• Keine Ergebnisse gefunden

1 Traveling Standing Wave

N/A
N/A
Protected

Academic year: 2022

Aktie "1 Traveling Standing Wave"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

1 Traveling Standing Wave

E(r, t) =~ Eosin(βy)eiβzeiωtx.ˆ Relationship betweenβ and λ: ω =kc, wherek=q

k2x+ky2+kz2,λ= k . kx = 0,ky =β,kz =β, therefore k=p

β22+ 0 =√ 2β λ= k =

= √ 2π

β

From Faraday,∇ ×~ E~ =−∂B∂t,B~ =µoH~ so, µ1

o

∇ ×~ E~ = ∂t∂ ~H =iω ~H. Therefore, H~ = i

µoω∇ ×~ E.~ As

∇ ×~ E~ =

 xˆ yˆ zˆ

xyz Ex Ey Ez

∇ ×~ E~ = ˆx(((((∂yEz(((zEy() + ˆy(∂zExxEz) + ˆz(xEy −∂yEx)

= ˆy∂zEx+ ˆz∂yEx=iβyEˆ x−zβˆ cos(βy)eiβz. Thus,

H~ = Eo

µoω [iˆysin (βy)−zˆcos (βy)]ei(βzωt). Since ωc =k=√

2β, thenβ= ω 2c

β

µoω = 1 µoω

ω c√ 2

=

oµo

√2µo = 1

√2 ro

µo. Zo=q

µo

o =376 Ω, and this is called Vacuum impedance.

H~ = i

√2 Eo

Zo[isin(βyy)ˆ −cos(βy)ˆz]ei(βzωt), H~ = −i

√2 Eo

Zo[isin(βy)ˆy−cos(βy)ˆz]ei(βz−ωt). The power flow is directed along the Poynting vectorS, where~

S~ = 1 2Ren

E~ ×H~o

(2)

(time average power flow). Since,

E~ ×H~ =

 xˆ yˆ zˆ Ex Ey Ez Hx Hy Hz

= ˆx(EyHzEzHy) + ˆy(EzHx −ExHz) + ˆz(ExHyEyHx) E~ ×H~ =−yEˆ xHz+ ˆzExHy

=−Eosinβy iEo

√2Zo cos(βy)ˆy+Eosin(βy) −Eo

√2Zosin(βy)ˆz E~ ×H~ = Eo2

√2Zosin(βy) (−icosβyyˆ−sin(βy)ˆz) Ren

E~ ×H~o

=− Eo2

√2Zo

sin2(βy)ˆz S~ =− 1

2√ 2

Eo2

Z sin2(βy)ˆz.

Traveling standing wave as the superposition of two plane waves:

sin(βy) = eiβy−eiβy 2i , E~ = Eo

2i h

eiβy+iβz−eiβziβyi . For the polarization direction:

E~ ⇥H~ = 0

@ ˆ

x yˆ zˆ Ex Ey Ez

Hx Hy Hz 1 A

= ˆx(⇠⇠⇠EyHz ⇠⇠⇠EzHy) + ˆy(⇠⇠⇠EzHx ExHz) + ˆz(ExHy ⇠⇠⇠EyHx) E~ ⇥H~ = yEˆ xHz+ ˆzExHy

= Eosin y iEo

p2Zo cos( y)ˆy+Eosin( y) Eo

p2Zosin( y)ˆz E~ ⇥H~ = Eo2

p2Zosin( y) ( icos yyˆ sin( y)ˆz) Ren

E~ ⇥H~o

= Eo2

p2Zo sin2( y)ˆz S~ = 1

2p 2

Eo2

Z sin2( y)ˆz.

sin( y) = expi y exp i y

2i ,

E~ = Eoxˆ 2i

hexpi y+i z expi z i yi .

P~ = ✏0 E~ a~r ·E ✏~ 0 E~ r ·~ E~ r ·~ E~ = 0 P~ =✏0 E~ Figure 1: Polarization direction

2 Dielectric Media

• P~ = 0χ ~E −a~∇ ·E ~ 0χ ~E is linear with the EF vector. ∇ ·~ E~ must be zero, because the medium is isotropic, i.e. ∇ ·~ E~ = 0 Thus, the equation, P~ =0χ ~E, represents linear medium.

(3)

• P~+a ~P2 =0E ~~ P stands for a linear medium, whereasP~2represents a non-linear medium.

Hence, this equation describes a non-linear medium.

• a12P~

∂t2 +a2∂ ~P

∂t +P~ =0χ ~EUpon Fourier transformation in the frequency domain, we can write the above equation as−a1ω2P~ +iωa2P~ +P~ =0χ(ω)E~ and obtain P~ =0χ(ω)E.~ Therefore, the equation represents a linear dispersive medium with a frequency-dependent susceptibilityχ(ω) = 1

√1 +iωa2−ω2a1

.

• P =0[a1+a2 e−(x2+y2)]E~ This equation describes a linear spatial dispersive medium. P~ is linearly dependent onE, but the term~ 0[a1+a2e(x2+y2)]E~ depends also on the spatial coordinatesxandy. This is the case, for example, of a spatial dependent refractive index.

3 EM Waves Polarizations

=oR =

2.25 0 0 0 2.13 0 0 0 2.02

From the lectureR= 1 +χ. In this case

R=1+χ, where

1=

1 0 0 0 1 0 0 0 1

is the identity matrix

χ=

1.25 0 0 0 1.13 0 0 0 1.02

 susceptibility tensor (Diagonal)

P~ =oχ ~E.

We consider a linearly polarized plane wave withλ=600 nm.

(1) The wave is polarized alongxˆ and propagates alongz.ˆ E~ =Eoei(kzωt)xˆ P~ =oχ ~E=o

χxx

χyx χzx

Eoei(kz−ωt) P~ =oχxxEoei(kz−ωt)

(4)

For this arrangement, R = 1 +χxx, R=2.25. Therefore, the refractive index is n = √R = 1.5. Then, the wavelength is: λ= λno = 6001.5 w 400 nm.

(2) The wave is polarized alongyˆand propagates along z.ˆ E~ =Eoei(kz−ωt)yˆ P~ =oχyyEoei(kzωt)R= 1 +χyy,n=√R =1.46,λ= 1.46600 w411 nm.

(3) The wave is polarized alongyˆand propagates along x.ˆ E~ =Eoei(ky−ωt)xˆ P~ =oχxxEoei(kyωt)R= 1 +χxx, like the first case.

(4) The wave is polarized alongzˆand propagates alongy.ˆ E~ =Eoei(ky−ωt)zˆ P~ =oχzzEoei(ky−ωt)z,ˆ R= 1 +χzz,n=√R = 1.42,λ= 1.42600 w423 nm.

What if the wave is polarized 45 with respect to x?ˆ We assume propagation alongzˆ

R = 1 + xxR n =p✏R =

= no = 6001.5 w ˆ

y zˆ

E~ =Eoei(kz !t)yˆ P~ =✏o yyEoei(kz !t)

R= 1 + yy n=p✏R = 1.46600 w ˆ

y xˆ

E~ =Eoei(ky !t)xˆ P~ =✏o xxEoei(ky !t)

R= 1 + xx

ˆ

z yˆ

E~ =Eoei(ky !t)zˆ P~ =✏o zzEoei(ky !t)z,ˆ

R= 1 + zz n=p✏R = 1.42600 w

ˆ x ˆ

z

Figure 2: Polarized wave at 45 alongz-axis

(5)

E~ = (xˆ+ ˆy

√2 )ei(kzωt)Eo cos 45= sin 45= 1

√2 P~ =oχ ~E =oEo 1

√2

χxx

χyy 0

ei(kz−ωt)

R=1+

χxx 0 0 0 χyy 0 0 0 χzz

Decompose the wave into two components:

ˆ

x: (R)xx = 1 +χxx= 2.25 ˆ

y : (R)yy = 1 +χyy = 2.13.

Accordingly, we have two refractive indices: nx w1.5 andny w1.46.

E~ = (xˆ+ ˆy

p2 ) expi(kz !t)Eo cos 45 = sin 45 = 1

p2 P~ =✏o E~ =✏oEo 1

p2 0

@ xxyy 0

1

Aexpi(kz !t)

R= + 0

@ xx

0 0

0 yy 0

0 0 zz

1 A

ˆ

x: (✏R)xx= 1 + xx= 2.25 ˆ

y: (✏R)yy = 1 + yy = 2.13.

nxw ny w

Figure 3: Polarization rotation

Exercises selected fromFundamentals of Photonics, chapter 5, by B.E.A Saleh and M.C. Teich.

andPhotonic Devices, chapter 1, by Jia-ming Liu.

Referenzen

ÄHNLICHE DOKUMENTE

Amplitude- and Phase-Shift Keying Amplitude-Modulation to Amplitude-Modulation Amplitude-Modulation to Phase-Modulation Bessel-Function Model Continuous-Wave Digital Video

Abstract Starting from a high-order local nonreflecting boundary condi- tion (NRBC) for single scattering [55], we derive a local NRBC for time- dependent multiple scattering

Whereas in the visualization phase we use these precomputed maps to do a fast interpolation using a current graphics card..

HAU.. Schünemann KG Bremen. Alle Rechte vorbehalten. Von dieser Vorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch gestattet. True or false? What do you know

This equation exhibits two important features: (i) if one of the modes is absent, the other obeys the ordinary KdV equation, and (ii) on applica- tion of the perturbation

A time-dependent propagation speed a can cause many difficulties. Reissig and Yagdjian show that this energy estimate cannot be substantially improved, even if L p -L q estimates

The fluid is assumed to be a locally homogeneous mixture of two components such that its local state is completely described by the mass fraction χ ∈ [0, 1] of the components and

We introduce the First Fit Matching Periods algorithm for rate-monotonic multiprocessor scheduling of periodic tasks with implicit deadlines and show that it yields