• Keine Ergebnisse gefunden

The Influence of Technological Changes on the Cost of Gas Supply

N/A
N/A
Protected

Academic year: 2022

Aktie "The Influence of Technological Changes on the Cost of Gas Supply"

Copied!
25
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

W O R K I N G P A P E R

THE INFLUENCE OF TECHNOIDGICAL CHANGES ON THE COST OF GAS SUPPLY

M. S t t u b e g g w S. Messner

September 1986 WP-86-38

I n t e r n a t i o n a l I n s t i t u t e for Applied Systems Analysis

(2)

NOT FOR QUOTATION WITHOUT THE PERMISSION OF THE AUTHORS

THE

INFLUENCE OF TECHNOLOGICAL CHANGES ON THE COST OF GAS

SUPPLY

M. S t r u b e g g e r S. Messner

September 1986 WP-86-38

W o r k i n g P a p e r s a r e interim r e p o r t s on work of t h e International Institute f o r Applied Systems Analysis and have r e c e i v e d only limited review. Views o r opinions e x p r e s s e d h e r e i n do not necessarily r e p r e s e n t those of t h e Institute o r of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria

(3)

Foreword

In s p r i n g 1986 a Task F o r c e Meeting on The M e t h a n e Age w a s jointly organized by IIASA and t h e Hungarian Committee f o r Applied Systems Analysis t o define t h e d i r e c t i o n s of r e s e a r c h f o r IIASA's Methane Study, a n a c t i v i t y inside t h e TES (Technology, Economy, S o c i e t y ) P r o g r a m . One of t h e issues r a i s e d in t h i s meeting c o n c e r n e d t h e c o s t s t r u c t u r e of supplying n a t u r a l g a s t o t h e final consumers.

This p a p e r analyzes t h e cost of supplying n a t u r a l g a s to a v i r t u a l consumer in C e n t r a l E u r o p e from a l l p r e s e n t l y conceivable s o u r c e s . The sensitivity of t h e p r i c e of supplying t h e g a s to c h a n g e s in t h e cost of single components i s a l s o in- vestigated. The a u t h o r s could p a r t l y build on t h e d a t a b a s e c o l l e c t e d d u r i n g t h e IIASA I n t e r n a t i o n a l Gas S t u d y , which included t h e economic a n d t e c h n i c a l f e a t u r e s of supplying n a t u r a l g a s in Europe--although o n a lower level of disaggregation.

(4)

Contents

I n t r o d u c t i o n

H i s t o r i c a l P e r s p e c t i v e s

The C o s t of N a t u r a l G a s S u p p l y T h e E f f e c t of Cost R e d u c t i o n s i n t h e

G a s S u p p l y S y s t e m

Taking t h e Methanol or Gasoline R o u t e D e e p Gas: A New C h a n c e

Final R e m a r k s B i b l i o g r a p h y

(5)

The Influence of Technological Changes on the Cost of Gas Supply

M. S t r u b e g g e r and S. Messner*

Introduction

Since t h e e a r l y 1950s t h e importance of n a t u r a l g a s as a p r i m a r y e n e r g y s o u r c e h a s been growing steadily. P r e s e n t l y (mid-1986) i t supplies n e a r l y 20% of global primary e n e r g y consumption, constituting t h e t h i r d l a r g e s t s o u r c e of e n e r g y a f t e r c r u d e oil a n d coal.

Technological innovation and improvements in performance during t h e previ- ous c e n t u r y have made this high d e g r e e of g a s use both possible and economically viable. In t h e s a m e way, t h e f u t u r e r o l e of n a t u r a l g a s will b e influenced by developments in g a s technology. In t h i s p a p e r w e t r y to investigate t h e e f f e c t s of technological improvements on t h e g a s e x t r a c t i o n and t r a n s p o r t system. The focus i s on n a t u r a l g a s supply options for Western E u r o p e , considering p r e s e n t l y feasi- ble, but not n e c e s s a r i l y economical, supplies from known g a s fields a r o u n d Europe.

Historical Perapectivea

An e a r l y example of a technological push o c c u r r e d in t h e Appalachian region, USA. After g a s production t h e r e had r e a c h e d i t s peak, a r o u n d 1917, t h e subse- quent decline lead to a doubling of g a s p r i c e s within five y e a r s . This stimulated f u r t h e r technological development in g a s t r a n s p o r t a t i o n systems, to make g a s from o t h e r fields accessible to t h e consumption c e n t e r s in question. A s a r e s u l t , about a dozen pipelines of m o r e t h a n 20 c m in diameter and longer t h a n 200 miles were built in t h e USA between 1927 and 1 9 3 1 (Tussig and Barlov, 1984). The longest pipe- line c o n s t r u c t e d a t t h a t time connected t h e Panhandle/Hugoton Field with Chicago, Ill., covering a distance of 1100 miles.

* W e thank Dr. M. Korchemkin f r o m t h e E s t o n i a n SSR Academy o f S c i e n c e s , USSR, f o r h i s valuable comments and h i s help i n compiltng t h e c o s t data f o r t h e S o v l e t g a s supply s y s t e m .

(6)

More r e c e n t developments are t h e p r o d u c t i o n of n a t u r a l g a s from r a t h e r hos- t i l e a r e a s , s u c h as t h e N o r t h Sea or p e r m a f r o s t r e g i o n s in t h e USSR, a n d i t s t r a n - s p o r t o v e r long a n d d i f f i c u l t r o u t e s b y pipelines or e v e n as liquid n i t r o g e n g a s (LNG). The r e l a t i v e youth of t h e technologies involved makes u s c o n f i d e n t in f o r e - c a s t i n g f u r t h e r t e c h n i c a l improvements and t h u s cost r e d u c t i o n s .

To assess f u t u r e cost developments, t w o phenomena h a v e to b e s e p a r a t e d : ( a ) cost r e d u c t i o n s d u e to t e c h n i c a l improvements, economies of s c a l e , a n d grow-

ing e x p e r i e n c e , a n d

(b) cost i n c r e a s e s d u e to t h e n e c e s s i t y to u s e g a s e x t r a c t i o n s i t e s at m o r e u n f a v o r a b l e l o c a t i o n s

-

in t e r m s of geology, climate, a n d d i s t a n c e to t h e con- s u m e r .

Figure 1 shows t h e s e t w o e f f e c t s on t h e c a p i t a l n e e d e d f o r e x t r a c t i n g c o a l , oil, a n d g a s in d i f f e r e n t c o u n t r i e s . Whereas, with growing e x p e r i e n c e , t h e capital-output r a t i o f o r oil a n d g a s p r o d u c t i o n d e c r e a s e d s t r o n g l y in areas with similar geology

-

in t h e FRG i t d r o p p e d b y more t h a n 6% p.a. between 1 9 6 0 a n d 1 9 7 4

-

i t i s c o n s i d e r - a b l y h i g h e r at h o s t i l e l o c a t i o n s , s u c h as t h e N o r t h Sea. However, t h e t r e n d in t h e c a p i t a l r e q u i r e d to p r o d u c e a n additional amount of oil or gas i s s i m i l a r to t h e development e x p e r i e n c e d in t h e FRG. I t i s a l s o i m p o r t a n t to n o t e t h a t t h e l o n g e r a technology h a s b e e n in o p e r a t i o n , t h e s m a l l e r t h e cost d e c r e a s e s become.

C u r r e n t l y , Norway e x p e r i e n c e s t h e h i g h e s t unit cost r e d u c t i o n s p e r y e a r .

In c o n t r a s t to t h e c a p i t a l - o u t p u t r a t i o f o r oil a n d g a s p r o d u c t i o n , t h e s p e c i f i c c a p i t a l n e e d s f o r c o a l mining are i n c r e a s i n g in a l l c o u n t r i e s , as shown in F i g u r e 1.

The long t r a d i t i o n of coal mining in t h e s e c o u n t r i e s n e c e s s i t a t e s t h e e x p l o i t a t i o n of c o a l from areas with t h i n n e r seams, p o o r e r q u a l i t y , a n d g r e a t e r d e p t h s

-

r e s u l t i n g in a n i n c r e a s i n g c a p i t a l intensity. But also t h e s h i f t to o p e n c a s t mining a n d , e v e n more, t h e automation of u n d e r g r o u n d mining h a v e l e a d to h i g h e r investment needs.

Similar dynamics were e x p e r i e n c e d with oil a n d g a s p r o d u c t i o n in t h e USSR.

T h e r e t h e a v e r a g e capital-output r a t i o (in r o u b e l s p e r e n e r g y unit) f o r oil pro- duction i n c r e a s e d b y 15% a n d f o r g a s p r o d u c t i o n by 24% in t h e p e r i o d f r o m 1 9 6 6 to 1 9 7 5 (Smolik, 1981). F i g u r e 1 i n d i c a t e s t h a t , owing to t h e development of N o r t h Sea oil a n d g a s fields, a s i m i l a r t r e n d holds f o r Western E u r o p e as a whole. This t r e n d will c o n t i n u e when o i l a n d g a s p r o d u c t i o n moves f u r t h e r n o r t h to locations l i k e Haltenbanken or Troms off t h e Norwegian coast. However, technological p r o - g r e s s a n d growing e x p e r i e n c e will a g a i n d e c r e a s e t h e initially high c o s t s , o n c e t h e

move toward y e t untouched r e s e r v o i r s h a s b e e made.

(7)

Figure 1. Capital-Output Ratios f o r the Extraction of Energy Resources.

Source: Smolik, 1981.

14.9 United Crude Petroleum

Gas Extraction

C,

3 P

C,

z

3 m

3.5 -

.-

C,

J

P

3.0 -

(Mostly coal until 1970) 2.0 -

1.5 -

Coal Mining - USA (BEA)

1 .o

(8)

84' $ / BOE

1970 7 2 7 4 7 6 7 8 '80 8 2 '84

Year

Figure 2. Drilling Costs p e r Million boe of Oil a n d Gas P r o d u c e d , USA 1970-1984, in 1984 US$.

S o u r c e : Rose, 1985.

T h e s e cost r e d u c t i o n s , however, d o not hold f o r t h e t o t a l d r i l l i n g c o s t s . An investigation of t h e d r i l l i n g costs in t h e lower 48 states of t h e USA (Rose, 1985) shows t h a t a v e r a g e d r i l l i n g costs p e r f o o t rose c o n s i d e r a b l y d u r i n g t h e p e r i o d 1960 to 2983. F i g u r e 2 shows t h e t o t a l drilling casts p e r b o e l of oil a n d g a s p r o - d u c e d in t h e USA d u r i n g t h e p e r i o d 1970-1984 (API, 1986; OECD, 1984, 1986). The i n c r e a s e in total d r i l l i n g costs f r o m l e s s t h a n $1 to o v e r $6 p e r b o e i s mainly r e l a t e d to t h e time r e q u i r e d f o r drilling (Adelman a n d Ward, 1980). The i n c r e a s i n g d e p t h s a n d m o r e difficult geological formations r e q u i r e m o r e time p e r f o o t d r i l l e d a n d t h u s i n c r e a s e t h e a s s o c i a t e d costs. The s h a r p d r o p in costs at t h e e n d of t h e p e r i o d r e f l e c t s a c h a n g e d s t r a t e g y r e g a r d i n g drilling d e p t h s . The number of wells d r i l l e d to 15000-20000 f e e t d r o p p e d by n e a r l y half

-

f r o m 1140 in 1982 to 652 in 1984 - a n d t h e number of wells d r i l l e d to d e p t h s below 20000 f e e t f e l l from 138 to

'1 boe

-

1 barrel of oil equivalent- 6.12 x 1 0 ' ~ .

(9)

37. Another r e a s o n f o r t h i s cost r e d u c t i o n was t h a t t h e f a l l in d e e p drilling activi- t i e s a f f e c t e d mainly g a s wells. This lead to o v e r p r o p o r t i o n a l cost savings, f o r g a s wells are usually d e e p e r t h a n oil wells

-

o n a v e r a g e by 40% in 1984. Moreover, t h e y are a p p r o x i m a t e l y 17% a n d 24% more e x p e n s i v e t h a n o i l wells at d e p t h s of 15000-20000 f e e t a n d below 20000 f e e t , r e s p e c t i v e l y . The l a r g e s t i n c r e a s e in t h e number of wells was e x p e r i e n c e d at d e p t h s l e s s t h a n 5000 f e e t , which are a b o u t 10 times c h e a p e r t h a n wells d e e p e r t h a n 15000 f e e t (API, 1986).

In c o n t r a s t to t h e r a t h e r s t r o n g c h a n g e s in capital-output r a t i o s e x p e r i e n c e d in r e s o u r c e e x t r a c t i o n , c a p i t a l n e e d s f o r g a s transmission a n d d i s t r i b u t i o n d r o p p e d by only 2-3% p e r y e a r . F o r comparison, changing conditions in t h e USSR, with t h e s h i f t of g a s p r o d u c t i o n from t h e E u r o p e a n to t h e S i b e r i a n p a r t of t h e c o u n t r y , r e s u l t e d in a t r i p l i n g of t h e g a s t r a n s p o r t a t i o n costs between 1970 a n d mid-1986.

The cost of d i s t r i b u t i n g n a t u r a l g a s to t h e final consumer

-

today usually t h e d e a r e s t component of a g a s s y s t e m

-

was r e l a t i v e l y low d u r i n g t h e f i r s t p h a s e of i t s introduction in E u r o p e . In densely populated areas i t w a s o f t e n possible to t a k e a d v a n t a g e of e x i s t i n g g r i d s , which were built e a r l i e r f o r t h e d i s t r i b u t i o n of 'town g a s ' p r o d u c e d f r o m coal. In many o t h e r areas t h e g a s g r i d could b e c o n s t r u c t e d simultaneously with t h e development of new housing areas. This p h a s e came to a n e n d d u r i n g t h e 1970s. when a l l t h e areas damaged d u r i n g World W a r I1 had b e e n finally r e c o n s t r u c t e d a n d t h e e r e c t i o n of s a t e l l i t e towns s t a g n a t e d .

Table 1. P r i c e S t r u c t u r e f o r t h e Supply of N a t u r a l Gas a n d Oil P r o d u c t s in Aus- t r i a ( X ) .

S o u r c e : Safoschnik, 1985 P r o d u c t i o n

T r a n s p o r t

Distribution/Storage/Refining Taxes a n d P r o f i t s

Table 1 shows t h e cost s t r u c t u r e of supplying n a t u r a l g a s to t h e end-user i n Austria f o r 1984, a n d c o m p a r e s i t with t h e supply of r e f i n e r y p r o d u c t s . This exam- ple shows t h a t , in 1984, 30% of t h e t o t a l cost of g a s supply (i.e., price l e s s t h e

Gas Oil

7 7

24 7

4 9 26

20 60

(10)

t a x e s a n d p r o f i t s shown i n Table 1 ) was n e c e s s a r y to t r a n s p o r t t h e g a s to t h e c e n t e r s of consumption and t h a t a n o t h e r 60% was used f o r s t o r i n g a n d d i s t r i b u t i n g i t . Only 1 0 % of t h e o v e r a l l cost i s i n c u r r e d in e x t r a c t i o n . I t was mainly t h e s e high costs f o r t r a n s p o r t a t i o n and d i s t r i b u t i o n t h a t l e f t just 20% of t h e selling p r i c e of g a s f o r p r o f i t s a n d taxes. F o r c r u d e oil, on t h e o t h e r h a n d , p r o f i t s and t a x e s a c c o u n t e d f o r 60% of t h e selling p r i c e in 1984. This high i n t r i n s i c value was, how- e v e r , only valid f o r oil p r o d u c e r s in t h e Middle E a s t . F o r t h e N o r t h Sea t h e pro- duction costs are obviously much h i g h e r , r e s u l t i n g in a s m a l l e r i n t r i n s i c value.

Thus, t h e oil p r i c e d e c r e a s e of 1 9 8 6 f r o m o v e r $25 to a r o u n d $10 p e r b o e made many N o r t h Sea g a s a n d oil p r o j e c t s uneconomic a n d r e s u l t e d in a r e e v a l u a t i o n of investment plans.

The supply cost of n a t u r a l g a s , i t s composition, a n d possible f u t u r e develop- ments i s investigated in t h e following s e c t i o n s , giving a f i r s t o r d e r approximation of t h e r e l e v a n c e of technological improvements in t h e coming d e c a d e s .

The C o a t o f N a t u r a l G a s S u p p l y

The following a n a l y s i s f o c u s e s on supplying a consumer i n C e n t r a l E u r o p e with n a t u r a l g a s f r o m v a r i o u s s o u r c e s . These d i f f e r e n t supply s o u r c e s include t h e Norwegian p a r t of t h e N o r t h S e a , t h e USSR, Africa, a n d t h e Middle E a s t . Domestic supply from conventional s o u r c e s i s n o t t a k e n i n t o a c c o u n t , s i n c e a n i n c r e a s e in production s u f f i c i e n t to match additional demands seems unlikely. Also, t h e influ- e n c e of p r o f i t s a n d / o r t a x e s o n t h e p r i c e of g a s i s n o t examined. W e only analyze t h e cost s t r u c t u r e of g a s supply a n d t h e influence of cost-reducing technological c h a n g e s along t h e e n t i r e g a s chain.

E z t r a c t i o n

Table 2 g i v e s a n overview of t h e costs of producing n a t u r a l g a s from v a r i o u s fields. The e s t i m a t e s of p r o d u c t i o n costs2 f o r n a t u r a l g a s r a n g e from ~ ~ $ 9 / 1 0 0 0 m ~ in t h e Middle E a s t to ~ ~ $ 1 0 0 / 1 0 0 0 m ~ f o r g a s p r o d u c e d in t h e n o r t h e r n N o r t h Sea.

The production costs at t h e high end of t h e r a n g e r e p r e s e n t some ~ ~ $ 1 4 / b o e , ~ which makes t h e r e l a t e d p r o j e c t s uneconomic at t h e oil p r i c e prevailing in mid- 1986.

S f not stated explicitly, c o s t figures s r e expressed in 1984 USS.

'lboe m 190 ma of Dutch gas, 164 m3 of S o v l e t gas, or 137 m of Norweglan gas.

(11)

Table 2. N a t u r a l Gas Fields a n d P r o d u c t i o n Costs (1984).

Field P r o v e n Depth 1984 E x p o r t s to Costs ($/I000 m R e s e r v e s Western E u r o p e

in 1985 P i p e LNG c a p i t a l a ) O p e r a t i n g Total

[1oem3]

rrn]

[loem

'3

NORWAY

S t a t f j o r d 400 145

- -

31.2 7.4 38.6

Ekofisk 216 68

- -

24.2 11 .8 36.0

Valhall 20 70

- -

36.9 18.1 55.0

Gullfaks I 12 180

- -

74.3 32.2 106.4

Heimdal 31 120

- -

70.4 19.4 89.8

S l e i p n e r 140 100

- - - -

69 .O

Troll 480 350

- - - -

75.0

Troms 250 200

- - - -

65-92

Total 1548

-

12.6 0.0

- - -

NETHERLANDS

Groningen 1422

- - - - -

11.0

Offshore 338 40

- - - -

16.0

Total 1760

-

37.4 0 .O

- - -

USSR

Urengoy 10000

- - -

-

-

22.0

O t h e r ~ . ~ i b . ~ ) 20000

- - - - -

26-30

Total 30000

-

33.2 0.0

- - -

AFRICA

Algerla 3155

-

6.6 11 .O

- -

10.2

Nigeria 1370

-

0.0 1.1

- -

12-15

Total 4525

-

6.6 12.2

- - -

MIDDLE EAST

Pers.Gulf 22394

-

0.0 0.0

-

- 9 .O

TOTAL 60227

-

89.8 12.2

- - -

')capital costs are d i s c o u n t e d with 10X p.a.

b ) ~ n c l u d e s Yamburg, Yamal, MedvezhOye, Vyngapur a n d o t h e r fields In N o r t h Western S l b e r l a .

S o u r c e s : Petroleum Economist ( v a r i o u s i s s u e s f r o m 1978 to 1986); L o r e n t s e n et a l . , 1984; S t e r n , 1984.

(12)

Compared with costs f o r o t h e r e n e r g y c a r r i e r s , e.g., domestic c o a l or biomass fuels, t h e a v e r a g e costs f o r e x t r a c t i n g n a t u r a l g a s

-

as given in Table 2

-

are in most cases modest (a cost of $30/1000m3 i s equivalent to $5/boe). However, a major problem f o r t h e g a s i n d u s t r y i s t h e l a r g e initial investment needed to start u p a new field. F o r t h e development of t h e Viking field (with r e s e r v e s of 9 2 b ~ m ) , ~ in t h e most s o u t h e r n p a r t of t h e N o r t h S e a , c l o s e to G r e a t Britain, t h e c a p i t a l r e q u i r e m e n t s w e r e $250 million a n d f o r t h e Frigg field (226 bcm), in t h e c e n t r a l p a r t of t h e N o r t h S e a , t h e y were e v e n a b o u t $3600 million. The investment costs f o r developing t h e S l e i p n e r a n d east Troll fields ( f o r a planned e x t r a c t i o n of 450 bcm) are estimated to b e in t h e r a n g e of $6 to $8 billion. Similar costs are r e p o r t e d f o r t h e development of t h e S o v i e t Yamburg g a s field (7500 bcm)

-

4 bil- lion r o u b e l s , equivalent to some $5 billion (1984 c u r r e n c y units) (Shamrayev, 1984). But a l s o t h e annual o p e r a t i n g c o s t s , most of them independent from produc- tion level, a r e c o n s i d e r a b l e . F o r t h e Frigg field t h e y are of t h e o r d e r of $235 mil- lion p e r y e a r (all N o r t h Sea cost d a t a from L o r e n t s e n , st al., 1984).

A p a r t from t h e s e l a r g e c a p i t a l n e e d s , f r e q u e n t l y t h e initial e s t i m a t e s of costs a n d field p e r f o r m a n c e d i f f e r s u b s t a n t i a l l y from t h e costs e x p e r i e n c e d o n c e a field i s in o p e r a t i o n . A comparison of o r i g i n a l cost e s t i m a t e s a g a i n s t a c t u a l costs w a s p e r f o r m e d f o r 2 3 N o r t h Sea fields in 1 9 8 4 (Castle, 1985). I t shows t h a t t h e invest- ment costs were o v e r e s t i m a t e d f o r only 3 of t h e s e 2 3 fields. On a v e r a g e , t h e a c t u a l investment costs were 95% h i g h e r t h a n t h e o r i g i n a l e s t i m a t e s , with t h e highest o v e r r u n by n e a r l y a f a c t o r of 10 f o r t h e Cormorant Field. Similarly, e s t i m a t e s f o r field production t h r o u g h 1983 were n o t r e a c h e d by 2 1 fields; o n a v e r a g e , produc- tion w a s 38% lower t h a n originally estimated. In t o t a l , a r e e v a l u a t i o n of a l l 2 3 fields yielded a 624% o v e r r u n f o r t h e o p e r a t i n g costs o v e r t h e e x p e c t e d life of t h e fields.

A p a r t from t h e costs f o r g a s e x t r a c t i o n , t h e c o n s t r u c t i o n of t r a n s p o r t a t i o n pipelines o f t e n r e q u i r e s e v e n h e a v i e r investments. P r o b a b l y t h e l a r g e s t invest- ment so f a r w a s t h e pipeline system linking West S i b e r i a n gas f i e l d s to E u r o p e a n USSR a n d to West a n d E a s t E u r o p e . The costs f o r t h i s system are estimated at $30 billion, enabling t h e t r a n s p o r t of 1 3 0 bcm p e r y e a r o v e r d i s t a n c e s of up to 4800 km. New plans are made f o r a n o t h e r multibillion d o l l a r g a s p r o j e c t in t h e USSR

-

a

pipeline system, planned to t r a n s p o r t some 250 billion m3 p e r y e a r (Kirby, 1984) from Yamburg to t h e western b o r d e r of t h e USSR; costs initially estimated a t some 4bcm

-

b i l l i o n m 3

=

10'm9

-

37.26 PJ.

(13)

$40 billion ( R a v d a , June 1 9 , 1986). Not only is t h e t r a n s p o r t a t i o n of g a s via pipe- lines a r a t h e r c a p i t a l intensive undertaking; s o is t h e t r a n s p o r t of LNG. The investment costs f o r a LNG chain a b l e to t r a n s p o r t 11 bcm p e r y e a r from t h e Mid- dle East t o E u r o p e are of t h e o r d e r of $7 billion (in 1981 US$) (IEA, 1982).

Table 3. Transportation Costs (US$ 1983/1000m3) and Distances (km) for Select- e d Gas T r a n s p o r t Routes.

" ~ a s e d on t h e costs f o r t h e f i r s t s t a g e of t h e Urengoy-Uzhgorod pipeline. Costs will b e r e d u c e d by

-

10% when, during t h e second s t a g e , t h e c a p a c i t y will i n c r e a s e f r o m 26 to 55 bcm p e r y e a r ; CE is Central Europe.

S o u r c e s : Runge, 1983; Benzoni, 1985; Astakhov and Subbotin, 1985.

Ekofisk-Emden Valhall-Emden Statfjord-Emden Gullfaks-Emden Heimdal-Emden Troll-Emden Troms-Emden Sleipner-Emden Emden-CE Groningen-CE NL offshore-CE

~ r e n ~ o ~ - ~ ~ ~ ) West ~ i b e r i a - C E ~ )

Algeria-Italy-CE ALg .-Fos-sur-Mer-CE Nigeria- Alg

.

-Spain-CE Nigeria-W'haven-CE Gulf-Turkey-Italy-CE Gulf-Turkey-Yug-CE Gulf -Syria-Triest-CE

Table 3 summarizes t h e g a s t r a n s p o r t a t i o n costs f r o m t h e areas considered to Central Europe. They lie in t h e r a n g e of US$? p e r 1000m3 for o n s h o r e pipelines in relatively e a s y t e r r a i n t o US$l30 p e r 1000m3 f o r pipelines in hostile environ- ments, such as t h e p e r m a f r o s t areas in S i b e r i a , or for LNG schemes. Thus, t h e t r a n s p o r t a t i o n costs f o r n a t u r a l g a s are at t h e same level as t h e e x t r a c t i o n costs.

Pipe- Lique- Regasi- S e a Total line faction fication Transp. Costs

16.0

- - -

16.0

17.0

- - -

17.0

40.0

- - -

40.0

41.0

- - -

41.0

23.5

- - -

23.5

42.0

- - -

42.0

8 0 .O

- - -

80.0

20.0

- - -

20.0

7.0

- - -

7.0

6.5

- - -

6.5

10.9

- - -

10.9

95.3

- - -

95.3

1 0 2 .O

- - -

102.0

66.4

- - -

66.4

8.5 64.7 17.9 7.2 98.2

98 -7

- - -

98.7

11.8 57.9 15.3 45.1 130.1

91.0

- - -

91.0

80.0

- - -

80.0

41.7 57.9 13.6 17.0 130.2

Length Land S e a

442.

-

470.

-

1140.

-

1160.

-

790.

-

1100.

-

2700.

-

690.

-

<

1000.

-

< 1 0 0 0 .

-

<

1000.

-

5000.

-

6000.

-

3000.

-

600. 500.

6000.

-

500. 4500.

5600.

-

5265.

-

2400. 1450.

(14)

Storage and Distribution

Whereas c o s t estimates f o r n a t u r a l g a s e x t r a c t i o n and t r a n s p o r t a t i o n c a n b e compiled from d a t a on s p e c i f i c p r o j e c t s , such a n undertaking i s much more diffi- cult f o r t h e c o s t of s t o r i n g and distributing gas. F o r s t o r a g e t h i s i s because t h e composition of g a s consumers

-

and t h e r e f o r e t h e daily and seasonal load varia- tion

-

d i f f e r s widely between c o u n t r i e s and even between r e g i o n s in a country. The need f o r s t o r a g e depends:

-

on t h e t y p e of c o n t r a c t s between t h e e x p o r t e r s and i m p o r t e r s (i.e., take-or- pay c l a u s e s o r seasonal variability in t h e c o n t r a c t s ) ,

-

on how much of t h e p e a k s in g a s consumption f o r domestic s p a c e heating c a n b e compensated by i n t e r r u p t i b l e c o n t r a c t s with industrial consumers, and

-

on how much domestic supply t h e importing c o u n t r y uses f o r peak shaving.

The c o s t s of storage s y s t e m s d i f f e r widely because d i f f e r e n t storage t y p e s have completely d i f f e r e n t investment costs and performances. Gas c a n b e s t o r e d , depending on geological conditions, in depleted oil o r g a s fields, a r t i f i c i a l c a v e r n s in s a l t domes, or aquifers. Sometimes i t is a p p r o p r i a t e to store g a s in t h e form of LNG or to use liquid petroleum g a s (LPG) for peak supply. Table 4 provides a n overview of t h e costs of some g a s s t o r a g e systems.

Table 4. Costs f o r Different Gas S t o r a g e Systems.

Typical sizes f o r European installations.

b, Includes liquefaction plant.

') F o r weekly load shaving.

Storage Type S a l t Caverns

Depleted Gas Fields Aquifers

LNG b,

Gasometer )

S o u r c e : Monig , 1984.

s i z e '1 Capacity Specific Cost

loam

a l o a m '/day US$/1000m a

1.-22. .2 -5. .60-1.00

50. -3000. .05-2.

-

-05-.50 .3-1.6 .40

-

.80

15.-75. 2.-10. 1.4-3.50

.005

-

24.3-34.8

Gas s t o r a g e c a p a c i t y in E u r o p e amounted to only 18.1 bcm in 1984, i.e., s o m e 8% of 1984's g a s consumption. The maximum daily offtake w a s 361.4 million m a . For comparison, t h e s t o r a g e c a p a c i t y in t h e USA r e p r e s e n t s 43% of t h e annual g a s con- sumption in t h e s a m e y e a r . This l a r g e d i f f e r e n c e in how supply and demand a r e matched i s not s o much a reflection of d i f f e r e n t storage c o s t s in t h e two regions.

(15)

On t h e one hand, i t is t h e r e s u l t of t h e d i f f e r e n t distances between t h e a r e a s of production and consumption. On t h e o t h e r , i t is historically caused by institutional regulations in t h e US g a s market, which favored investments in g a s s t o r a g e facili- t i e s a n d called f o r constant e x t r a c t i o n rates (IEA, 1986). The s t o r a g e needs will also grow in E u r o p e , a f t e r t h e fields with flexible production rates in t h e s o u t h e r n North S e a and t h e Groningen field have been exhausted. The main supplies of n a t u r a l g a s will then b e provided by g a s t r a n s p o r t e d o v e r long distances or from fields with r a t h e r inflexible production rates in t h e c e n t r a l and n o r t h e r n p a r t s of t h e North S e a .

The a v e r a g e costs of g a s distribution are even m o r e difficult to estimate than are s t o r a g e costs. Different e n e r g y consumption densities and topographical f e a t u r e s substantially influence t h e cost of t h e distribution g r i d

.

As mentioned e a r l i e r , c h e a p options have a l r e a d y been taken; thus, with i n c r e a s e d g a s utiliza- tion, t h e distribution costs will r i s e . This i s mainly because regions with a lower e n e r g y consumption density a n d m o r e areas with a n existing building s t r u c t u r e will have to b e added to t h e system. This i s also t r u e f o r c o u n t r i e s t h a t h a v e not y e t introduced g a s , like Sweden, Norway, Turkey, or G r e e c e . In North E u r o p e t h e areas of high e n e r g y density are l a r g e l y supplied by d i s t r i c t h e a t , leaving only limited demand f o r n a t u r a l gas. In t h e south, e n e r g y consumption density for residential use is, due to climatic conditions, much lower t h a n in t h e n o r t h .

Figure 3 shows t h e cost variations f o r t h e construction of a new g a s distribu- tion system in areas with existing housing stock and in areas under construction (STOSEB, 1981). These t w o g r a p h s show c l e a r l y t h a t t h e introduction of n a t u r a l g a s will be limited by t h e exponential i n c r e a s e of costs f o r t h e construction of a distribution system in less densely populated areas. This is especially so when new g a s g r i d s are to b e introduced i n t o areas a l r e a d y inhabited.

The costs f o r s t o r a g e and distribution are estimated to b e $170 p e r 1000 m 3 for Germany (Monig, 1984) or $150 p e r 1000 m 3 for t h e Austrian g a s system (Safos- chnik, 1985). In o u r subsequent analyses w e use $160 as t h e cost f o r s t o r i n g and distributing 1000 m 3 of n a t u r a l g a s to a domestic consumer. F o r l a r g e s c a l e indus- t r i a l u s e r s or t h e g e n e r a t i o n of e l e c t r i c i t y a n d / o r d i s t r i c t h e a t t h e c o s t s are estimated to be in t h e r a n g e of $10-630 p e r 1000 m3, depending on t h e distance from t h e g a s main line and annual consumption. This cost differential between large- and small-scale u s e r s shows t h a t t h e a v e r a g e cost of delivering g a s to t h e end-user will depend l a r g e l y on t h e composition of t h e g a s u s e r s . The m o r e g a s t h a t is used in industry or f o r e l e c t r i c i t y generation, t h e c h e a p e r will t h e a v e r a g e m of g a s be.

(16)

F i g u r e 3. Costs for Constructing New Gas Distribution Systems in A r e a s ( a ) with a n d ( b ) without Existing Housing S t r u c t u r e .

Techno Logical Improvements

Reductions in drilling costs will b e d r i v e n mainly b y information o n t h e a c t u a l s i t u a t i o n at t h e bottom of t h e b o r e hole. P r e s e n t l y , s u c h information i s r a t h e r lim- i t e d , as

-

d u e to insufficient s p a c e a n d g e n e r a l l y u n f a v o r a b l e conditions

-

on-line measurements are v e r y d i f f i c u l t to u n d e r t a k e a n d q u i t e e x p e n s i v e . I t i s only re- c e n t l y , a f t e r d e c a d e s of drilling a c t i v i t i e s , t h a t initial measurements (Varnado, 1986) h a v e shown a s t r o n g v e r t i c a l oscillation of t h e drilling b i t , which r e d u c e s t h e efficiency of d r i l l i n g . If s u c h p r o b l e m s c a n b e solved, a f u r t h e r r e d u c t i o n in drilling costs seems a c h i e v a b l e .

Similarly, if t e c h n o l o g i c a l p r o g r e s s r e d u c e s t h e high cost of long-range t r a n s p o r t , t h e cost of supplying E u r o p e with Nigerian or Middle E a s t g a s will b e c u t c o n s i d e r a b l y . One o p t i o n c e r t a i n l y would b e t h e c o n s t r u c t i o n of pipelines i n s t e a d of using LNG t a n k e r s to t r a n s p o r t t h e g a s to E u r o p e . However, e a c h possi- b l e pipeline r o u t e r u n s t h r o u g h a number of c o u n t r i e s a n d t h u s r e p r e s e n t s a r i s k to s e c u r i t y of supply. Additionally, t h e LNG r o u t e could p a v e t h e way to a s p o t - m a r k e t f o r g a s , r e d u c i n g t h e need f o r long-term, b i l a t e r a l c o n t r a c t s .

(17)

According to Runge (1983) i t s e e m s unlikely t h a t cost reductions beyond 5%

c a n b e achieved in pipelines and LNG operations. This would r e s u l t in a reduction of t o t a l costs by s o m e 2% and would t h u s not change t h e situation dramatically.

However, for pipelines running f r o m Western S i b e r i a to Europe cost reductions of up to 15% may b e achieved, once full c a p a c i t y h a s been utilized and t h e gas-driven compressors are r e p l a c e d by e l e c t r i c ones.

An improvement of t h e o r d e r of 5% to 10% c a n b e achieved f o r m o s t of t h e o p e r a t i o n s along t h e gas chain by, e.g.:

-

increasing t h e size of t h e g a s pipes f r o m 1400 mm to 1500 or even 1600 mm,

-

increasing t h e p r e s s u r e in t h e g a s pipes f r o m a maximum of 8 0 b a r to 100 b a r , (e.g., planned f o r t h e f i r s t 500 km of t h e pipeline from Yamal in N o r t h e r n S i b e r i a ) o r , l a t e r , e v e n to 200 b a r ,

-

using e l e c t r i c a l c o m p r e s s o r s instead of g a s ones,

-

improving pipe laying through a h i g h e r d e g r e e of standardization, or

-

increasing t h e load f a c t o r s of t h e t r a n s p o r t a t i o n systems.

Gas distribution will, a p a r t from t h e introduction of plastic tubes to r e p l a c e cast iron, not become much c h e a p e r in t h e f u t u r e . Minor improvements could s t e m from t h e automation of pipe laying, but t h e y will b e offset by t h e worsening of con- ditions, as mentioned before. F o r areas t h a t r e q u i r e v e r y expensive distribution systems, i t may even pay t o c o n v e r t g a s into e l e c t r i c i t y and utilize t h e existing e l e c t r i c i t y distribution system to supply e n e r g y to t h e end-user, especially when h e a t pumps c a n b e used to produce low-temperature h e a t . Even if t h e existing g r i d i s not sufficient, a n upgrading would often b e c h e a p e r t h a n t h e introduction of a new g a s g r i d .

The Effect of Cost Reductions in the Gas Supply Spstem

Compiling t h e costs i n c u r r e d in supplying a Central European consumer with n a t u r a l g a s from t h e areas considered yields a cost r a n g e from $177 to $350 p e r 1000 m (see Table 5). The costs f o r delivering t h e g a s to t h e region (i.e., without costs for distribution) r a n g e from $17.5 to $160 p e r 1000 m3 ( o r $0.5 to $5 p e r MBTU). Comparing t h e l a t t e r value with t h e mid-1986 e n e r g y p r i c e situation shows t h a t m o s t of t h e cost f i g u r e s e x c e e d mid-1986 c r u d e oil import p r i c e s (- $12/boe

=

$2.07/MBTU). Gas p r i c e s f o r t h e residential consumers

-

$360 p e r 1000 m3 in Aus- t r i a , June 1986, equivalent to $265 in 1984 c u r r e n c y 5

-

are a l r e a d y approaching ''In converting from 1986 t o 1984 US$ the decrease in exchange r a t e s (from 20 AS t o 15.5

AS per US$) and the US$ lnflatlon (5.2%) were taken Into account.

(18)

t h e c u r r e n t delivery costs (see Table 5). However, t h e c o n t r a c t signed in June 1986 f o r g a s from t h e Norwegian Troll and S l e i p n e r fields is, with $3.6/MBTU (equivalent to $2l/boe) (Petroleum Economist, 7, 1986), well a b o v e t h e mid-1986 e n e r g y p r i c e s . In f a c t t h a t p r i c e indicates t h a t t h e buyers' consortium is expect- ing a n oil p r i c e of a b o u t $29 p e r boe in t h e l a t e 1990s.

Table 5. Total Costs and Cost S t r u c t u r e f o r Gas Delivered from Various Loca- tions to Central Europe.

Costs Cost S t r u c t u r e (X)

Excluding Including

~ i s t r i b u t i o n ' ) Distribution E x t r a c - Trans- Distri- C$/MBTUl [$/I000 m

'1

tion p o r t bution b,

Groningen 0.50 177.5 6 4 90

NL of f s h o r e c ) 0.76 166.9 9 6 86

Ekofisk 1.67 219.0 16 11 73

Algeria 2.17 236.6 4 28 68

Valhall 2.24 239.0 23 10 67

Statf jord 2.42 245.6 16 19 65

Pers.Gulf 2.52 249.0 4 32 64

S l e i p n e r 2.72 256.0 27 11 63

Pers.Gulf '1 2.83 260.0 3 35 62

Algeria* 3.07 268.4 4 37 60

Nigeria 3.18 272.2 5 36 59

Urengoy 3.32 277.3 8 3 4 58

Heimdal 3.41 280 -3 32 11 57

Troll 3.51 284 .O 26 17 56

O t h e r W.Sib. 3 -68 290 .O 10 35 55

Pers.Gulf 3.94 299.2 3 44 53

Nigeria* 4.07 303.6 4 43 53

Gullfaks 4.36 314.1 34 15 51

Troms ) 4.87 332.0 26 26 48

Tromse ) 5.01 337.0 25 27 47

*Gas is t r a n s p o r t e d as LNG.

hat

i s , delivery costs to C e n t r a l E u r o p e (multiply by 35.31 to c o n v e r t into

$/1000m ').

b ) ~ o s t f o r distribution are $160/1000m3 f o r a l l p r o j e c t s .

"NL

=

Netherlands.

* ) ~ r a n s ~ o r t e d by pipeline via Yugoslavia.

" ~ r a n s ~ o r t e d by pipeline via Italy.

as

from Troms t r a n s p o r t e d via o n s h o r e pipeline a c r o s s Sweden to Hamburg.

as

from Troms t r a n s p o r t e d via o f f s h o r e pipeline to Emden.

Since t h e cost s t r u c t u r e depends heavily on t h e location of t h e g a s field, t h e f i g u r e s given in Table 5 d i f f e r widely. Whereas t h e e x t r a c t i o n costs f o r fields in Algeria, Nigeria, o r t h e P e r s i a n Gulf r e p r e s e n t a b o u t 5X of t h e t o t a l c o s t of delivering g a s to t h e end-user, t h e y a p p r o a c h 10X f o r new fields in Western

(19)

S i b e r i a , a n d e v e n e x c e e d 30% f o r new fields in t h e N o r t h Sea. The t r a n s p o r t of g a s from areas with c h e a p p r o d u c t i o n costs to C e n t r a l E u r o p e i s q u i t e c o s t l y , r e v e r s - ing t h e cost s t r u c t u r e in r e l a t i o n to fields in t h e North Sea. These costs c a n amount to 35% of t h e t o t a l costs f o r pipeline t r a n s p o r t a t i o n a n d e v e n to more t h a n 40% f o r LNG r o u t e s .

Given t h i s cost s t r u c t u r e a n d assumptions o n cost r e d u c t i o n s f o r e a c h element of t h e g a s d e l i v e r y c h a i n , we e s t i m a t e t h e m e c t of technotogicat i m p r o v e m e n t s o n t h e t o t a l costs of d e l i v e r i n g g a s to t h e end-user. P r o p o s i n g t h a t c a p i t a l costs for drilling in t h e N o r t h Sea c a n b e f u r t h e r r e d u c e d by 7% p e r y e a r

-

as indicated in F i g u r e 1

-

a n d t h a t Troms will b e developed 2 0 y e a r s from now, t h e following c a n b e concluded:

-

investment costs would b e r e d u c e d to 25% of t h e mid-1986 e s t i m a t e ,

-

t h e e f f e c t o n t h e t o t a l e x t r a c t i o n cost

-

of which investment costs f o r drilling r e p r e s e n t a b o u t 60% (Lorenlsen et a t . , 1984)

-

would b e a 45% r e d u c t i o n ,

-

t h e cost of g a s d e l i v e r e d to C e n t r a l E u r o p e , a n d t h u s t h e cost of supplying l a r g e consumers, would b e r e d u c e d b y 23%, a n d

-

t h e t o t a l cost of g a s p r o d u c e d from Troms a n d d e l i v e r e d to a domestic consu- m e r would b e r e d u c e d b y 12%.

Thus, g a s from s u c h r e m o t e s i t e s would b e 1 2 % or 23% more competitive t h a n t h e mid-1986 cost e s t i m a t e s s u g g e s t . This i s , compared with t h e r e d u c t i o n in invest- ments in drilling equipment, a r e l a t i v e l y small e f f e c t f o r domestic consumers.

Major e f f e c t s could only b e e x p e c t e d from c h a n g e s in d i s t r i b u t i o n costs. S u c h c h a n g e s are n o t f o r e s e e a b l e with t h e technologies used today. so a real innovation i s r e q u i r e d .

Taking the Methanol or G a s o l i n e R o u t e

Techniques to r e d u c e t h e c o s t s of t r a n s p o r t i n g n a t u r a l g a s o v e r long dis- t a n c e s could b e b a s e d o n i t s c o n v e r s i o n i n t o methanol, gasoline, or t h e middle dis- tillates. A number of s t u d i e s w e r e u n d e r t a k e n to i n v e s t i g a t e t h e s e o p t i o n s (e.g., Jawetz, 1984; Kliman, 1984; Musgrove, 1984). Most of t h e s t u d i e s conclude that t h e production of a liquid f u e l from n a t u r a l g a s i s a viable option. This might b e t h e case when high-priced imported oil p r o d u c t s are compared with r e l a t i v e l y c h e a p domestic n a t u r a l g a s s u p p l l e s

-

as f o r New Zealand a n d Australia. This Is a l s o t r u e when g a s , which i s c u r r e n t l y f l a r e d i n t h e Middle E a s t , i.e., i s r e g a r d e d as having n o value, Is used as f e e d s t o c k f o r t h e production of methanol, gasoline, or t h e

(20)

middle d i s t i l l a t e s (gas oil, k e r o s e n e , naphtha). The l a t t e r o p t i o n may b e v e r y valu- a b l e f o r t h e developing c o u n t r i e s , w h e r e e a s i l y t r a n s p o r t a b l e a n d s t o r a b l e fuels are needed u r g e n t l y to r e p l a c e c r u d e o i l imports, a n d where t h e implementation of a g a s i n f r a s t r u c t u r e i s t o o costly. The production of k e r o s e n e could a l s o help to ease t h e s h o r t a g e of f i r e wood, a s e v e r e problem in many c o u n t r i e s .

The costs of gasoline or middle d i s t i l l a t e s p r o d u c e d from n a t u r a l g a s are estimated to b e $337 or $318 p e r ton of product6 ($7.9 or $7.5 p e r MBTU) r e s p e c - tively ( T h a c k e r a y , 1986). The production of methanol would cost some $2.5 p e r MBTU.

The major drawback of s u c h o p e r a t i o n s i s t h e high loss of the o r i g i n a l t h e r m a l c o n t e n t of n a t u r a l gas: the efficiency of producing methanol from n a t u r a l g a s is 60%, t h a t f o r producing gasoline as low as 50%. This means t h a t 30-50% of t h e o r i - ginal e n e r g y c o n t e n t of n a t u r a l g a s 1s l o s t (Jawetz, 1984; T h a c k e r a y , 1986), w h e r e a s only 1 7 % or 7% of t h e g a s originally e x t r a c t e d i s l o s t with LNG c h a i n s or pipeline systems, r e s p e c t i v e l y [example t a k e n f o r g a s t r a n s p o r t e d from Algeria to E u r o p e (IEA, 1982)l. The c o n v e r s i o n of g a s i n t o middle d i s t i l l a t e s or gasoline will p r o b a b l y b e r e s t r i c t e d to domestic p r o j e c t s f o r t h e r e a s o n s outlined a b o v e . The f i r s t c o u n t r y following t h i s r o u t e i s New Zealand, where g a s i s c o n v e r t e d i n t o gaso- line at a p l a n t n e a r Motunui. F o r i n t e r n a t i o n a l t r a d e t h e methanol r o u t e may r e p r e s e n t a f e a s i b l e option when methanol i s used in t h e t r a n s p o r t a t i o n sector.

New developments in t h e e n e r g y s u p p l y system may improve t h e economics of methanol p r o d u c e d from n a t u r a l g a s . One option i s to u s e nonfossil h e a t from n u c l e a r or s o l a r s o u r c e s in a s t e a m reforming p r o c e s s to p r o d u c e methanol. Such a system could p r o d u c e 8 0 0 P J of methanol from 1 0 0 0 P J of n a t u r a l g a s . I t would additionally p r o v i d e 300 P J of h y d r o g e n , utilizing 740 P J of nonfossil high t e m p e r a - t u r e h e a t (Hafele et al., 1984). Processes like t h i s would b e s p e c i f i c a l l y s u i t e d f o r c o u n t r i e s in which o t h e r s o u r c e s of c a r b o n are available. Coal or h e a v y c r u d e s could b e u p g r a d e d using t h e hydrogen p r o d u c e d b y t h e p r o c e s s .

Deep Gas: A New Chance

The discussion as to w h e t h e r h y d r o c a r b o n s are of biogenic or abiogenic o r i - gin h a s been r e v i v e d r e c e n t l y . This question was discussed as e a r l y as t h e nineteenth c e n t u r y , when a number of s c i e n t i s t s (e-g., A. v. Humboldt a n d D. Men- d e l e e v ) a r g u e d t h a t h y d r o c a r b o n s are a p r o d u c t of methane outgasing from t h e

$ased on a g a s price of $1.00 per MBTU and capital charges of lo%, using 1985 US$.

(21)

c e n t e r of t h e e a r t h and do not s t e m from animal and plant d e b r i s (Graf, 1925). Dur- ing t h e following decades the l a t t e r explanation became a c c e p t e d . Only recently, new findings on t h e formation of t h e e a r t h and t h e detection of l a r g e amounts of methane in s p a c e gave new momentum to t h e old ideas as to t h e origin of oil and gas (Gold and S o t e r , 1980; Gold, 1985). A by-product of t h e t h e o r y of a n abiogenic ori- gin of hydrocarbons i s t h e proposition t h a t huge amounts of methane c a n be found at g r e a t e r depths. Currently, a number of drilling activities, aiming at depths between 6 and 15 km, a r e underway to test this hypothesis and obtain more infor- mation on t h e geological and physical conditions at such depths. Amongst them i s a p r o j e c t in Siljan, Sweden, which w a s established explicitly to find abiogenic gas, and p r o j e c t s in t h e USA, t h e FRG, and t h e USSR, which p a r t l y s e r v e purely scien- ti f ic purposes.

However, w e d o not intend h e r e t o investigate whether such g a s i s available and c a n be produced. Given t h e assumption t h a t d e e p gas e x i s t s , w e simply want to indicate those conditions under which i t could be competitive. If abiogenic g a s s t e m s from t h e c e n t e r of e a r t h , i t c a n be assumed to b e found at many locations, i.e., much c l o s e r to t h e point of consumption t h a n many fields mentioned e a r l i e r in this p a p e r . Transportation costs, in t h e r a n g e of $20 t o $120, could be saved (see Table 5). Compiling t h e c o s t s f o r supplying a n industrial u s e r , t h e r e l a t i v e savings would, due to t h e low distribution costs, b e much higher than f o r residential consu- m e r s .

But how competitive i s t h e drilling operation itself? The t h r e e main f a c t o r s t h a t determine t h e cost of producing d e e p gas are t h e depth and size of t h e deposit and t h e amount of g a s produced p e r well p e r day. A formula f o r estimating drilling c o s t s is given by Holmes st d. (1984):

where t h e depth is given in 1000 f e e t and costs in $1000. Given t h e p a r a m e t e r s L and m, which were estimated f o r 13 regions in t h e USA, t h i s formula yields, f o r a depth of 30000 f e e t , drilling c o s t s of between $4.6 and $27 m i l l i ~ n . ~ However, t h i s formula seems to underestimate at g r e a t e r depths. A comparison with a c t u a l dril- ling c o s t s (API, 1986) shows, f o r depths below 15000 f e e t , 20-30% h i g h e r costs than t h e highest value obtained by t h e above equation. An estimation using t h e equation

7 ~ i r s t value for parameters estimeted for North Eestern Luidena (1-1.637, m-2.732), second for North Texas (1-3.412, m-4.329).

(22)

( d = d e p t h in 1 0 0 0 f e e t , c = c o s t p e r w e l l in US$ million) with t h e 2 4 2 d a t a points given in API (1986) yields a v e r y good r e s u l t (ra

=

0.906) u p to a d e p t h of 22500 f e e t . Based o n t h i s formula t h e costs f o r a 30000 f o o t w e l l would b e $55 million.

This i s p r o b a b l y a n o v e r e s t i m a t i o n , as t h e d e e p e s t wells included in t h e d a t a set a r e , f o r r e a s o n s e x p l a i n e d e a r l i e r , s t i l l v e r y e x p e n s i v e . But d r i l l i n g costs are a c t u a l l y also a function of time

-

as e x p e r i e n c e grows, costs g o down

-

t h e r e f o r e , a m o r e r e a l i s t i c e s t i m a t e f o r t h e cost of a producing d e e p well could b e of t h e o r d e r of $40-$50 million.

Assuming a s i m i l a r field p e r f o r m a n c e as e x p e r i e n c e d o n a v e r a g e in t h e N o r t h S e a , i.e., 300m3 p e r d a y p e r well, a n d a n a v e r a g e p r o d u c t i o n of 1 0 y e a r s p e r well, annualized c a p i t a l costs would b e in t h e range of $60-$70 p e r 1000 m3.' If all t h e assumptions used to c a l c u l a t e t h i s value are close to r e a l i t y , i t c o m p a r e s f a v o r a b l y with t h e costs f o r g a s p r o d u c e d f r o m S l e i p n e r or Troll, some $110 p e r thousand c u b i c m e t e r s , including t r a n s p o r t a t i o n a n d o p e r a t i o n a n d maintenance costs (seeg As t h e o p e r a t i o n a n d maintenance costs are presumably much s m a l l e r f o r a n on- s h o r e d e e p g a s well t h a n for a N o r t h Sea off-shore o p e r a t i o n a n d as additional investments are only minor, g a s p r o d u c e d from d e e p wells could well b e competi- t i v e with g a s p r o d u c e d f r o m difficult N o r t h Sea fields.

Final Remarka

N a t u r a l g a s , e v e n if e x t r a c t e d f r o m f i e l d s at u n f a v o r a b l e l o c a t i o n s , became i n c r e a s i n g l y a t t r a c t i v e d u r i n g t h e era of high crude-oil p r i c e s . I t s m a r k e t s h a r e g r e w s t e a d i l y as technological p r o g r e s s made e x t r a c t i o n f r o m p r e v i o u s l y unattain- a b l e l o c a t i o n s a n d t r a n s p o r t o v e r e v e r l o n g e r d i s t a n c e s f e a s i b l e . Despite t h i s technological p r o g r e s s , it will always b e a more c o s t l y o p e r a t i o n to s u p p l y a n end- u s e r with g a s r a t h e r t h a n o i l p r o d u c e d u n d e r s i m i l a r conditions. The costs of t r a n - s p o r t i n g . s t o r i n g , a n d d i s t r i b u t i n g g a s c a n n o t , mainly b e c a u s e of t h e d i f f e r e n t

%iscounted o v e r 1 0 y e a r s w i t h a 10% d i s c o u n t r e t e .

%he annualized c o s t s , c a l c u l a t e d a s e b o v e , f o r t h e i n i t i e l i n v e s t m e n t s (St3 billion), a r e 155 p e r 1000 ma.

(23)

e n e r g y contents p e r volume, m e e t those of c r u d e oil and i t s products. On t h e o t h e r hand, i t i s often more efficient and c h e a p e r to use g a s in end-use technology t h a n o t h e r fuels, especially when costs stemming f r o m environmental damage are t a k e n into account.

However, f u r t h e r technological improvements along t h e e n t i r e production and supply chain will r e d u c e t h e cost of g a s supplies and make i t m o r e competitive, even at c r u d e p r i c e s of around $20/boe. For t h i s and o t h e r r e a s o n s , s u c h as sup- ply s e c u r i t y or ecological considerations, n a t u r a l g a s might well become a n even m o r e important e n e r g y c a r r i e r during t h e coming decades t h a n today (mid-1986).

A m o r e s u r p r i s e - f r e e f u t u r e in t e r m s of e n e r g y supply c a n only evolve when a s h i f t back to c h e a p OPEC oil i s avoided during a n oil glut. A s t r o n g sign of s u c h a policy w a s set by t h e c o n t r a c t to develop t h e expensive Troll field, signed in 1986 between Norway and t h e European consortium of b u y e r s lead by Ruhrgas.

(24)

Bibliography

API (1986), Basic Petroleum Data Book (American Petroleum Institute, Washington, D.C.).

Adelman, M.A. a n d Ward, G.L. (1980), Worldwide production costs f o r oil and gas, in Advances in t h e Economics of Energy a n d Resources, Volume 3 , J.R. Moro- ney, ed. (JAI P r e s s Inc., Greenwich, CT).

Astakhov, A.S. and Subbotin, G.E. (1985), Some Problems of Ll;rPective Development of Beyond-The-Polar Circle Gas f i e l d s of Western S i b e r i a , I n t e r n a l R e p o r t (International Institute f o r Applied Systems Analysis, Laxenburg, Austria).

Benzoni, L. (1985), L'dconomie mondiale du gaz naturel: logices d ' o f f r e et con- s t r a i n t e s d e demande, Revue d e lDEnergie 36(378):457-466.

Castle, G .R. (1985), Assessment of North S e a field performance, Petroleum Economist LII(10):358-359.

Go1d.T. and S o t e r , S. (1980), The d e e p e a r t h gas hypothesis, SWiss Assoc. of Petroleum-Geologists and -Eng. B u l l e t i n 46(111):11-35.

Gold, T. (1985), The origin of n a t u r a l g a s and petroleum, a n d t h e prognosis f o r f u t u r e supplies, in A n n u a l Review of E n e r g y , Volume 1 0 , J.M. Hollander, H.Brooks, a n d D. S t e r n l i g h t , eds. (Annual Reviews Inc., P a l o Alto. CA).

G r a f , G.E. (1925), Erdol, E r d o l k a p i t a l i s m u s u d Erd6lpoLitik (Crude Oil, C r u d e Oil C a p t i a l i s m a n d C r u d e Oil Politics) (Urania-Verlags-GmbH, Jena).

Hafele, W., B a r n e r t , H., Messner, M., S t r u b e g g e r , M., and A n d e r e r , J., The c o n c e p t of novel horizontally i n t e g r a t e d e n e r g y systems: t h e case of z e r o emissions, in S u s t a i n a b l e Development of t h e Biosphere, W.C. Clark and R.E. Munn, eds.

(Cambridge University P r e s s , Cambridge, MA) (in p r e s s ) .

Holmes, M., Beeks, W., and Major, T. (1984), Simple equation estimates drilling c o s t s , Oil a d Gas J o u r n a l 82(29):126.

IEA (1982), N a t u r a l Gas Prospects to t h e Year ulOO (International E n e r g y Agency, P a r i s ) .

Jawetz, P . (1984), Using N a t u r a l Gas to Open t h e Way for other f i t u r e Gas a n d Alcohol Sources, p r e s e n t e d at t h e International Gas Meeting (International Institute f o r Applied Systems Analysis, Laxenburg, Austria).

Kirby, S. (1984), Siberia a n d t h e Soviet Far East: Resources for t h e F L t u r e , Spe- cial R e p o r t No. 1 7 7 (The Economist Intelligence Unit (EIU), London).

Kliman, M.L. (1983), Methanol, n a t u r a l g a s , and t h e development of a l t e r n a t i v e t r a n s p o r t a t i o n fuels, E n e r g y 8(11):859-870. Reprinted as RR-84-10 (Interna- tional Institute f o r Applied Systems Analysis, Laxenburg, Austria).

Lorentsen, L., Roland, K., a n d Aaheim, A. (1984), Cost S t r u c t u r e a n d P r o f i t a b i l i t y of North S e a Oil a d Gas Ftelds, p a p e r p r e s e n t e d at a seminar on

"Macroeconomic P r o s p e c t s f o r a Small Oil Exporting Country" (Central Bureau of S t a t i s t i c s , Oslo).

Monig, W. (1984), I n t e r n a l Report o n E n e r g y Conversion a n d Delivery Costs (Kernforschungsanlage Julich GmbH, FRG and International Institute f o r Applied Systems Analysis, Laxenburg, Austria).

Musgrove, A.R. d e L. (1984), A l i n e r programming analysis of liquid-fuel production and use options f o r Australia, E n e r g y 9(4):281-302.

OECD (1984), E n e r g y Balances of OECD Countries. ZQ70-2982 (Organisation f o r Economic Cooperation a n d Development, P a r i s ) .

(25)

OECD (1986), E n e r g y Balances of OECD C o u n t r i e s , 1983-1984 (Organisation f o r Economic Cooperation a n d Development, P a r i s ) .

Rose, K.P. (1985), Economics of n a t u r a l g a s supply, Petroleum Economist LII(l):l3-16.

Runge, H.C. (1983), U n t e r s u c h u n g e n der w e s e n t l i c h e n t e c h n i s c h e n und wirtschagtlichen Faktoren d e s E r d g a s f e r n t r a n s p o r t e s u n d ihrer A u s w i r - k u n g a u f d i e Weiterentwicklung d e r i n t e r n a t i o n a l e n E r d g a s n u t z u n g (Investigation of t h e most important t e c h n i c a l a n d economical facts r e g a r d i n g t h e long-distant t r a n s p o r t a t i o n of n a t u r a l g a s a n d t h e i r implications o n t h e development o n t h e i n t e r n a t i o n a l utilization of n a t u r a l g a s ) (Mitteilungen a u s dem I n s t i t u t fiir T i e f b o h r t e c h n i k , Erdol- und Erdgasgewinnung d e r Tech- nischen UniversitAt Clausthal, FRG).

Safoschnik , R. (1985). Cegenwartiger S t a n d d e s E r d g a s f e r n t r a n s p o r t e s a u s technischer und wirtschqftlicher &ht ( P r e s e n t s t a t u s of t h e n a t u r a l g a s long-distance t r a n s p o r t a t i o n from a t e c h n i c a l a n d economical view) (Oster- r e i c h i s c h e Mineral01 Verwaltung (OmV), Vienna, Austria).

Shamrayev, G.A. (Chief E n g i n e e r of t h e Yamburg P r o j e c t ) (1984), I know t h e r e will b e a town, ECO, 2 (in Russian).

Smolik, E. (1981), Past t r e n d s in capital-output a n d investment r a t i o s i n t h e field of e n e r g y in t h e ECE r e g i o n , Proceedings of a n UNITAR (The United Nations I n s t i t u t e for n a i n i n g and Research) Conference o n Long-Term E n e r g y Resources, Vol. I , R.F. Meyer, e d . (Pitman, London).

S t e r n , J.P. (1984). I n t e r n a t i o n a l Gas n u d e in Europe

-

The Policies of Ezport- i n g a n d Importing C o u n t r i e s (Heinemann Educational Books, London).

STOSEB (1981), Regional E n e r g i p l a n (Stor-Stockholms E n e r g y AB, Stockholm).

T h a c k e r a y , F. (1986), Techniques f o r oil substitution, Petroleum Economist UII(2):52-54.

Tussig. A.R. a n d Barlov, C.C. (1984), The N a t u r a l Gas I n d u s t r y : E v o l u t i o n , S t r u c t u r e , a n d Economics (Ballinger Publishing Company, Cambridge, MA).

Varnado, S. (1986), E z p l o r a t i o n a n d Drilling, L e c t u r e held at a Task F o r c e Meet- ing on The Methane Age, organized jointly by IIASA a n d t h e Hungarian Commit- tee f o r Applied Systems Analysis, S o p r o n , Hungary, May 13-16 (International Institute f o r Applied Systems Analysis, Laxenburg, Austria).

Referenzen

ÄHNLICHE DOKUMENTE

&#34;[olperational staff provide the scientists with the operational outlook and data. Opera- tions research is proclaimed to be the application of the methods of

Appropriate, if a t all possible, to the process of presenting the findings that will emerge at the end of the study ( t h e client will surely not want to poke into

W e may, for example, be interested ir~ the range or interval within which a consequence will be contained with some given (and high) proba- b~lity. Obtavling

Views or opinions expressed herein do not necessarily repre- sent those of the Institute or of its National Member Organizations... FA0 Supply

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... THE DISCREPANCIES IN THE

INTERKATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... Francis of

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria... INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... About