• Keine Ergebnisse gefunden

Riemann Surfaces

N/A
N/A
Protected

Academic year: 2022

Aktie "Riemann Surfaces"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Mathematisches Institut der Universit¨at M¨unchen

Prof. Otto Forster

WS 2012/13 October 19, 2012

Riemann Surfaces

Problem sheet #1

Problem 1 LetS2 be the unit sphere in R3, S2 :={(x1, x2, x3)∈R3 :x21+x22+x23 = 1}

and let N := (0,0,1) be the north pole of S2. We identify the plane {x3 = 0} ⊂ R3 with the complex number planeC by the correspondence (x1, x2,0)7→x1+ix2.

We define a map st :S2 →C∪ {∞} =P1 (stereographic projection) in the following way:

For x ∈ S2 r{N} we let st(x) be the intersection of the plane {x3 = 0} with the line through N and x. For the north pole we define st(N) :=∞.

Show that st :S2 →P1(C) is a homeomorphism and one has st(x) = 1

1−x3

(x1+ix2) for all x∈S2r{N}.

Problem 2 Let st :S2 →P1(C) be as in Problem 1. An elementAof the special orthogonal group

SO(3) ={A∈GL(3,R) :ATA=E, detA= 1}

definies a bijective map of the sphereS2 onto itself. Prove: The map f := st◦A◦st−1 :P1(C)→P1(C)

is biholomorphic.

Do all biholomorphic mapsP1(C)→P1(C) arise in this way?

Hint. Use the fact that the group SO(3) is generated by the subgroup of rotations with axisR(0,0,1) and the special transformation (x1, x2, x3)7→(x3, x2,−x1).

Problem 3 Let X be a Riemann surface, whose complex structure is defined by an atlas A:={ϕj :Uj →Vj|j ∈J}.

Denote byσ :C→C the complex conjugation. Define Aσ as the set of all complex charts σ◦ϕj :Uj →σ(Vj)⊂C, j ∈J.

a) Show thatAσ is again a complex atlas on the topological space underlying X, and thus defines a Riemann surface which will be denoted byXσ.

b) Show that the Riemann surfaceP1(C)σ is isomorphic to P1(C).

Problem 4 Forτ ∈H:={z ∈C: Im(z)>0} letEτ be the torus Eτ :=C/(Z+Zτ).

Prove: The Riemann surface (Eτ)σ is isomorphic to a torus Eτ0 with τ0 ∈H. Calculate τ0 as a function ofτ.

Due: Wednesday, October 31, 2012, 15 h

Referenzen

ÄHNLICHE DOKUMENTE

Mathematisches Institut der Universit¨ at M¨ unchen Prof.. Wilfried

Damit ist also gezeigt, daß jede linear unabh¨angige Menge zu einer Basis erg¨anzt werden kann.. Wir w¨unschen allen frohe und ge-

Um zu zeigen, daß die Gesamtheit der Elemente von G I mit endlichem Tr¨ager eine Untergruppe bilden m¨ussen wir also noch zeigen, daß sie unter Produkt und Inversen-

Man ¨ uberzeugt sich zun¨achst, dass auch f + g und f ◦ g wieder Gruppenhomomor- phismen sind. Die Assoziativit¨at der Addition und Multiplikation sieht man leicht, ebenso, daß

Mathematisches Institut der Universit¨ at M¨ unchen Prof.. Wilfried

Damit ist also gezeigt, daß jede linear unabh¨angige Menge zu einer Basis erg¨anzt werden kann.. Dies steht aber im Widerspruch zu U k

Eine Sprache L sei gegeben durch eine Konstante 1, zwei 2- stellige Funktionssymbole + und ·, und zwei 2-stellige Relationssymbole <.

Mathematisches Institut der Universit¨ at M¨ unchen Helmut Schwichtenberg.. Wintersemester 2009/2010