e s p o n d s closely t o a r e s u l t of Aubin [ l i ' j , a c c o r d i n g t o whicn

r

i s

"pseudo-Lipschitzian" r e i a t i v e t o t h e p a r t i c u l a r p a i r ( v , z ) with z E r ( v ) if t h e p r o j e c t i o n of t h e t a n g e n t cone T D ( v , z ) c Rd x R n

on Rd i s a l l of R d .

Conditions (3.5) a n d (3.6) are equivalent t o e a c h o t h e r by t h e duality between ND(v , z ) a n d T D ( v , z ) . The "pseudo-Lipschitzian" p r o p e r t y of Auhin, which will n o t b e defined h e r e , i s a s u i t a b l e localization of Lipschitz continuity which f a c i l i t a t e s t h e t r e a t m e n t of multifunctions

I'

with r ( v ) unbounded, as i s highly d e s i r a b l e f o r o t h e r p u r p o s e s in optimization t h e o r y ( f o r i n s t a n c e t h e t r e a t m e n t of e p i g r a p h s d e p e n d e n t on a p a r a m e t e r v e c t o r v ) . As a matter of f a c t , t h e r e s u l t s in Rocisafellar :I83 build on t i i s c o n c e p t of Aubin and are n o t limited t o locally bounded multifunctions. Only z s p e c i a l c a s e h a s b e e n p r e s e n t e d in t h e p r e s e n t p a p e r .

This t o p i c is a l s o c o n n e c t e d with i n t e r e s t i n g icieas t h a t Aubin h a s p u r s u e d t o w a r d s a d i f f e r e n t i a l t h e o r y of multifunctions. Aubin defines the multifunction whose g r a p h is t h e C l a r k e t a n g e n t c o n e T D ( v , z ) , w h e r e D i s t h e g r a p h of I', t o b e t h e d e r i v a t i v e of

r

at v r e l a t i v e t o t h e point x E r ( v ) . In denoting t h i s d e r i v a t i v e muitifunction by

r;,,

,

we h a v e , b e c a u s e T D ( v , z ) i s a ciosed convex c o n e , t h a t

r;,,

i s z closed c o n v e z p r o c e s s from Rd t o Rn in t h e s e n s e of convex annlysis :3, 5391. Convex p r o c e s s e s are v e r y much a k i n t o i i n e a r t r a n s f o r m a t i o n s , a n d t h e r e i s q u i t e z c o n v e z a l g e b r a f o r them ( s e e

[3, $391,

[iq,

and 120:). In p a r t i c u l a r , ,, h a s a n a d j o i n t L"; :, : Rn Z R d , which t u r ~ s o u t in t h i s c a s e t o b e t h e closed convex p r o c e s s with

(22)

In t h e s e t e r m s Aubin's condition (3.6) c a n b e written as ciorr,

r;,,

= R": w h e r e a s t h e dual condition (3.5) is

T ; ; ( "

= !!3 j . The l c t t e r i s equivaient t o , being iocally bounded a t t h e o r i g i n .

T h e r e i s t o o much in t h i s vein f o r u s t o b r i n g f o r t h h e r e , but t h e f e w f a c t s we h a v e c i t e d may s e r v e t o indicate some new d i r e c t i o n s in which nonsmooth a n a i y s i s i s now going. W e may soon h a v e a hignly deveioped a p p a r a t u s t h a t can b e a p p l i e d t o t h e s t u d y of a l l kinds of multifunctions a n d t h e r e b y t o s u b d i f f e r e n t i a l multifunctions in p a r t i c z - iar

.

F o r example, as an a i d in t h e analysis of t h e s t a b i l i t y of optimal solutions a n d mul- t i p l i e r v e c t o r s in problem (Q,), o n e c a n t a k e up t h e s t u d y of t h e Lipschitzian p r o p e r - t i e s of t h e multifunction

r ( v ) = s e t of a l l (x , y ,z ) suck t h a t x i s f e a s i b l e in (Q,) a n d t h e optimality condition (2.13) i s satisfied.

Some r e s u l t s on s u c h l i n e s are given in Aubin [I71 a n d R o c k a f e l l a r [2;<.

REFERENCES

[ I ]

F.H.

C l a r k e , "Generalized g r a d i e n t s a n d applications", Trans. Amer. S o c . 205 (1975), pp.247-262.

i23 r . H . C l a r k e , m t i m i z a t i o n a n d Nonsmoo t h A n a l y s i s , Wiley-icterscience, Sew York, 1983.

13) R.T. R o c k a f e l l a r , Convex A n a l y s i s , P r i n c e t o n University P r e s s , P r i n c e t o n X J , 1970.

[4] R.T. Rockaf e l l a r , "Favorable c l a s s e s of Lipschitz continuous functions in s u b g r a - dient optimization", P r o c e s s e s i n Nondifierentiable O p t i m i z a t i o n , E. Surminsiri (ed.), IIASA Collaborative P r o c e e d i n g S e r i e s , I n t e r n a t i o n a l I n s t i t u t e f o r Appiied Systems Analysis, L a x e n b u r g , Austria, 1 9 8 2 , pp. 125-143.

[5] S . Sairs, Theory of t h e I n t e g r a l , Monografie Matematyczne S e r . , no. 7 , 1937; 2nZ r e v . e d . Dover Press, Few York, 1954.

i6;

R.T. Xockafeliar, "Sxtensions of s u b g r a d i e n t caiculus with a p p l i c a t i o n s t o optimi- zatior.", ;. Xonlinear Ana;., t o z p p e a r in 1985.

(23)

C'72 R.VJ. Cnaney, h!ath. C)per. Res. 9 (19S4).

[8] X.T. R o c k a f e l l a r , "Generalized d i r e c t i o n a l d e r i v a t i v e s and s u b g r z d i e n t s of non- convex functions", Canaciian 2 . Yath. 32 (1980), ~ p . 157-180.

[9] R.T. R o c ~ a f e l i a r , T h e T h e o r y of S u b g r a d i e n t s a n d i t s A p p l i c a t i o n s t c P r o b l e m s of D p t i m i z a t i o n : C o n v e z a n d N o n c o n v e z P u n c t i o n s , Eeidermann Verlag, West Berlin, 1961.

[ l o ] R.T. R o c k a f e l l a r , "Clarke's tangent c o n e s and t h e b o u n d a r i e s of closed sets in R ~ " , J. Xoniin. Anal. 3 (1972), pp.145-154.

[I13 P.E. Ciarite, "A new a p p r o a c h t o Lagrange muitipliers", Math. Oper. Res. 1 (1976), pp. 165-1'74.

[I21 J-B H i r i a r t - U r r u t y , "Refinements o: n e c e s s a r y optimaiity conditions in nondif- f e r e n t i a b i e programming,

I,"

Appl. Yzth. Opt. 5 (1979), pp.63-C2.

[I31 R.T. R o c k a f e l l a r , "Lzgrange multtpiiers and s u b d e r i v a t i v e s G? cptimai value func- tions in nonlinear progrzmming", J!ath. P r o g . Study 1 7 (1982), 28-66.

[I41 J . Gauvin, T h e g e n e r a l i z e d g r z d i e n t cf a marginal function in mathematical p r o - gramming problem", Math. Oper. Res. 4 (1979), pp.458-453.

[I51 V.F. Demyanov a n d V.N Malozemov, "On t h e t h e o r y of n o n l i n e a r minimax p r o b - lems", Russ. Kath. S u r v . 25 (1971), 57-115.

[16] R.T. Rockafel!ar,"Directional differentiability of t h e optimal v a l u e in a nonlinear programming problem", Math. P r o g . StuZies 2 1 (1984), pp. 213-226.

[17] J.P. Aubin, "Lipschitz b e h a v i o r of solutions t o convex minimization problems", Math. O p e r . Res. 9 (1984), p p . 87-111.

[18] R.T. R o c k a f e l l a r , "Lipschitzian p r o p e r t i e s of multifunctions", J . Nonlin. A ~ a l . , t o a p p e a r in 1985.

;13] R.T. R o c k a f e l l a r , " C o ~ v e x a l g e b r a and duality ia dynamic models of productior,", in Mathematical Models of Economic (J. L o s t , e d . ) , h'orth-Holland, 1973, pp.351- 378.

[20] R.T. Rockafelinr, M o n o t o n e P r o c e s s e s of C o n v e z a n d C o n c a v e T y p e , Memoir no.77, Amer. Math. Soc., P r o v i d e n c e RI, 1967.

[213 R.T. R o c k a f e l l a r , "Maximal monotone r e l a t i o n s and t h e second d e r i v a t i v e s of nonsmooth functions", Ann. Inst. H. P o i n c a r d , Anaiyse Non L i n d a i r e 2 (1985), pp.167-184.

Referenzen

ÄHNLICHE DOKUMENTE

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria... movement of

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... SINGULARITY THEORY FOR NONLINEAR

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... ANNA'S LIFX