• Keine Ergebnisse gefunden

On Viable Solutions for Uncertain Systems

N/A
N/A
Protected

Academic year: 2022

Aktie "On Viable Solutions for Uncertain Systems"

Copied!
27
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

ON VIABLE SOLUTIONS FOR

UNCERTAIN

SYSTEMS

A. B. Kumhanski T. F. Filippova

March, 1986 CP-86-011

C o l l a b o r a t i v e P a p e r s r e p o r t work which h a s not been performed solely a t t h e International Institute for Applied Systems Analysis a n d which h a s r e c e i v e d only limited review. Views or opinions e x p r e s s e d h e r e i n d o not necessarily r e p r e s e n t t h o s e of t h e Insti- t u t e , i t s National Member Organizations, o r o t h e r organizations supporting t h e work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria

(2)
(3)

PREFACE

One of t h e problems t h a t a r i s e s in t h e t h e o r y of evolution and control under uncertainty is t o specify t h e set of a l l t h e solutions t o a differential inclusion t h a t a l s o satisfy a preassigned r e s t r i c t i o n on t h e state s p a c e vari- a b l e s (the "viability" constraint).

The l a t t e r set .of "viable" t r a j e c t o r i e s may b e described by e i t h e r a new differential inclusion whose right-hand side is formed with t h e aid of a contingent cone t o t h e r e s t r i c t i o n map o r by a variety of parametrized dif- f e r e n t i a l i n c l u s i ~ n s e a c h of which h a s a relatively simple s t r u c t u r e . The second a p p r o a c h i s described h e r e f o r a linear-convex differential inclu- sion with a convex valued r e s t r i c t i o n on t h e s t a t e s p a c e variables.

(4)
(5)

CONTENTS

1. The Statement of t h e Problem. The Basic Assumptions 2. The S e t X[T]

3. A Generalized "Lagrangian" Formulation 4. An Alternative Presentation of X[T]

5. The Exact Formula f o r X[T]

6. The Viable Domains

7. The S t a t e Estimation Problem References

(6)
(7)

ON VIABLE SOLUTIONS FOR UNCERTAIN S Y S T m

A.B.

Kurzhanski, T.F. Filippova

This p a p e r deals with t h e description of t h e set of all those solutions of a l i n e a r differential inclusion t h a t emerge from given set X O and satisfy a p r e a s - signed r e s t r i c t i o n on t h e state s p a c e variables (the "viability" c o n s t r a i n t ) . This problem leads t o t h e analytical description of t h e evolution of t h e attainability domains f o r t h e given inclusion under t h e preassigned "viability" c o n s t r a i n t . The solution is t h e n r e d u c e d t o t h e t r e a t m e n t of a parametrized v a r i e t y of new dif- f e r e n t i a l inclusions without any state s p a c e c o n s t r a i n t s . These inclusions depend upon a functional p a r a m e t e r . The intersection of t h e attainability domains f o r t h e new inclusions o v e r t h e v a r i e t y of all t h e functional p a r a m e t e r s yield t h e p r e c i s e solution of t h e primary problem. F o r t h e specific problem of t h i s p a p e r t h e tech- nique given h e r e - t h e r e f o r e allows t o avoid t h e introduction of tangent cones o r o t h e r r e l a t e d analytical constructions. I t a l s o allows t o p r e s e n t t h e o v e r a l l solu- tion as a n intersection of "parallel" solutions o v e r a v a r i e t y of o r d i n a r y l i n e a r dif- f e r e n t i a l inclusions without any s t a t e constraints.

A similar technique i s given f o r t h e description of "viable" domains

-

t h e sets of a l l s t a r t i n g points from which t h e r e emerges at l e a s t one viable solution t h a t r e a c h e s a preassigned set M. The available r e s u l t s are useful f o r t h e solution of problems of c o n t r o l and observation f o r uncertain systems [1,2].

(8)

1. The S t a t e m e n t o f the Problem. The B a s i c Assumptions.

Consider t h e following differential inclusion d x

-

E A ( t ) x + P ( t ) , t 0 S t S T ? ,

d t

where z E R n , A ( t ) i s a continuous map from T

=

[ t o,T?] into t h e set RnXn of ( n x n ) - m a t r i c e s , P ( t ) i s a continuous multivalued map from T into t h e set conv Rn of convex compact s u b s e t s of Rn , [ 3 ] .

Assuming set X O E conv Rn t o b e given, denote X ( . , t o , X o ) t o b e t h e "bundle" of all Caratheodory

-

t y p e solutions x ( . , t o , x O ) t o (1.1) th a t start at

x ( t 0 )

=

x 0

€ 9

( 1 . 2 )

and are defined f o r t E T [ 4 ] . The cross-section at instant "t" of x ( . , t o , 9 ) will b e denoted as X ( t ,t o , ~ O ) .

Denote co Rn t o b e t h e set of closed convex s u b s e t s of R n , Y ( . ) t o b e a con- tinuous multivalued map from T into co Rn , [ 5 , 6 ] , X O L Y ( t O ) .

D e f i n i t i o n 1.1. A t r a j e c t o r y x [ t ]

=

x ( t , t o , x O ) , t E T , of equation (1.1) will b e said t o b e viable on T ,

=

[ t O , r ] , T S 19, if

x [ t ] E Y ( t ) , f o r a l l t E T , , (1.3) W e f u r t h e r assume t h a t t h e r e e x i s t s at l e a s t one solution x [ t ] of (1.1) th a t satisfies ( 1 . 2 ) and is viable on T,. The conditions f o r t h e existence of t h o s e solu- tions may b e given in t e r m s of generalized duality concepts [ 2 , 7 ] .

The s u b s e t of x ( . , t & x O ) t h a t consists of all solutions viable on T , will b e denoted as x,(. , t o , ~ O ) and its cross-section at instant s E TT as XT(s , t O , ~ O ) . Our f u r t h e r aim will b e t o find a n analytical description f o r t h e evolution of sets X [ T ]

=

X ( T , ~ ~ , X ' ) = X , ( T . ~ ~ . X O ) which are actually t h e attainability domains of inclusion (1.1) under t h e p h a s e c o n s t r a i n t (1.3). I t is known t h a t X [ T ] conv Rn 121. (According t o o u r assumption w e f u r t h e r have X [ T ]

+

$ f o r a l l T E T ) .

I t is not difficult t o o b s e r v e t h a t sets X(t , t o , x O ) satisfy a semigroup p r o p e r t y :

(9)

X ( T , ~ ~ , X O )

=

X(T,S ,X(S , t O , p ) )

.

They t h e r e f o r e d e f i n e a g e n e r a l i z e d dynamic system. The d e s c r i p t i o n of t h i s dynamic system will b e given t h r o u g h a v a r i e t y of new d i f f e r e n t i a l inclusions con- s t r u c t e d from (1.1), (1.3). (See [8]).

2. T h e S e t X

[TI.

Introducing some notations let u s d e n o t e t h e s u p p o r t function of set X as p ( l ( X )

=

s u p I ( l , x ) x

EX^

, 1 E R "

.

( h e r e (1 , x ) s t a n d s f o r t h e i n n e r p r o d u c t 1 'x with t h e p r i m e as t h e t r a n s p o s e ) . Also d e n o t e Cn (T) (CF(T)) t o b e t h e set of all n-vector-valued continuous functions d s f i n e d on T ( r e s p e c t i v e l y t h e set of k times continuously d i f f e r e n t i a b l e functions with v a l u e s in R n , defined o n T). Let Mn (T) s t a n d f o r t h e set of a l l n

-

vector-valued polynomials of a n y f i n i t e d e g r e e , defined on T. Obviously g (.) E M n (T,) if

and

Mn (T)

s

CZ (T)

Applying some duality c o n c e p t s of infinite dimensional convex analysis [7] as given in t h e form p r e s e n t e d in [2] w e come t o t h e following r e l a t i o n s . F o r a n y 1 E R n , A(.) E Cn (T) d e n o t e

H e r e , in t h e f i r s t v a r i a b l e t h e . function S ( t , T ) i s t h e matrix solution f o r t h e equation

(10)

s

=

- s A ( t ) , S ( r , r ) = E ,

t

s T ,

t h e second and t h i r d members of t h e sum ( 2 . 1 ) are Lebesgue-type i n t e g r a l s of mul- tivalued maps P ( < ) , Y ( < ) respectively (see, f o r example, [4-61).

In [ 2 ] , 56, i t w a s proved t h a t

max I ( l , x ) ! x E X [ T ] { = p ( l I X [ r ] )

=

inf ! Q , ( l , A(.))

I

A(.) E Cn IT,]

I .

A slight modification of t h e r e s p e c t i v e proof shows t h a t t h e c l a s s of functions Cn (T,) in t h e l a s t formula may b e substituted by e i t h e r CE (T,) o r even Mn (T,).

Hence

inj' )Q,(1 ,A(.))

I

A(.) E Cn (T,)1

=

inj'

I

Q,(1, A(.))

I

A(.) E CE (T,)

1 =

inj'

I

Q,(1, A(.))

I

A(.) E Mn (T,)

1

From r e l a t i o n s ( 2 . 2 ) i t is possible t o d e r i v e t h e following a s s e r t i o n Lemma 2.1. The following equality is t r u e

X[r]

= n

I R ( r , M ( . ) )

I

M (.) E C" Xn (T,)

1 =

= n

I R ( r , M ( - 1 )

I

M ( . ) E

cEXn

(T,){

=

= n

I R ( r , M ( . ) )

I

M ( . ) E Mn Xn

(T,) 1 .

where

7

R ( T , M ( . ) )

=

( S ( t O , r )

- J

~ ( 6 s ( t ~ , t ) d t ) f l

+

t 0

7 7

+ J

( s ( T , ~ )

- J

~ ( s ) S ( t , s ) d s )

P ( O ~ t

t 0 4

7

+ J

M ( S ) Y ( s ) d s

t 0

and Cp ' " ( T ) , ( 0

s

k

s

m) , Mn xn (T) stand f o r t h e r e s p e c t i v e s p a c e s of ( n

x n ) -

matrix-valued functions defined on

T.

The proof of Lemma 2.1 follows immediately from ( 2 . 2 ) , ( 2 . 3 ) a f t e r a substitu- tion A'(.)

=

1 'M ( . ) f o r I

+

0 . The infimum o v e r A(.) in'(2.2) is t h e n substituted by an infimum o v e r M ( a ) . Hence f o r e v e r y 1

+

0 w e have

(11)

~ ( 1

I

X[TI)

Q,U

,M'(.)L (2.5) f o r any M(.) E CnXn(T,) ( o r CEXn (T,) o r MnXn(T,)). Frorri (2.1)

-

(2.5) i t now fol- lows t h a t

f o r any M(.).

Hence

X [ r l

c

n

IR(-r,M(.))

I

M(.) E Cn Xn (T,)j ( o r o v e r

cEXn

(T,) o r Mn (T,)).

Equalities (2.4) now follow from (2.6) and (2.23, (2.3).

3. A G e n e r a l i z e d "Lagrangian" Formulation

The a s s e r t i o n s of t h e above yield t h e "standard" duality formulations f o r cal- culating 7, (1)

=

p ( l X[T]), ( s e e [2, 8, 91).

Denoting

P(-) =

I p ( * ) : p ( t ) E P ( t ) , t ET,j w e come t o t h e following "standard"

Primary Problem

o v e r a l l

u ( * ) E P ( * ) , z 0 E X O where s [t ] i s t h e solution t o t h e equation

x [ t ]

=

A ( t ) z [ t ]

+

u ( t ) , z [ t O ]

=

z 0 In o t h e r words

Y,(L)

=

m a x l * ( z O , u ( * )

I

z 0 € R n , u(*)

EL;

(Tt)j u n d e r r e s t r i c t i o n (3.2) where

(12)

H e r e

0 i f z E Y 6 ( ~

n = (

+ = i f z F Y The primary problem g e n e r a t e s a corresponding "standard"

Dual Problem:

Determine

r O ( l )

=

inf

I

@,(I , A(*))

i

A(-) E C n (T,)

4

along t h e solutions s [t ] t o t h e equation

s [ t ]

=

- s [ t u ( t )

+

A ( t ) , s[r] = I where @,(I , A(*)) may b e r e w r i t t e n a s

Relations (2.2), (2.3) indicate t h a t 7, (1 )

=

7O(1 ) and t h a t A(*) in (3.5) may b e selected from C z (T,) o r even from M n (T,).

A "standard" Lagrangian formulation i s a l s o possible h e r e .

Lemma 3.1 The value y o ( l )

=

7 ( l ) may b e achieved as t h e solution t o t h e problem 7 ( l )

=

inf max L (A(*) , u (a) , z O )

A(.) U (.) , z 0

where

and

A(*) E C n (T,) , u (*) E P(*) , z 0 E XO

.

The p a s s a g e from (2.2), (2.3) t o (2.4) yields a n o t h e r form of p r e s e n t i n g X[T].

Namely, denote S [ t ] t o b e t h e solution t o t h e matrix differential equation

(13)

Also d e n o t e

Obviously

Lemma 2.1 may now b e r e f o r m u l a t e d as

Lemma 3.2. The set X [ T ] may b e determined as

o v e r all

M ( * ) E C n x n (T,) , z O E X ' ,U (0) E P

.

This r e s u l t may b e t r e a t e d as a generalization of t h e s t a n d a r d Lagrangian formula- tion. However h e r e o n e d e a l s with set X [ T ] as a whole r a t h e r t h a n with i t s p r o j e c - tions p(L

I

X [ T ] ) o n t h e elements L E R n . The r e s u l t s of t h e a b o v e i n d i c a t e t h a t t h e d e s c r i p t i o n of set X [ T ] may b e "decoupled" into t h e s p e c i f i c a t i o n of sets R ( T , M ( * ) ) , t h e v a r i e t y of which d e s c r i b e s t h e g e n e r a l i z e d dynamic system X ( t , t o ? ) .

However i t should b e c l e a r t h a t t h e mapping R ( T , M ( * ) ) may n o t always b e a n ade- q u a t e element f o r t h e decoupling p r o c e d u r e , especially f o r t h e d e s c r i p t i o n of t h e evolution of X ( t , t o ,

p)

in t

.

The r e a s o n s f o r t h i s are t h e following.

Assuming function M (0) t o b e f i x e d , r e d e n o t e R ( T , M ( * ) ) as lRM (T , t , X O ) . Then, in g e n e r a l , f o r a n y fixed M , w e h a v e

R M ( ~ , t o , 9 ) + l R M ( ~ , S , R M ( s , t o , x O ) ) .

T h e r e f o r e t h e map RM ( T , t o , A&) d o e s n o t g e n e r a t e a semigroup of t r a n s f o r - mations t h a t may define a g e n e r a l i z e d dynamic system. The n e c e s s a r y p r o p e r t i e s

(14)

may b e however achieved f o r a n a l t e r n a t i v e v a r i e t y of mappings, e a c h of t h e ele- ments of which will possess both t h e p r o p e r t y of t y p e (2.4) and t h e "semigroup"

p r o p e r t y ,

[ l o ] .

4. An Alternative Presentation of X [ r ]

Denote C? X n (T,) t o b e t h e subclass of C n X n ( T ) t h a t consists of all continu- ous matrix functions M ( e ) t h a t satisfy t h e condition;

Assumption 4.1 For any ( E T , w e h a v e

7

d e t ( S ( ( , r )

- J M ( s ) s ( ( , s )

d s ) 2 0

<

In o t h e r words, if K

[ t ]

i s t h e solution of t h e equation

K ( t )

=

- K ( t ) A ( t ) + M ( t ) , K ( T ) = E ,

( t o

S t S r ) then M ( t ) must b e such t h a t aet K [ t ] # 0 f o r a l l

t

E

[to

,

T I .

We will f u r t h e r denote K [ t ]

=

K ( t , T , M (e)) f o r a given function M ( e ) in (3.1).

Consider t h e equation

Z

=

( A ( t ) - L ( t ) ) Z ,

t o s t

S r (4.2) whose matrix solution Z [ t ] ( Z [ T ]

=

E ) will b e a l s o denoted as Z [ t ]

=

Z ( t , T ; L (e))

(2'

( t

, T ,

lo!) =

S ( T ,

t ) )

Under Assumption 2.1 t h e r e e x i s t s a function L (e) E

cn

Xn (T,) such t h a t

K [ t l = Z ( t , T , L ( ~ ) ) ,

V t

E T , , ( 4 . 3 ) Indeed, if f o r

t

E T , w e s e l e c t L

( t

) according t o t h e equation

L

( t ) =

A ( t ) - ~ - l

( t ) ~ ( t ) =

A ( t ) - ~ - l ( t ) ( - K ( t ) A ( t )

+

M ( t ) )

= - ~ - ' ( t )

M ( t )

+

2 A ( t )

t h e n , obviously, equation (4.3) will b e satisfied. From ( 2 . 4 ) , ( 4 . 3 ) , (4.4) i t now fol- lows ( M (e) E C? Xn (T,))

(15)

However i t i s not difficult t o o b s e r v e t h a t t h e right-hand p a r t of ( 4 . 5 ) i s X L ( . ) ( r , t o , X O )

=

X [ r L ( - ) ] which i s t h e cross-section at i n s t a n t T of t h e set XL (.) (* , t o

9) =

X [-

i

L ( a ) ] of a l l solutions t o t h e d i f f e r e n t i a l inclusion

S i n c e t h e c l a s s of a l l functions L ( 0 ) E C n Xn (T,) g e n e r a t e s a s u b c l a s s of func- tions

M(-)

E C n X n (T,) we now come t o t h e following a s s e r t i o n in view of ( 2 . 3 ) ,

Lemma 4 . 1 The following inclusion i s t r u e

X [ T I

c n Ix[r I

L ( 9 l

I

L ( - ) E

cnXn (T,)l

( 4 . 7 ) T h e r e f o r e X [ T ] i s contained in t h e a t t a i n a b i l i t y domains at i n s t a n t T f o r t h e inclusion ( 4 . 6 ) , w h a t e v e r is t h e function L ( t ).

The o b j e c t i v e i s now t o p r o v e t h a t ( 4 . 7 ) tu r n s t o b e a n equality. W e will t h e r e - f o r e p u r s u e t h e proof t h a t a n inclusion o p p o s i t e t o ( 4 . 7 ) is t o b e t r u e .

5.

The

E x a c t Formula f o r X [ T ]

.

In o r d e r t o p r o v e t h e equality in ( 4 . 7 ) we s h a l l 'start by some preliminary r e s u l t s .

Lemma 5.1 Consider t h e system

z ( t ) E Y * ( ~ ) , t E T , , ( 5 . 3 )

( Y * ( t ) S ( t , 7 ) Y ( t ) ) ,

Denote t h e set of i t s solutions viable on T, with r e s p e c t t o p ( t ) as X: ( 0 , t o ,

x ? )

a n d t h e cross-section of t h e latter at i n s t a n t T as

(16)

X: ( 7 , to x ? )

=

X * (T , to , XE))

=

x*[T]

Then X[T]

=

x*[T].

The proof of t h i s Lemma follows from definition 1.1 and from t h e p r o p e r t i e s of l i n e a r systems (1.1) , (5.1).

Assume x*(-) t o b e a viable t r a j e c t o r y of (5.1) due t o c o n s t r a i n t s (5.2), (5.3), t E T,. (The existence of at least one viable t r a j e c t o r y x*(*) w a s presumed ear- l i e r . )

D e f i n i t i o n

5.1

Denote

x

**

[TI = x

**(T , t , x:,)

= x:*

(T , t , x:,) t o b e t h e cross-section at instant T of t h e s e t

x**

( 0 , t o , X ),: of solutions of system

x ( t ) E y * * ( t ) ( p * ( t )

=

Y*(t) - x * ( t ) ) , t ET, , Lemma

5.1

The following equality i s t r u e

X[T]

=

X**[T]

The proof follows from t h e definition of viable t r a j e c t o r i e s . Note t h a t sets P * * ( t ) ,

x?,

, Y'*(t)

-

all contain t h e origin as a n i n t e r i o r point. Their s u p p o r t functions are t h e r e f o r e a l l nonnegative.

The principal r e s u l t of t h i s p a r a g r a p h i s given by t h e proposition:

T h e o r e m 5.1. The following equality i s t r u e

X[TI

=

n l X [ r

I

L (41

I

L

(9

E Cn Xn (T,)j

Before passing t o t h e proof of this theorem, denote

X*[T

I

I,(*)]

= x;(.)

( r , t o ,

9)

t o b e t h e cross-section at instant T of t h e set Xi(.) (* , t o , x O ) of t h e solutions t o t h e inclusion.

(17)

Hence f o r a n y matrix function

L

(0) E C n X n (T,) w e h a v e X*[T

I L

(*)I

=

X[r

I

S ( r , -)

L

(*) S ( - , r ) 1 T h e r e f o r e i t s u f f i c e s t o p r o v e t h e following equality

x*[T]

= n lx*

[ r

I L

(91

I L (9

E

CZ

xn (T7)l (5.8) In o t h e r words, t h e o r e m 5 . 1 will b e a l r e a d y t r u e if i t i s p r o v e d f o r A ( t )

=

0 a n d f o r a r b i t r a r y

9 ,

P ( t ) , Y ( t ) from t h e r e s p e c t i v e c l a s s e s of sets a n d set-valued maps i n t r o d u c e d in

5

1. W e will t h e r e f o r e follow t h e p r o o f of equality (5.8) omitting t h e stars in t h e notations f o r X* , X? , P * ,

Y'.

According t o (2.2), (2.1) w e now h a v e (A ( t )

=

0 )

~ ( 1

!

X[rI)

=

(5.9)

=

inf

I

Q(l ,- A(-))

I

A(-) E C n (T,);

=

i n f IQ(1 , A(*))

I

A(*) E I t n (T,) j w h e r e

Denoting

w e may s u b s t i t u t e (5.9), (5.10) f o r

where

Let us f u r t h e r assume t h a t t h e v e c t o r 1 E R in (5.9), (5.10) a n d (5.11), (5.12) i s s u c h t h a t i t s c o o r d i n a t e s It f 0 f o r a l l i

=

1,

. . .

, n Let u s d e m o n s t r a t e t h a t if

(18)

w e substitute t h e c l a s s of functions g (a) t h a t a p p e a r s in (5.11) f o r a "narrower"

c l a s s MTxn (T,) t h e n t h e value of t h e infimum in (5.11) will not change. The c l a s s

M r

xn (T,) which w e will consider consists of all functions g ( t ) of t h e form g l ( t ) = l l M ( t ) , M ( T ) = E ,

M (m) E CE xn (T,) ( o r M(*) E Mn Xn (T,)) and

d e t M ( t ) # 0 , Vt E [ t o , T]

Hence t h e following lemma i s t r u e .

Lemma 5.2 The s u p p o r t function p ( l

I

X[T]) satisfies t h e condition

~ ( 1

I

X[TI)

= =

inf I+(g

(*>I I

g (a> E M'? Xn (T,)

I

For t h e proof of t-his p r o p e r t y w e will distinguish t h e cases of n being a n even number and n being odd.

Suppose n

=

2. F i r s t of all, note t h a t f o r calculating t h e infimum in (5.11) i t suffices t o r e s t r i c t o u r s e l v e s t o t h e c l a s s of such functions g (0)

=

(gl(*) , g2(a)) t h a t g ( m ) ~ M ~ ( T , ) , g ( ~ ) = l , g t ( t ) g ( t ) # 0 f o r any t ET,. Indeed, f o r any g (a) E M2(~,) (g (T)

=

1 ) i t i s possible t o c o n s t r u c t a sequence of functions g(f)(m) E M~(T,) , g ( f ) ( ~ )

=

I , E -,

+

0 , f o r which

and

For example, assume

where

g j f ) ( t ) = 1 2 g 2 ( t + E) / g 2 ( T

+

E)

,

t ET,.

Since i t i s assumed t h a t g (T)

=

1 , 1 # 0 , 1 # 0 , t h e function g.#f) (T) is well- defined f o r minor values of E (i.e. g(f)(*) E M2(T,) , g ( f ) ( ~ )

=

1)

.

(19)

Since t h e number of nulls of t h e polynomials g l ( - ) , g2(*) is finite, i t is possible t o s e l e c t t h e "shift" E

=

E' in g 2 ( t

+

E ) SO t h a t t h e nulls of g l ( t ) and g 2 ( t

+

E ) will not coincide f o r all E E ( 0 , E']. Now f o r e a c h t E T,, g ( ' ) ( t ) + g ( t ) and g ( ' ) ( t ) +

g

( t )

with E -,

+

0 . The sequence g ( c ) ( t ), g ( ' ) ( t ) is equibounded in t f o r E E ( 0 , &'I. T h e r e f o r e (5.12) is t r u e .

I t is now possible t o demonstrate t h a t any function g (m) E M'(T,) , with g ( r )

=

1 , 1 ' 1 # O , g r ( t ) g ( t ) # O , W E T , , may b e p r e s e n t e d in t h e form g ( * ) = I ' M ( * ) w h e r e d e t M ( t ) $ 0 , W E T , , M ( r ) = E .

I t may b e verified d i r e c t l y t h a t with 1 given

satisfies t h e s e conditions, namely

d e t M ( t )

=

g f ( t ) 11'

+

g z ( t )

12'

f 0 .

Let u s now assume t h a t t h e dimension of Rn is even: n

=

2k , k 2 2. Then fol- lowing t h e scheme f o r n

=

2 , i t i s possible t o verify t h a t i t suffices t o c a l c u l a t e t h e infimum in ( 5 . 1 ) (5.12) o v e r such functions g (0)

=

( g

. . . .

, g (2k )),

g ( r )

=

1 , 1 ' 1 f 0 , t h a t g z i - l ( t ) f g Z i ( t ) > 0 , V t E T,, V i E [ I , k ] .

Any function g ( 0 ) of t h e given t y p e may b e p r e s e n t e d in t h e form g ( t )

=

I ' M ( t ) where t h e ( 2 k x 2 k )

-

dimensional matrix M ( t ) i s block-diagonal:

b e calculated due t o formula (5.14) where in t h e place of g l ( * ) , g2(*) w e should sub- s t i t u t e ( g Z i , g z i (*)), (i

=

I ,

. . .

, k ) . The function M ( * ) belongs t o t h e c l a s s Mn X n (T,), M ( T )

=

E and f o r any t E

T,

we have

M ( t )

=

k

d e t M ( t )

= n

d e t M i ( t )

>

0 i =1

and e a c h of t h e matrices Mi ( t ) , i

=

1,

. . .

, k , is ( 2 x 2 )

-

dimensional and may

Ml(t 0

0 Mk ( t

d

(5.15)

(20)

Assume now t h a t n is odd: n

=

2k

+

1 . Then again we may calculate t h e infimum in (5.11), (5.12) o v e r t h e c l a s s of functions.

g

('1 =

( g l ( ' ) ,

.

, g 2 k (*) t g 2 k + l ( * ) ) Mn (T7) I B ( T )

=

1 such t h a t

ggi - 1 ( t )

+

g & ( t )

>

0 , v t E [ t o T ] ; i

=

1 , .

. .

, k , Each of such functions may b e p r e s e n t e d in t h e form g ( t )

=

1 ' M ( t ) where

by g z i -l , gzi (i

=

1,

. . .

, k ). Obviously M ( t ) =

M ( T )

=

E , M ( - ) E M~ Xn (T,) and

* M i ( t ) , 0

....

0 , 0 , m ( t )

0 ,

( 1 .

0 , 0 , 0 ,

. - . . . .

9 . .

0 ,

. . .

0 , M k ( t ) , 0 I

, 0 ,

. . .

0 , 0 , 1 ,

k

d e t M ( t )

=

d e t M i ( t )

>

0 i = 1

m ( t ) = ( 6 2 k + l ( t ) - l 2 k + i ) l 1 .

H e r e Mi ( t ) is determined similarly t o (5.14) where gl(a) , g 2 ( 4 are t o b e substituted

f o r all t E T,.

In o r d e r t o finalize t h e proof of lemma 5.2 w e have t o consider t h e case when n

=

1. For n

=

1 th e class

MtX1

(T,) may b e substituted by a l l positive functions m (a) E C ; (T,). However, due t o (2.3) w e will b e a b l e t o confine o u r s e l v e s t o t h e case when m (m) E c ~ ( T , ) .

A s b e f o r e , l e t C ; (T,) stand f o r t h e set of such functions m ( t ) , th a t m ( ~ )

=

1;

m ( t )

>

0 ; V t E T,. W e a l s o assume t h a t

0 E

xO n n

P ( O ) (5.17)

where obviously X o , Y ( s ) , P ( s ) t u r n t o b e compact i n t e r v a l s in R'.

Recall t h a t in view of (5.12) t h e function

(21)

where

W e shall demonstrate t h a t

With t d e c r e a s i n g from t h e value T , denote T * t o b e f i r s t instant of time where m ( t ) t u r n s t o z e r o ( m ( T * )

=

0 ) . T h e r e f o r e m ( T * )

=

0 , m ( t )

=

1 and

Denote

K ( t ) = m ( t ) f o r 7 ' 5 t 5 7 E ( t ) = O f o r t o t

<

T *

In view of (5.17) w e have

Hence

*(l m (*)) 2 * ( l

Gi(*))

whatever is t h e function m (*) E

C ;

(T,)

A number E

>

0 being given i t i s possible f o r e v e r y m ( * ) t o s e l e c t a 6

=

6 ( ~ , m ( * ) )

>

0 such t h a t t h e function m ,(t) defined as

m , ( t )

=

G ( t ) f o r T * ( 6 ) 5 t 5 T , m 6 ( t )

=

6 f o r t o s t s ~ * ( 6 ) , satisfies t h e inequality

(22)

1

*(L

('1) -

*(L m 6(')) 5; E

H e r e ~ ~ ( 6 ) i s t h e f i r s t instant of time where m ( ~ ~ ( 6 ) )

=

6 with t d e c r e a s i n g from T

t o ~ * ( 6 ) , SO t h a t ~ ~ ( 0 )

=

T*.

Hence f o r any m ( 0 ) E

c1

(T,) and any E

>

0 t h e r e e x i s t s a function m 6(*) E C: (T,) such t h a t

*(L m ( 0 ) ) r *(L m 6(@))

-

E

Comparing (5.19) with t h e obvious r e l a t i o n

inf [+(I m (-))

1

m (a) E C1 (T,) { S inf I+(L m (a))

I

m

(-1

E C: (T,) w e a r r i v e at t h e equality (5.18).

Note t h a t t h e c l a s s C: (T,) in (5.18) might well b e substituted by

CL

(T,)

where

n xn

c:,

(T,)

=

IM(a) : /M(-) E C, (T,) ; M(T) = E , d e t M ( t ) > O Vt E (T,){

From t h e proof of t h e above w e came t o t h e assertion:

Lemma 5.2 The set X[T] may b e d e s c r i b e d as

Following t h e suggestions t h a t led t o Lemma 2.2 w e may deduce Corollary 5.1 Relation (5.20) i s equivalent t o

P(L

/

X[TI

= inp

IP(L

IX[T I L

(')I)

I L ('1

E

cZXn

(T,)

I .

(5.21)

In o r d e r t o finalize t h e proof w e will make use of t h e following lemma.

Lemma 5.3. Assume !Xu{ t o b e a v a r i e t y of convex compact sets t h a t depend upon t h e index a E A with X

= n

!Xu ( a E A{

+

q5. Denote

Then

p(1 ! X ) = p ' * ( l ) where

p"

(1) i s t h e Fenchel second conjugate t o ~ ' ( 1 ) .

(23)

In o t h e r words

f

" ( 1 )

=

(co

f

) ( 1 )

w h e r e (co f ) ( 1 ) s t a n d s f o r t h e function whose e p i g r a p h i s t h e closed convex hull f o r t h e e p i g r a p h of f (1 ) (1 E Rn ), [ 7 ] .

Applying t h i s lemma t o X [ T

I

L

( + ) I

with L (-) a c t i n g as t h e p a r a m e t e r w e find t h a t P U ! n l x [ ~ I L ( . > l l ~ ( . > E

cZxn

(T,>l>

=

(co h ) ( 1 ) (5.21) w h e r e

h ( 1 )

=

i n f

I&

I X [ T I L ( ' ) ] ) I L ( - ) E C Z X n ( T t ) j (5.22) a n d

h ( 1 )

=

p(1 ] X [ T ] ) f o r 1 E A .

From (5.21)

-

(5.23) i t now follows t h a t

X [ T I

= n

I x [ ~ l L ( - > l I L ( 9 E

c",n(~,>l .

Indeed, s i n c e always

X [ T ]

r

X [ T L

( - ) I

, L (.) E

cn

Xn (T,)

.

assume t h a t t h e r e e x i s t s a point x '

=

X [ T ] s u c h t h a t

X ' E

n

l x [ ~ i L ( . ) I l L ( . ) E

cZXn(~,)j

Then t h e r e e x i s t s a v e c t o r 1 ' t h a t e n s u r e s t h e inequality (1 ' ,x

'1 >

p(18 IXCTI)

( X [ T ] being a convex compact set w e may always assume 1' E A ) . Hence t h e r e e x i s t s a v e c t o r 1 * E A s u c h t h a t

~ ( 1 '

i n

IX[T IL

(.)I

iL

(-1

E

c","

(T,>l>

>

P ( ~ ' ( X [ T I >

.

However, t h i s i s in c o n t r a d i c t i o n with (5.23), (5.22).

Thus (5.21) i s t r u e a n d in view of (5.24) Theorem 5.1 i s now fully p r o v e d . More- o v e r we h a v e e s t a b l i s h e d

Lemma 5.3. The following equality i s t r u e

(24)

A d i r e c t consequence of t h e relations of t h e above is

Lemma

5.4. Assume t h a t in (1.1) t h e matrix A ( . ) E CF Xn(T). Then X [ T I

= n

IX<T IL(.>> IL

(9

E CF X n ( T ) ]

.

6. T h e V i a b l e Domains.

Consider system (1.1), (1.3) f o r t E [ s ,191, with s e t M E comp Rn

.

D e f i n i t i o n 6.1. The viable domain f o r system (1.1), (1.3) a t time s i s t h e set W ( s ,d ) t h a t consists of all v e c t o r s w E R n such t h a t

Z ( ~ ~ , T , W )

c

M . (6.2)

Using t h e duality relations of convex analysis as given in [ 2 ] i t i s possible t o o b s e r v e t h a t

W(s,19) L R - ( s , M ( . ) ) , V M ( . ) E

where

Similar t o 52 w e come t o

Lemma 5.1. The s e t W ( r , I 9 ) may b e determined a s

Returning t o equation (3.6) denote

X - [ s , IL

('11 =

XL7.) ( S ,d,M)

t o be t h e cross-section a t instant s of t h e set Xj,<.) ( - , 2 9 , M ) of all t h e solutions ZL ( t ,19,z6) to t h e inclusion (3.6) t h a t are generated a t instant 19 by point

z6

E

M

and evolve in backward time until t h e instant T

<

I9 , ( T 5 t 5 19). Along t h e

(25)

schemes of 554, 5 i t is possible t o a r r i v e at t h e analogy of Theorem 5.1:

Theorem 6.1. The following relations are t r u e

7. The S t a t e Estimation Problem

Assume inclusion ( 1 . 1 ) , (1.2) is considered t o g e t h e r with a measurement equa- tion

Y ~ G ( t ) z + Q ( t ) , t o s t S T , ( 7 . 1 ) where y € R m , G ( t ) is a continuous matrix and Q ( t ) a continuous multivalued map from

T,

into conv R m .

Suppose t h a t due t o equations (1.1), (1.2) and (6.1) (that substitutes f o r (1.3)) a n "observation" y ' ( t ) , t E T , has a p p e a r e d . (The function y * ( t ) is obviously generated due t o equations

z = A ( t ) z + u , y = G ( t ) z

+ #

( 7 . 2 ) by t r i p l e t z 0 , u (-) , #(.), where z 0 E x O , u ( t ) E P ( t ) , # ( t ) E Q ( t ) and u ( t ) , # ( t ) are measurable functions.)

The estimation problem will consist in specifying t h e set X ( . ; y 8 ( . ) ) of all t h e solutions z ( . , t o , z O ) of inclusion (1.1) t h a t start at t o from points z 0

€ 9

and satisfy both (1.1) and (7.1) f o r y ( a )

=

y '(.), t o S t S T , (being t h e r e f o r e consistent with both t h e system equation (1.1) and t h e measurement equation ( ? . I ) ,

y (.)

=

y * ( a ) ) . The l a t t e r problem then reduces t o t h e one of $ 5 1

-

4: t h e specifica-

tion of set X [ T ] and i t s evolution in T where t h e set-valued map Y ( t ) of (1.3) a p p e a r s in t h e form

Y ( t )

=

j z : G ( t ) z E ~ ' ( t ) j and

~ ' ( t )

=

~ ' ( t ) - Q ( t ) .

This specific type of set Y ( t ) may b e t r e a t e d along t h e schemes of t h e above.

(26)

The r e s u l t s r e d u c e t o t h e following relations. Consider t h e inclusion

denoting i t s solution as

and taking

% ( . ) ( t , t O , X )

= u

~ z L ' ( t , t ~ , z O ) z ~ E x 0 ]

Along t h e schemes of 482-4 w e a r r i v e at t h e proposition.

Theorem 7.1. The cross-section X *

[ T I

at time T of t h e set X ( - , y * (.)) of all solutions t o t h e system (1.1), ( 7 . 1 ) , y ( t )

=

y * ( t ) , t 5 t 5 T , may b e d e s c r i b e d as

X * [ T I

= n Ix;(~

,to.?)

I

L ( . ) E C" Xn

(T,) 1 .

( 7 . 4 ) Thus if t h e information on a n uncertain t r a j e c t o r y

z

( t ,t

o,z

O ) of (1.1), (1.2) is reduced t o t h e knowledge of t h e function y * ( t ), t E [ t 0 , ~ ] , then t h e set X'

[ T I

gives a "guaranteed" estimate f o r z [ r ]

= z

( T ,t

o,z

O ) .

Remark From t h e assumption t h a t t h e function ( ( t ) in (7.2) is measurable, i t follows t h a t set ~ ' ( t ) is measurable in t (with values in comp R n ) . This l e a d s t o t h e fact t h a t t h e r e s p e c t i v e set

Y ( t )

=

I z : G ( t ) z E Q e ( t ) ]

may b e a l s o measurable r a t h e r t h a n continuous in t as r e q u i r e d by t h e assumptions f o r Theorem 5.1. The proof of Theorem 5.1 however allows a modification t h a t e n s u r e s Theorem 7 . 1 t o b e t r u e .

The scheme p r e s e n t e d h e r e i s o t h e r t h a n t h o s e suggested in e i t h e r [ 2 ] o r [ I l l .

(27)

References

[I] Krasovski, N.N. The Control of a Dynamic System. Nauka, Moscow, 1985 [2] Kurzhanski, A.B. Control and Observation under Conditions of Uncertainty.

Nauka, Moscow, 1977.

[3] Rockafellar, R.T. Convex Analysis. Princeton University P r e s s , 1970.

141 Aubin, J.P., Cellina, A. Differential Inclusions. Springer-Verlag, Heidelberg, 1984.

[5] Castaing. C., Valadier, M. Convex Analysis and Measurable Multifunctions.

Lecture Notes in Mathematics, vol. 580, Springer-Verlag, 1977.

[6] Aubin, J.P., Ekeland, I. Applied Nonlinear Analysis. Academic P r e s s , 1984.

[7] Ekeland, I., Temam, R. Analyse Convexe et Problames Variationnelles. Dunod, P a r i s , 1974.

[8] Kurzhanski, A.B. and Osipov, Yu. S. On optimal control under state con- s t r a i n t s . Prikladnaia Matematika i Mehanika (Applied Mathematics and Mechanics) vol. 33, No. 4, 1969.

[9] Rockafellar, R.T. S t a t e Constraints in Convex Problems of Bolza. SIAM J . Control. vol. 10, No. 4, 1972.

[ l o ] Kurzhanski, A.B. On t h e analytical description of t h e viable solutions of a controlled system. Advances in Mathematics (Uspekhi ~ a t e m a t i z e s k i k h Nauk) vol. 4, 1985.

[ I l l

Schweppe, F. Uncertain Dynamic Systems. Prentice-Hall. Inc. Englewood

Cliffs, N. J e r s e y , 1973.

Referenzen

ÄHNLICHE DOKUMENTE

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361

Laxenburg, Austria: International Institute for Applied Systems Analysis. Laxenburg, Austria: International Institute for Applied

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria... movement of

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria... INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... ANNA'S LIFX