• Keine Ergebnisse gefunden

Microscopic model: k-linear terms in the Hamiltonian

N/A
N/A
Protected

Academic year: 2022

Aktie "Microscopic model: k-linear terms in the Hamiltonian"

Copied!
22
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Microscopic model:

k-linear terms in the Hamiltonian

2 m h 2 k 2

ε = ± β k x

ε

hh1 (+3/2)

e1 (-1/2) e1

(+1/2)

ε

0 kx

( 3/2) hh1 +- ( 1/2)

e1 +-

0 kx

k-linear terms

( 1/2) lh1 +-

spin-orbit interaction

hh1

(-3/2) BIA (Dresselhauser) IIA

SIA (Rashba)

(2)

Microscopic model: direct transitions

kx

ε

+ kx 0

σ+

jx

e2 (-1/2) e2

(+1/2)

e1 (-1/2) e1

(+1/2)

PRL 86, 4358 (2001)

j W( ε ) ν ( kx - ) ( τ

pi -

τ

pf

)

h ω > h ω LO τ

pi >>

τ

pf

(3)

Microscopic model: direct transitions

kx

ε

+ kx 0

σ+

jx

e2 (-1/2) e2

(+1/2)

e1 (-1/2) e1

(+1/2)

kx

ε

σ−

- 0 kx

jx

e2 (-1/2) e2

(+1/2)

e1 (-1/2) e1

(+1/2)

PRL 86, 4358 (2001)

j W( ε ) ν ( kx - ) ( τ

pi -

τ

pf

)

h ω > h ω LO τ

pi >>

τ

pf

(4)

j / P

x

( 10

-9

A / W

)

115 125 135

-2 -1 0 1 2

h

ω (meV)

0.0 0.4 0.8

A b sor p tion (a.u.)

n-GaAs QWs

σ+

σ−

Experiment: e1-e2 direct transitions

PRB (2003), cond-mat/0303054

(5)

Resonant inversion of the CPGE

kx

ε

+ kx 0

σ+ , D ω1

jx

e2 (-1/2) e2

(+1/2)

e2 (-1/2) e2

(+1/2)

PRB (2003), cond-mat/0303054

kx

ε

- 0 kx

jx

e2 (-1/2) e2

(+1/2)

e2 (-1/2) e2

(+1/2)

σ+ , D ω2

j

x

(CPGE) ∝ ( τ

p1

- τ

p2

) d η

21

( h ω ) d h ω

IP

c

h ω

D ω1 > D ω2

(6)

Microscopic model: direct transitions

kx

j x ε

σ+

hh1 (+3/2) (-3/2)

kx kx

- +

e1 (+1/2)

hh1

0

e1 (-1/2)

inter band

j W( ε ) ν (k) τ p ( ε )

PRL 86, 4358 (2001)

(7)

Direct interband transitions

Regensburg group (S.Ganichev) &

Hannover group(M.Oesstreich), solid state comm. (2003)

M. Sakaki, Y.Ohno, H.Ohno, ICPC-2004

1.4 1.5 1.6 1.7

0.0 0.6 1.2

Excitation energy, Dω ( eV ) j x

/ P ( nA / W )

0.03 0.04

0.05 Degree of polarization

x [110]

e

[332]

y

(113)A- grown p - GaAs MQWs T = 293K

1.60 1.65 1.70 1.75 0

50 100 150 200

τ s (ps)

(eV)

0 500 1000 1500

0.00 0.04 0.08

T=293K, P =15mW Dω = 1.74 eV Dω = 1.58 eV

Degree of polarization

Time ( p s )

(8)

Phenomenological description of PGE I

=0

j 0 σ i j E j 0

α i jkl E j 0 E k ω E l ω

λ i jk E j ω E k ω

E j 0

Fourier amplitudes: j i ( ω ), E j ( ω )

j 0 λ i jk E j ω E k ω

Photogalvanic effect (PGE) Photoconductivity

Ohm's law

E.L. Ivchenko, G.E. Pikus, Superlattices and Other Heterostructures. Symmetry and Optical Phenomena, (second edition, Springer, Berlin 1999)

B.I. Sturman, V.M. Fridkin, The Photovoltaic and

Photorefractive Effects in Non-Centrosymmetric Materials, Gordon and Breach Science Publishers, New York, 1992.

see for review:

(9)

Phenomenological description of PGE II

Photogalvanic effect (PGE):

j i ( PGE )= α i j l e j e * l = χ i j l [ e j e l * + e l e * j ] / 2 + γ i j i ( e e e × e e e * ) j

χ i j l γ i j

- third rank piezoelectric tensor

- second rank gyration pseudo-tensor γ i j i ( e e e × e e e * ) j

j i ( CPGE ) = ∝ E 0 2 P circ = E 0 2 sin 2 ϕ

Linear PGE Circular PGE

(symmetric part) (anti-symmetric part)

at first theoretically considered by: Ivchenko&Pikus

and, independently, by Belinicher&Sturman

observed in a bulk tellurium by V.M. Asnin, A.A. Bakun, A.M. Danishevskii, and A.A. Rogachev,

(10)

inversion asymmetric, but non-gyrotropic no CPGE ( linear photogalvanic effect only )

Symmetry:

· Bulk GaAs, InAs etc.: point group T

d

· (001) - oriented QWs: point group D

2d

-- only at oblique incidence CPGE

or C

2v

· (113) - oriented QWs: point group C

s

CPGE at normal and at oblique incidence

b) c)

E2 E1

a)

D

2d

C

2v

. . .

(11)

angular momentum directed motion of circ. pol. photons of carriers

Mechanical analogues of the CPGE

transversal -wheel

longitudinal - propeller

mirror

reflection plane

jx

(12)

Helicity dependent current

Cs symmetry

(113)A or miscut - grown QWs

0 45 90 135 180

-4 -2 0 2 4

σ- σ+

0 0 0

0

(113)A- grown p-

T = 300 K, λ = 77 µm GaAs/AlGaAs MQWs

ϕ ϕ

ez

jx

j x /P ( 10-9 A /

W

)

CPGE current occurs normal to the mirror reflection plane!

jx = ( γ xy ey + γ xz ez )E

0

2

sin 2 ϕ

Physica E 14, 166 (2002)

> >

(13)

D2d or C2v symmetry

in (001) - grown QWs, ey II [110]

Helicity dependent current

Cs symmetry

(113)A or miscut - grown QWs

0 450 900 1350 1800

ϕ ϕ

-20 -10 0 10 20

(001)- grown n- InAs/AlGaSb QW T = 300 K, λ = 77 µm

ey

jx σ-

σ+

j x /P ( 10-9 A /

W

)

0 45 90 135 180

-4 -2 0 2 4

σ- σ+

0 0 0

0

(113)A- grown p-

T = 300 K, λ = 77 µm GaAs/AlGaAs MQWs

ϕ ϕ

ez

jx

j x /P ( 10-9 A /

W

)

CPGE current occurs under oblique excitation only!

CPGE current occurs normal to the mirror reflection plane!

jx = ( γ xy ey + γ xz ez )E

0

2

sin 2 ϕ

Physica E 14, 166 (2002)

> >

jx = γ xy ey E

0

2

sin 2 ϕ

>

(14)

C

2v symmetry

Normal and Oblique Incidence

-50 -25 0 25 50

0 2 4 6

(113)A- grown p-

T = 300 K, λ = 77 µm GaAs/AlGaAs MQWs

jx

θ0

σ+

θ

0

j x /P ( 10-9 A /

W

)

-50 -25 0 25 50

-40 -20 0 20 40

(001)- grown n-

T = 300 K, λ = 77 µm type InAs/AlGaSb QW

jx

θ0 σ+

θ

0

j x /P ( 10-9 A /

W

)

Cs symmetry

Θ 0 - angle of incidence

Physica E 14, 166 (2002)

(15)

Si:Ge quantum wells

symmetric Si:Ge QWs do not show CPGE.

PRB, (2002)

(16)

Si:Ge quantum wells

0 45 90 135 180

-15 -10 -5 0 5 10 15

(001) p- Si Ge

j x /P ( 10-11 A /

W

)

ϕ ey

jx

a) b)

E2 E1

symmetric Si:Ge QWs

do not show CPGE. asymmetric Si:Ge QWs !

PRB, (2002)

stepped QW T = 300 K λ = 10.6 µm

(17)

Spin-galvanic effect

j α = Σ Q αβ S β

current averaged spin β

e.g. for C2v-symmetry and x [110]: Qxy, Qyx are non-zero:

jx = Qxy Sy

Nature 417, 153 (2002)

(18)

Spin-galvanic effect

j α = Σ Q αβ S β

current averaged spin β

e.g. for C2v-symmetry and x [110]: Qxy, Qyx are non-zero:

jx = Qxy Sy

Nature 417, 153 (2002)

e

S0z

Sy

jx

2DEG

S0

(19)

Spin-galvanic effect

ez

S0z Bx

Sy

jx ω

Larmor

2DEG

j α = Σ Q αβ S β

current averaged spin β

e.g. for C2v-symmetry and x [110]: Qxy, Qyx are non-zero:

jx = Qxy Sy

Nature 417, 153 (2002)

e

S0z

Sy

jx

2DEG

S0

(20)

Microscopic model

ε

k

0

k

k

x x x

-

+

-1/2 y +1/2 y

spin orientation

jx = Qxy Sy

(21)

Microscopic model

ε

k

0

k

k

x x x

-

+

-1/2 y +1/2 y

ε

k

x

j

0

k -dependent

spin-flip scattering spin orientation

jx = Qxy Sy

[ v (kxf - kxi )] 2 (k xf + kxi ) 2

(22)

Microscopic model

ε

k

0

k

k

x x x

-

+

-1/2 y +1/2 y

ε

k

x

j

0

ε

k

x

0

k -dependent

spin-flip scattering

spin orientation equilibrium

jx = Qxy Sy

[ v (kxf - kxi )] 2 (k xf + kxi ) 2

Referenzen

ÄHNLICHE DOKUMENTE

Ich mußte lange schau- en, um den Grund zu entdek- ken, daß dieser Sessel kein blo- ßer Fetisch für eben eine Flug- zeugkatastrophe war, sondern eine technische Merkwürdig-

Marathon - ein faszinierendes Schlagwort für alle, die sich für Sport interessieren. Gerade der Marathonlauf ist heu- te aber nicht nur eine Herausforderung für SpitzenathJeten,

In contrast, for (d xy + p)-wave pairing we do not find any arc surface states, but instead there are zero-energy flat bands in several regions bounded by the projected line nodes

In order to maintain a constant height (+20 mm relative to the incoming beam) and horizontal- ity of the beam after it exits the mirror chamber for all photon energies, the

(b) Time-dependent occupations of the ve states assuming that the system is initially prepared in the state | B i , the light-matter coupling strength of both cavity modes equals ~ g

However, the semi-definiteness and controllabilitv reauirements may reduce this to a lesser number, depending upon the structure

Einleitung 199 Begriffsbestimmung 199 Aufzeichnung der Anamnese 201 Angeborene Mißbildungen 202 Somatische Untersuchung 202 Multiple Mißbildungen 204 Chromosomenanomalien 204

Vice Chair, Advisory Commission on the Return of Cultural Property Seized as a Result of Nazi Persecution, Especially Jewish Property, Berlin, Germany. Q&A 1:00 – 2:00 Lunch 2:00