• Keine Ergebnisse gefunden

Investigation  of  hidden  parameters  influencing  the  automated  object  detection  in  images  from  the   deep  seafloor  of  the  HAUSGARTEN  observatory

N/A
N/A
Protected

Academic year: 2022

Aktie "Investigation  of  hidden  parameters  influencing  the  automated  object  detection  in  images  from  the   deep  seafloor  of  the  HAUSGARTEN  observatory"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Investigation  of  hidden  parameters  influencing  the  automated  object  detection  in  images  from  the   deep  seafloor  of  the  HAUSGARTEN  observatory  

 

Timm  Schoening  (tschoeni@cebitec.uni-­‐bielefeld.de),  Biodata  Mining  Group,  Faculty  of  Technology,   Bielefeld  University  

Melanie  Bergmann,  HGF-­‐MPG  Group  for  Deep-­‐Sea  Ecology  and  Technology,     Alfred  Wegener  Institute  for  Polar  and  Marine  Research,  Bremerhaven,  Germany   Antje  Boetius,  Max  Planck  Institute  for  Marine  Microbiology,  Bremen,  Germany   Tim  W.  Nattkemper,  Biodata  Mining  Group,  Faculty  of  Technology,  Bielefeld  University    

Abstract:  

Detecting   objects   in   underwater   image   sequences   and   video   frames   automatically   requires   the   application  of  selected  algorithms  in  consecutive  steps.  Most  of  these  algorithms  are  controlled  by  a   set   of   parameters,   which   need   to   be   calibrated   for   an   optimal   detection   result.   Those   parameters   determine  the  effectivity  and  efficiency  of  an  algorithm  and  their  impact  is  usually  well  known.  There   are  however  further  non-­‐algorithmic  impact  factors  (or  hidden  parameters),  which  bias  the  training   of  a  machine  learning  system  as  well  as  the  subsequent  detection  process  and  thus  need  to  be  well   understood  and  taken  into  account.  

In  benthic  imaging,  one  dominant,  hidden  parameter  is  the  distance  of  the  image  acquisition  device   above   the   seafloor.   Variations   in   the   distance   lead   to   variations   in   the   benthic   area   size   being   captured,  the  relative  size  and  position  of  an  object  within  an  image,  the  effect  of  the  artificial  light   source  and  thus  the  recorded  color  spectrum.  Image  processing  techniques  that  allow  modeling  the   induced   variations   can   be   used   to   compensate   for   those   effects   and   thus   allow   the   exploration   of   initially   biased   data.   Those   processing   techniques   again   require   algorithmic   parameters,   which   are   influenced  by  the  hidden  parameters  contained  within  the  initial  data.  

In  supervised  machine-­‐learning  architectures,  further  challenges  arise  from  the  inclusion  of  human   expert  knowledge  used  for  the  training  of  the  learning  algorithm.  Utilizing  the  knowledge  of  only  one   expert   can   conceal   the   information   needed   for   the   generalization   capability   of   an   automated   semantic   image   annotation   system.   Utilizing   the   knowledge   of   several   experts   requires   explicit   instruction   of   the   participants   to   be   able   to   produce   comparable   results.   The   fusion   of   individual   expert  knowledge  poses  further  hidden  parameters  that  impact  the  supervised  learning  architecture.  

Those  could  be  an  individual  object  specific  expertise  or  the  tendency  to  annotate  with  more  or  less   self-­‐criticism,  which  together  can  be  expressed  as  the  expert’s  trustworthiness.  

In   the   context   of   mega-­‐fauna   detection   in   benthic   images,   we   investigate   the   effects   of   some   of   these   parameters   on   our   machine   learning   based   detection   system   iSIS   [1]   that   consists   of   four   succeeding  steps:  Imaging,  expert  annotation,  training,  and  detection  (see  Figure  1).  The  images  to   be   analyzed   were   taken   at   the   deep-­‐sea,   long-­‐term   observatory   HAUSGARTEN   and   five   experts   created  an  annotation  gold  standard.    

We  found,  that  the  hidden  parameters  from  imaging  as  well  as  the  fusion  of  expert  knowledge  could   partly  be  compensated  and  were  able  to  achieve  detection  performances  of  67%  precision  and  87%  

recall.  Despite  the  efforts  to  compensate  the  hidden  parameters,  the  detection  performance  was  still   varying  across  the  image  transect.  This  poses  the  potential  occurrence  of  further  hidden  parameters   not  taken  into  account  so  far.  

Here,  we  correlate  the  distance  of  the  acquisition  device  with  the  image-­‐wise  detection  results  (see   Figure   2   A).   Also,   we   show   conformity   of   the   automated   detection   results   to   the   outcome   of   the   manual   detection   consensus   of   human   experts   (see   Figure   2   B).   Finally,   we   show   the   impact   of   hidden  parameters  on  subsequent  steps  by  means  of  the  effect  of  image  illumination  on  the  human   expert  annotation.  

 

References:  

Schoening,  T.,  Bergmann,  M.,  Ontrup,  J.,  Taylor,  J.,  Dannheim,  J.,  Gutt,  J.,  Purser,  A.,  Nattkemper,  T.W.  2012  Semi-­‐

(2)

automated  image  analysis  for  the  assessment  of  megafaunal  densities  at  the  Artic  deep-­‐sea  observatory  HAUSGARTEN,   PLoS  One  

 

Figure   1:  Schematic   overview   of   the   automated   object   detection   process.   Via   the   online   image   annotation     software  BIIGLE,  expert  knowledge  is  gained  (top)  and  stored  in  a  database,  together  with  the  images  (middle   left)  that  were  recorded  by  an  OFOS  (bottom  left).  From  those  annotations,  training  data  is  created  and  used   for  the  machine-­‐learning  step  of  iSIS  (right).  The  trained  SVMs  are  then  used  to  find  further  occurrences  within   previously  unseen  images  from  the  database.  Those  occurrence  counts  can  then  be  visualized  over  the  length   of  a  transect  (bottom  center).    

Figure   2:   (A)  Impact  of  the  image  illumination  vs.  detection  performance  of  all  objects  in  the  transect.  Each   object  (detected  and  annotated)  is  assigned  to  one  of  11  bins  according  to  its  distance  to  the  image`s  lightness   peak.  Bin  1  is  closest  to  the  lightness  peak,  bin  11  the  farthest  away  from  it.  For  all  objects  within  a  bin,  the   average  precision  (grey  bars)  and  average  recall  (black  bars)  are  computed.  Both  values  range  relatively  stable   across  all  bins  but  nevertheless  vary  more  than  20%.  

(B)  Impact  of  the  human  expert  consensus  vs.  the  detection  recall.  Each  object  has  been  annotated  by  1  to  5   experts.  For  those  expert-­‐consensus  groups,  the  overall  recall  is  shown.  It  increases  significantly  from  0.26  for   annotations  of  a  single  expert  to  0.92  for  objects  that  were  annotated  by  five  experts.  

  0   0.25   0.5   0.75   1  

1   2   3   4   5   6   7   8   9   10   11  

A  

0   0.25   0.5   0.75   1  

1   2   3   4   5  

B  

Referenzen

ÄHNLICHE DOKUMENTE

The std::void_t alias template behaves as a metafunction that maps any given sequence of types to a single type, namely to void.. Although a trivial transformation, it has

In these for- mulas, the J-mixing among the 6 H J (J = 15/2, 13/2 and 11/2) states via crystal-field interactions, the mixtures of the states with the same J-value via

This paper presents an analysis of state-of-the-art detectors with imagery of green borders and proposes to train Mask R-CNN on new training data which captures explic- itly the

The heat flow problem in welding with various welding current and speed were solved by Rosenthal’s method, FEM, and the adaptive function method and the accuracy of

The comparison of spore-induced cytokine patterns with those of LPS, LTA and the yeast extract zymosan revealed that the overall fungal immunostimulatory capacity is

 We assess total megafaunal abundance and composition in the context of differences in biogeochemical sediment parameters and sea-ice cover to interpret the

IFM-GEOMAR is structured in four main research divisions: Ocean Circulation and Climate Dynamics, Marine Biogeochemistry, Marine Ecology, and Dynamics of the Ocean Floor.. In

The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert.