• Keine Ergebnisse gefunden

Hauptsatz: dU =δQ−pdV +µdN

N/A
N/A
Protected

Academic year: 2022

Aktie "Hauptsatz: dU =δQ−pdV +µdN"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Karlsruher Institut f¨ur Technologie Institut f¨ur Theorie der Kondensierten Materie Ubungen zur Theoretischen Physik F¨ SS 12

Prof. Dr. J¨org Schmalian Blatt 3: L¨osungen

Dr. Igor Gornyi Besprechung 4.5.2012

1. Ideales Gas mit f Freiheitsgraden pro Molek¨ul:

(a) 1. Hauptsatz: dU =δQ−pdV +µdN.

Adiabatische Zustands¨anderung: δQ= 0 , konstante Teilchenzahl: dN = 0 ,

also: dU =−pdV . In einem thermisch isolierten Gas in einem geschlossenen Beh¨alter kann sich die innere Energie nur durch mechanische Arbeit ¨andern.

Bekannt ist außerdem: U = f

2N kT dU = f

2N kdT

und pV =N kT →pdV +V dp=N kdT , zusammendU = f

2[pdV +V dp] . Mit dem 1. Hauptsatz von eben gibt das

( 1 + f

2 )

pdV =−f 2V dp,

was jetzt integriert werden kann, von einem thermodynamischen Zustand 0 zu einem anderen 1 ¨uber einen reversiblen Weg,

( 1 + f

2 )∫1

0

dV

V =−f 2

1 0

dp p

Daraus folgt, mit V1 ≡V , p1 ≡p, denn der Zustand 1 ist beliebig, (

1 + f 2

) ln V

V0 = −f 2 ln p

p0 (

1 + 2 f

)

ln(V) + ln(p) = const1

p V(1+2/f) = const2 Analog ergibt sich aus dU =−pdV und dU = f

2N kdT und pV =N kT p= N kT

V unmittelbar N k

V dV =−f 2

N k

T dT , also ln V

V0 =−f 2 ln T

T0 V Tf /2 = const3

(2)

(b) Die “Fundamentalbeziehung” lautet:T S =U+pV −µN ⇒S= 1 TU+ p

TV −µ TN. MitS =S(U, V, N) folgt dS = 1

TdU+ p

TdV µ TdN. Es ist jetzt praktisch, Dichten einzuf¨uhren:

s=S/N , u=U/N , v=V /N ⇒s= 1 Tu+ p

Tv− µ T . MitS =S(U, V, N) ist auch s=s(U, V, N) =s(u, v, N) , s h¨angt offenbar nicht explizit von N ab, also:

s=s(u, v), ds= 1

Tdu+ p Tdv Dass s nicht von N abh¨angt, folgt auch ganz allgemein:

U, V, N, S sind extensiv, das heißt z.B. S(λU, λV, λN) = λS(U, V, N) . Die Dichten sind (trivialerweise) intensiv, alsos(λU, λV, λN) = s(U, V, N) . Dies kann nur erf¨ullt werden, wennU, V, N nur als Quotienten (Dichten) eingehen, alsos=s(U/N, V /N) oders(U/V, U/N) oder s(U/V, V /N) .

ds l¨aßt sich jetzt integrieren, wenn man T und p rauswirft:

U = f

2N kT ⇒u= f

2kT 1 T = f

2k1

u, pV =N kT p T =k1

v ds= f

2kdu

u +kdv

v ⇒s−s0 = f 2kln u

u0 +kln v v0.

Die Integrationskonstanten sind s0 = S0/N0, u0 = U0/N0, v0 = V0/N0, einsetzen liefert

S = S0

N

N0 +N k [f

2 (

ln U

U0 + lnN0

N )

+ (

ln V

V0 + lnN0

N ) ]

= S0N

N0 +N k [f

2ln (U

U0 )

+ ln (V

V0 )

(f

2 + 1 )

ln (N

N0 ) ]

.

(c) Nehmen wir o.B.d.A. mal an, dass das Gas aus konstantenN =N0 Teilchen besteht und im konstanten Volumen V = V0 eingeschlossen ist, dann h¨angt U von der Temperatur ab ¨uberU = f2N0kT, also, mit U0 f2N0kT0, T0 = const.,

S(T) =S0+ f

2N0k ln T T0

F¨ur T 0 divergiert dies, es l¨aßt sich kein S0 finden, so dass S(T 0) = 0 w¨are.

Das “ideale Gas” ist eine brauchbare N¨aherung f¨ur ideale Gase nur bei hohen Tem- peraturen. BeiT 0 muss die Quantennatur der Teilchen (Fermionen oder Boso- nen) ber¨ucksichtigt werden, die zu einem nichtentarteten Grundzustand des Gases f¨uhrt. Dann folgt aus der informationstheoretischen Fundierung der Entropie sofort S(T 0) = 0 .

(3)

2. Velocity and interparticle distance distributions in an ideal gas:

(a) The distribution function f(v) follows immediately from the probability to find a particle with momentump and at position q

ρ(p,q) = ⟨δ(ppi)δ(qqi)

= 1

Z1

d3pid3qi

h3 ⟨δ(ppi)δ(qqi)exp (

−βp2i 2m

)

= λ3 V h3 exp

(

β 2mp2

) .

Hereλ =h(2πkBT m)1/2 is the thermal de Broglie wavelength following from the

normalization: ∫

d3pd3(p,q) = 1

Integrating over position, we find the momentum distribution function:

f(p) = 1

(2πmkBT)3/2 exp (

p2 2mkBT

)

. (1)

Substituting v=p/m, and integrating over the direction of v (which only gives a prefactor 4π:d3v =v2dvsinθdθdϕ) yields the velocity distribution:

f(v) = 4πv2

( m 2πkBT

)3/2

exp

( mv2 2kBT

)

. (2)

(b) The most probable velocity, v, follows from ∂f∂v

v=v = 0 yielding v m

2kBTv3 = 0 (3)

such that

v =

√2kBT

m . (4)

The mean velocity is given as

⟨v⟩ =

dvf(v)v = 4π

( m 2πkBT

)3/2

0

v3exp

( mv2 2kBT

) dv

= 2π

( m 2πkBT

)3/2( 2kBT

m

)2

0

dzezz =

√8kBT

πm . (5)

Finally, we determine the mean square velocity

v2

= 4π

( m 2πkBT

)3/2

0

v4exp

( mv2 2kBT

) dv

= 2π

( m 2πkBT

)3/2( 2kBT

m

)5/2

0

dzezz3/2

= 3kBT

m (6)

The inequalities v < ⟨v⟩ <

⟨v2 hold even though these three characteristic velocities are of the same order of magnitude.

(4)

(c) First we need to find f(r):

f(r) = λ6 V2

d3pid3pjd3rid3rj

h6 e2mβ (p2i+p2j)δ(r− |rirj|) (7) where we performed the integration with respect to allpl and rl with =i, j. The prefactorλ6/V2 results from the normalization of the distribution function.

Performing the momentum integration cancels theλ6 factor and we obtain f(r) =

d3rid3rj

V2 δ(r− |rirj|) (8) Using center of mass and relative coordinates

Q = 1

2(ri +rj)

q = rirj, (9)

we get

f(r) =

d3Qd3q

V2 δ(r− |q|) (10)

where the integration limits are determined by |Q±q/2| < R (this is just the condition |ri|,|rj|< R in terms of new variables).

The integral in Eq. (10) can be evaluated in spherical coordinates. One can first fix the length q = |q| of vector q and the direction of vector Q. Clearly, 0 < q < 2R (the maximum is reached when the two points are at the opposite poles of the container), whereas the length Q = |Q| of vector Q satisfies Q <

R2 −q2/4.

Next, we observe that forQ < R−q/2 a small sphere of radius q/2 lies completely within the sphere of radius R and therefore the angle θ between vectors Q and q can be arbitrary. In the rangeR−q/2< Q <

R2−q2/4 the two spheres intersect and then the condition|Q±q/2|< R translates into the condition on cosθ:

−R2−Q2−q2/4

Qq <cosθ < R2−Q2−q2/4

Qq .

Thus we can re-write Eq. (10) as follows:

f(r) = 9

16π2R6

0

Q

π

0

QsinθQ

0

q

2R

0

dqq2δ(r−q)

×



Rq/2

0

dQQ2

1

−1

dcosθq+

R2q2/4 R−q/2

dQQ2

R2−Q2−q2/4

Qq

R2−QQq2−q2/4

dcosθq



= 9r2 R6

{∫ Rr/2 0

dQQ2+

R2r2/4 Rr/2

dQQR2−Q2−r2/4 r

}

(11)

It follows thatf(r >2R) = 0 whereas forr <2R the integration in Eq. (11) yields:

f(r) = 12 R

[( r 2R

)2

3 2

( r 2R

)3

+1 2

( r 2R

)5]

. (12)

(5)

The calculation of ⟨r⟩=∫

0 drf(r)r is now straightforward and gives

⟨r⟩= 36

35R. (13)

The maximum distance between two particles in the sphere is 2R, the distance of largest probability (determined by ∂f∂r = 0) isR and the mean distance is just a bit larger than this value. Thus, particles are on average apart by a distance which is the size of the system.

3. An ideal gas in the field of the Earth:

(a) Since the particles do not interact with each other we only need to calculate the partition function Z(1) of one particle and useZ(N) = Z(1)N. We find:

Z(1) =

d3p h3 eβp

2 2m

d3reβmgz

= A

λ3

0

dzeβmgz = A

βmgλ3 (14)

whereA = 2πR2 is the area of the cylinder. The free energy then reads:

F =−kBT lnZ =−kBT Nln A

βmgλ3. (15)

(b) It follows that the density in the cylinder depends only on z:

ρ(z) =

1 λ3

0 dzeβmgzδ(z−z)

Z(1) = βmg

A eβmgz. (16) The density decreases exponentially with height. The length l0 = kmgBT determines the decay. For the pressure we use

p(z) =ρ(z)kBT = mg

A eβmgz (17)

which assumes that the ideal gas law is valid locally.

Considering a thin horizontal slice of gas between the planes z and z +dz, the difference between the pressures at its bottom and top has to be equal to the weight of the gas within the slice. This gives

mgρ(z)dz =p(z)−p(z+dz) =−dp(z)

dz dz, (18)

so that

dp(z)

dz =−mgρ(z). (19)

This is indeed satisfied by Eqs. (17) and (16):

dp(z)

dz = mg A

deβmgz

dz =−mgβmg

A eβmgz =−mgρ(z).

(6)

4. Logarithmic spectrum:

(a) Using ZN =Z1N we find Z1 =

n=1

exp (−β∆ log (n)) =

n=1

nβ∆. (20)

This series is convergent only for β∆>1, i.e. kBT <∆. Then it follows that

Z1 =ζ(β∆) (21)

with the Riemann Zeta function

ζ(s) =

n=1

1 ns, see, e.g.,

http://en.wikipedia.org/wiki/Riemann zeta function

http://mathworld.wolfram.com/RiemannZetaFunction.html Close tos= 1 the function ζ(s) diverges as

ζ(s) 1

s−1. (22)

This behavior can be inferred by considering the integral

1

dx

xs = 1 s−1.

Indeed, one can estimate this integral from above and from below by replacing it by the discrete sums (dx∆x= 1):

n=1

1

(n+ 1)s <

1

dx xs <

n=1

1 ns, ζ(s)−1 < 1

s−1 < ζ(s).

This gives for kBT close to ∆ the following behavior of the free energy:

F ≃N kBT log ( ∆

kBT 1 )

, (23)

the entropy:

S =−∂F

∂T = kBN

−kBT −kBNlog ( ∆

kBT 1 )

, (24)

and specific heat:

C =T∂S

∂T = kBN

(∆−kBT)2. (25)

(7)

(b) The specific heat diverges at temperatures larger than ∆/kB which makes it im- possible to heat this system up to temperatures larger than this value. The regime T >∆/kB is not reachable.

Physically this is caused by the huge number of states which occur per energy interval. To see this we approximate the sum over n by an integral

Z =

dnexp (−βE(n)) (26)

and perform a substitution of variables to

E =E(n) = ∆ log (n) (27)

with

dn

dE = eE/∆

∆ (28)

follows

Z =

dE

∆ exp (E

−βE )

(29) thus the exponentially diverging density of states causes the integral to diverge if

1 > β, which is just the above criterion. Indeed it follows forkBT <Z = kBT

−kBT (30)

which agrees with the exact behavior for kBT ∆. The approximation of a sum by an integral is simply very good if the states are exponentially dense.

Referenzen

ÄHNLICHE DOKUMENTE

Besides genetic distance, transgression is predicted to also be affected by the phenotypic similarity of the parents [25]. Transgression and phenotypic differentiation have

Dynamic Programming Algorithm Edit Distance Variants..

a left edge represents a parent-child relationships in the original tree a right edge represents a right-sibling relationship in the original tree.. Binary Branch Distance

Bei T → 0 muß die Quantennatur der Teilchen (Fermionen oder Boso- nen) ber¨ucksichtigt werden, die zu einem nichtentarteten Grundzustand des

Bei T → 0 muss die Quantennatur der Teilchen (Fermionen oder Boso- nen) ber¨ucksichtigt werden, die zu einem nichtentarteten Grundzustand des

Bei T → 0 muss die Quantennatur der Teilchen (Fermionen oder Boso- nen) ber¨ucksichtigt werden, die zu einem nichtentarteten Grundzustand des

Bei T → 0 muss die Quantennatur der Teilchen (Fermionen oder Boso- nen) ber¨ucksichtigt werden, die zu einem nichtentarteten Grundzustand des Gases f¨uhrt.. durch Fluktuationen

Ein Zylinder der H¨ ohe h mit Querschnitt A sei mit Heliumgas gef¨ ullt. Der Zylinder befinde sich in einem Raum mit Atmosph¨ arendruck p 0. aus einer H¨ ohe h) in den