• Keine Ergebnisse gefunden

Topological insulators 
 and superconductors

N/A
N/A
Protected

Academic year: 2022

Aktie "Topological insulators 
 and superconductors"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Max-Planck-Institut für Festkörperforschung, Stuttgart

Andreas P. Schnyder

August 10-14, 2015

25th Jyväskylä Summer School

Topological insulators 


and superconductors

(2)

2nd lecture

1. Chern insulator and IQHE!

- Integer quantum Hall effect!

- Chern insulator on square lattice!

- Topological invariant

[p ic tu re c o u rte s y S. Z h a n g e t a l. ]

(3)

Edge states

• There is a gapless chiral edge mode along the sample boundary.

B r

k x

E

!

!

"

Number of edge modes C h

e

xy =

= !

2 /

"

Effective field theory

(

x x y y

) m ( ) y

z

iv

H = # ! " + ! " + !

( ) y

m

y

domain wall fermion

Robust against disorder (chiral fermions cannot be backscattered)

First example of 2D topological material

- 2D electron gas in large magnetic field, at low T

- There is an energy gap, but it is not an insulator

2D cyclotron motion ! Landau levels

Quantized Hall conductivity:

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (1) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (2) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (3) Θ 2 Ξ 2 Π 2 (4) Interaction Hamiltonian

S int = g ph 2 2

!

dx dx ρ(x)D (x − x )ρ(x ) + g sf 2

2

!

dx dx s i (x)D ij (x − x )s j (x ) (5) 1. f -Summenregel

Modifications:

In passing, let us also comment on the dependence of ∆ on the integrated pump pulse intensity A 2 0 τ p , which is shown in Fig. ?? (c) for nine different pulse widths τ p . The asym- ptotic gap value ∆ is linear for A 2 0 τ p → 0 for τ p ≤ 2τ l ; for larger values of the pump pulse, it shows instead an upward bend because of the full effectiveness of the two-photon processes. At higher, but still not so large, integrated intensity, the single-phonon proces- ses dominate and the curves corresponding to pulses shorter than τ l exhibit a downward

[von Klitzing ‘80]

The Integer Quantum Hall State

Integer Quantum Hall State:

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k , k

) k

F

> 1/ξ

0

sgn(∆

+K

) = − sgn(∆

K

) and l

k

antiparallel to l

ek

sgn(∆

+k

) = − sgn(∆

k

)

Symmetry Operations: E

gap

= ! ω

c

Θ H ( k )Θ

−1

= + H ( − k ); Θ

2

= ± 1 (1) Ξ H ( k )Ξ

−1

= −H ( − k ); Ξ

2

= ± 1 (2) Π H ( k )Π

−1

= −H ( k ); Π ∝ ΘΞ (3)

Θ

2

Ξ

2

Π

2

(4)

Interaction Hamiltonian

S

int

= g

ph2

2

!

dx dx

ρ(x)D(x − x

)ρ(x

) + g

sf2

2

!

dx dx

s

i

(x)D

ij

(x − x

)s

j

(x

) (5)

1. f -Summenregel Modifications:

In passing, let us also comment on the dependence of ∆

on the integrated pump pulse intensity A

20

τ

p

, which is shown in Fig. ?? (c) for nine different pulse widths τ

p

. The asym- ptotic gap value ∆

is linear for A

20

τ

p

→ 0 for τ

p

≤ 2τ

l

; for larger values of the pump pulse, it shows instead an upward bend because of the full effectiveness of the two-photon processes. At higher, but still not so large, integrated intensity, the single-phonon proces- ses dominate and the curves corresponding to pulses shorter than τ

l

exhibit a downward bend, while those with longer pulse widths an upward one. The curve with τ

p

= τ

l

lies in between these two regimes and marks the reach of full effectiveness of the single-photon processes. At relatively high integrated intensity, all downward bending curves (τ

p

≤ τ

l

) show a more or less sharp upward bend before reaching zero. Instead, upward bending curves (τ

p

> τ

l

) tend to flatten before reaching zero and to saturate for pulse widths larger than 4τ

l

with increasing A

20

τ

p

. This occurs because long pump pulses create sharp

En e rg y

- Plateaus in resistivity

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (1) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (2) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (3)

Θ 2 Ξ 2 Π 2 (4)

Interaction Hamiltonian

S int = g ph 2 2

!

dx dx ρ(x)D(x − x )ρ(x ) + g sf 2

2

!

dx dx s i (x)D ij (x − x )s j (x ) (5) 1. f -Summenregel

Modifications:

In passing, let us also comment on the dependence of ∆ on the integrated pump pulse intensity A 2 0 τ p , which is shown in Fig. ?? (c) for nine different pulse widths τ p . The asym- ptotic gap value ∆ is linear for A 2 0 τ p → 0 for τ p ≤ 2τ l ; for larger values of the pump pulse, it shows instead an upward bend because of the full effectiveness of the two-photon processes. At higher, but still not so large, integrated intensity, the single-phonon proces- ses dominate and the curves corresponding to pulses shorter than τ l exhibit a downward bend, while those with longer pulse widths an upward one. The curve with τ p = τ l lies in between these two regimes and marks the reach of full effectiveness of the single-photon processes. At relatively high integrated intensity, all downward bending curves (τ p ≤ τ l )

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (1) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (2) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (3) Θ 2 Ξ 2 Π 2 (4) Interaction Hamiltonian

S int = g ph 2 2

!

dx dx ρ(x)D (x − x )ρ(x ) + g sf 2

2

!

dx dx s i (x)D ij (x − x )s j (x ) (5) 1. f -Summenregel

Modifications:

In passing, let us also comment on the dependence of ∆ on the integrated pump pulse intensity A 2 0 τ p , which is shown in Fig. ?? (c) for nine different pulse widths τ p . The asym- ptotic gap value ∆ is linear for A 2 0 τ p → 0 for τ p ≤ 2τ l ; for larger values of the pump pulse, it shows instead an upward bend because of the full effectiveness of the two-photon processes. At higher, but still not so large, integrated intensity, the single-phonon proces- ses dominate and the curves corresponding to pulses shorter than τ l exhibit a downward

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (1) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (2) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (3)

Θ 2 Ξ 2 Π 2 (4)

Interaction Hamiltonian

S int = g ph 2 2

!

dx dx ρ(x)D (x − x )ρ(x ) + g sf 2

2

!

dx dx s i (x)D ij (x − x )s j (x ) (5) 1. f -Summenregel

Modifications:

In passing, let us also comment on the dependence of ∆ on the integrated pump pulse intensity A 2 0 τ p , which is shown in Fig. ?? (c) for nine different pulse widths τ p . The asym- ptotic gap value ∆ is linear for A 2 0 τ p → 0 for τ p ≤ 2τ l ; for larger values of the pump pulse, it shows instead an upward bend because of the full effectiveness of the two-photon processes. At higher, but still not so large, integrated intensity, the single-phonon proces- ses dominate and the curves corresponding to pulses shorter than τ l exhibit a downward bend, while those with longer pulse widths an upward one. The curve with τ p = τ l lies in between these two regimes and marks the reach of full effectiveness of the single-photon processes. At relatively high integrated intensity, all downward bending curves (τ p ≤ τ l )

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (1) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (2) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (3)

Θ 2 Ξ 2 Π 2 (4)

Interaction Hamiltonian

S int = g ph 2 2

!

dx dx ρ(x)D (x − x )ρ(x ) + g sf 2

2

!

dx dx s i (x)D ij (x − x )s j (x ) (5) 1. f -Summenregel

Modifications:

In passing, let us also comment on the dependence of ∆ on the integrated pump pulse intensity A 2 0 τ p , which is shown in Fig. ?? (c) for nine different pulse widths τ p . The asym- ptotic gap value ∆ is linear for A 2 0 τ p → 0 for τ p ≤ 2τ l ; for larger values of the pump pulse, it shows instead an upward bend because of the full effectiveness of the two-photon processes. At higher, but still not so large, integrated intensity, the single-phonon proces- ses dominate and the curves corresponding to pulses shorter than τ l exhibit a downward bend, while those with longer pulse widths an upward one. The curve with τ p = τ l lies in between these two regimes and marks the reach of full effectiveness of the single-photon processes. At relatively high integrated intensity, all downward bending curves (τ p ≤ τ l )

B J y

E x

(4)

The Integer Quantum Hall State

— chiral edge state cannot be localized by disorder (no backscattering)

— charge cannot flow in bulk; only along 1D channels at edges (chiral edge states)

Edge states

• There is a gapless chiral edge mode along the sample boundary.

B r

k

x

E

!

!

" Number of edge modes C

h e

xy

=

= !

2

/

"

Effective field theory

(

x x y y

) m ( ) y

z

iv

H = # ! " + ! " + !

( ) y

m

y

domain wall fermion

Robust against disorder (chiral fermions cannot be backscattered)

IQHE has an energy gap in the bulk:

Explanation One:

Explanation Two:

Edge state transport

Topological band theory

Distinction between the integer quantum Hall state and a conventional insulator is a topological property of the band structure

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k ) : H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (1) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (2) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (3) Θ 2 Ξ 2 Π 2 (4) Interaction Hamiltonian

S int = g ph 2 2

!

dx dx ρ(x)D(x − x )ρ(x ) + g sf 2

2

!

dx dx s i (x)D ij (x − x )s j (x ) (5) 1. f -Summenregel

Modifications:

In passing, let us also comment on the dependence of ∆ on the integrated pump pulse intensity A 2 0 τ p , which is shown in Fig. ?? (c) for nine different pulse widths τ p . The asym- ptotic gap value ∆ is linear for A 2 0 τ p → 0 for τ p ≤ 2τ l ; for larger values of the pump

Hamiltonians with energy gap

What causes the precise quantization in IQHE?

Brillouin zone

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

Ξ H BdG ( k ) Ξ −1 = − H BdG ( − k ) "−→ (1)

∆n

Chern number g = 0, g = 1

n = !

bands

i 2π

"

F dk 2 (2)

γ C =

#

C A · d k (3)

First Chern number n = 0 n = !

bands

i 2π

"

dk 2

$% ∂ u

∂ k 1

&

&

&

&

∂ u

∂ k 2

'

% ∂ u

∂ k 2

&

&

&

&

∂ u

∂ k 1

'(

(4) H ( k ) :

H ( k , k )

k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h 2 ρ xy = n 1 e h 2 n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (5) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (6) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (7)

Θ 2 Ξ 2 Π 2 (8)

Classified by Chern number: (= topological invariant)

[Thouless et al, 84]

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l e k sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (1) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (2) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (3) Θ 2 Ξ 2 Π 2 (4) Interaction Hamiltonian

S int = g ph 2 2

!

dx dx ρ(x)D(x − x )ρ(x ) + g sf 2

2

!

dx dx s i (x)D ij (x − x )s j (x ) (5) 1. f -Summenregel

Modifications:

In passing, let us also comment on the dependence of ∆ on the integrated pump pulse intensity A 2 0 τ p , which is shown in Fig. ?? (c) for nine different pulse widths τ p . The asym- ptotic gap value ∆ is linear for A 2 0 τ p → 0 for τ p ≤ 2τ l ; for larger values of the pump pulse, it shows instead an upward bend because of the full effectiveness of the two-photon processes. At higher, but still not so large, integrated intensity, the single-phonon proces- ses dominate and the curves corresponding to pulses shorter than τ l exhibit a downward

does not change under smooth deformations, as long as bulk energy gap is not closed Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Chern number

n = i 2π

!

F dk

filled states

(1)

Gauss:

!

S

κ dA = 4π(1 − g ) (2)

Thermal Halll

κ

xy

T = π

2

k

2B

6h n (3)

start labels

4s 3p 3s E

gap

− π/a + π/a (4)

end labels

H(k) (5)

and

W (k

) = (6)

H

BdG

=

ε

k

− g

kz

+∆

s,k

+ ∆

t,k

ε

k

0 +∆

s,k

+ ∆

t,k

−ε

k

+ g

kz

0 −ε

k

ε

k

0 ε

k

+ g

kz

−∆

s,k

+ ∆

t,k

0 −ε

k

−∆

s,k

+ ∆

t,k

−ε

k

− g

kz

, (7)

and

λ

L

≫ ξ

0

ξ

0

= ! v

F

/(π∆

0

) (8) (9)

λ

L

> L ≫ ξ

0

(10)

charge current operator j

y

(x) = iek

F

2π ! (

λ ˜

2

+ 1 )

n

+π/2

!

−π/2

ν

sin θ

ν

×

* E

ν

u

ν

v

ν

+

a

heν,ν

+ a

ehν,ν

,

e

−2iqνx

-.

. .

.

E→iωn

,

j

l,y

= + e

! t )

ky

sin k

y

c

lkyσ

c

lkyσ

− e

! α )

ky

cos k

y

/

c

lky

c

lky

+ c

lky

c

lky

0

(10) (11)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Chern number

n = i 2π

!

F d k

filled states

(1)

Gauss:

!

S

κ dA = 4π(1 − g ) (2)

Thermal Halll

κ

xy

T = π

2

k

B2

6h n (3)

start labels

4s 3p 3s E

gap

− π/a + π/a (4)

end labels

H(k) (5)

and

W (k

) = (6)

H

BdG

=

ε

k

− g

kz

+∆

s,k

+ ∆

t,k

ε

k

0 +∆

s,k

+ ∆

t,k

−ε

k

+ g

kz

0 −ε

k

ε

k

0 ε

k

+ g

kz

−∆

s,k

+ ∆

t,k

0 −ε

k

−∆

s,k

+ ∆

t,k

−ε

k

− g

kz

, (7)

and

λ

L

≫ ξ

0

ξ

0

= ! v

F

/(π∆

0

) (8) (9)

λ

L

> L ≫ ξ

0

(10)

charge current operator j

y

(x) = iek

F

2π ! (

λ ˜

2

+ 1

)

n

+π/2

!

−π/2

ν

sin θ

ν

×

* E

ν

u

ν

v

ν

+

a

heν,ν

+ a

ehν,ν

,

e

−2iqνx

-.

. .

.

E→iωn

, j

l,y

= + e

! t )

ky

sin k

y

c

lkyσ

c

lkyσ

− e

! α )

ky

cos k

y

/

c

lky

c

lky

+ c

lky

c

lky

0

(10) (11)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

and

n = i 2π

! "

F d

2

k (1)

|u( k )⟩ → e

k

|u( k )⟩ (2)

A → A + ∇

k

φ

k

(3)

F = ∇

k

× A (4)

γ

C

=

#

C

A · d k (5)

γ

C

=

"

S

F d

2

k (6)

= ⇒ (7)

Bloch theorem

[T ( R ), H ] = 0 k |ψ

n

⟩ = e

ikr

|u

n

( k )⟩ (8) (9) H ( k ) = e

−ikr

He

+ikr

(10) (11) H (k) |u

n

(k)⟩ = E

n

(k) |u

n

(k)⟩ (12) we have

H ( k ) k

x

k

y

π/a − π /a k ∈ Brillouin Zone (13) majoranas

γ

1

= ψ + ψ

(14)

γ

2

= −i $

ψ − ψ

%

(15) and

ψ = γ

1

+ iγ

2

(16)

ψ

= γ

1

− iγ

2

(17)

and

γ

i2

= 1 (18)

i

, γ

j

} = 2δ

ij

(19)

— edge states are perfect charge conductor!

xy = e 2 h

i 2

X Z F d 2 k

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Chern number

n = i 2π

!

F dk

filled states

(1)

Gauss:

!

S

κ dA = 4π(1 − g) (2)

Thermal Halll

κ

xy

T = π

2

k

B2

6h n (3)

start labels

4s 3p 3s E

gap

− π/a + π/a (4)

end labels

H(k) (5)

and

W (k

) = (6)

H

BdG

=

ε

k

− g

kz

+∆

s,k

+ ∆

t,k

ε

k

0 +∆

s,k

+ ∆

t,k

−ε

k

+ g

kz

0 −ε

k

ε

k

0 ε

k

+ g

kz

−∆

s,k

+ ∆

t,k

0 −ε

k

−∆

s,k

+ ∆

t,k

−ε

k

− g

kz

, (7)

and

λ

L

≫ ξ

0

ξ

0

= ! v

F

/(π∆

0

) (8) (9)

λ

L

> L ≫ ξ

0

(10)

charge current operator j

y

(x) = iek

F

2π ! (

λ ˜

2

+ 1 )

n

+π/2

!

−π/2

ν

sin θ

ν

×

* E

ν

u

ν

v

ν

+

a

heν,ν

+ a

ehν,ν

,

e

−2iqνx

-.

. .

.

E→iωn

,

j

l,y

= + e

! t )

ky

sin k

y

c

lkyσ

c

lkyσ

− e

! α )

ky

cos k

y

/

c

lky

c

lky

+ c

lky

c

lky

0

(10) (11)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Chern number

n = i 2π

!

F d k

filled states

(1)

Gauss:

!

S

κ dA = 4π(1 − g ) (2)

Thermal Halll

κ

xy

T = π

2

k

B2

6h n (3)

start labels

4s 3p 3s E

gap

− π/a + π/a (4)

end labels

H(k) (5)

and

W (k

) = (6)

H

BdG

=

ε

k

− g

kz

+∆

s,k

+ ∆

t,k

ε

k

0 +∆

s,k

+ ∆

t,k

−ε

k

+ g

kz

0 −ε

k

ε

k

0 ε

k

+ g

kz

−∆

s,k

+ ∆

t,k

0 −ε

k

−∆

s,k

+ ∆

t,k

−ε

k

− g

kz

, (7)

and

λ

L

≫ ξ

0

ξ

0

= ! v

F

/(π∆

0

) (8) (9)

λ

L

> L ≫ ξ

0

(10)

charge current operator j

y

(x) = iek

F

2π ! (

λ ˜

2

+ 1

)

n

+π/2

!

−π/2

ν

sin θ

ν

×

* E

ν

u

ν

v

ν

+

a

heν,ν

+ a

ehν,ν

,

e

−2iqνx

-.

. .

.

E→iωn

, j

l,y

= + e

! t )

ky

sin k

y

c

lkyσ

c

lkyσ

− e

! α )

ky

cos k

y

/

c

lky

c

lky

+ c

lky

c

lky

0

(10) (11)

Kubo formula:

(5)

Follows from the quantization of the topological invariant.

Zero-energy states must exist at the interface between two different topological phases

Bulk-boundary correspondence

smooth transition

n=1 n=0

x y

Zero-energy state at interface

Bulk-boundary correspondence:

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Chern number

n = i 2π

!

F dk

filled states

(1)

Gauss:

!

S

κ dA = 4π(1 − g) (2)

Thermal Halll

κ

xy

T = π

2

k

B2

6h n (3)

start labels

4s 3p 3s E

gap

− π/a + π/a (4)

end labels

H(k) (5)

and

W (k

) = (6)

H

BdG

=

ε

k

− g

kz

+∆

s,k

+ ∆

t,k

ε

k

0 +∆

s,k

+ ∆

t,k

−ε

k

+ g

kz

0 −ε

k

ε

k

0 ε

k

+ g

kz

−∆

s,k

+ ∆

t,k

0 −ε

k

−∆

s,k

+ ∆

t,k

−ε

k

− g

kz

, (7)

and

λ

L

≫ ξ

0

ξ

0

= ! v

F

/(π∆

0

) (8) (9)

λ

L

> L ≫ ξ

0

(10)

charge current operator j

y

(x) = iek

F

2π ! (

λ ˜

2

+ 1 )

n

+π/2

!

−π/2

ν

sin θ

ν

×

* E

ν

u

ν

v

ν

+

a

heν,ν

+ a

ehν,ν

,

e

−2iqνx

-.

. .

.

E→iωn

,

j

l,y

= + e

! t )

ky

sin k

y

c

lkyσ

c

lkyσ

− e

! α )

ky

cos k

y

/

c

lky

c

lky

+ c

lky

c

lky

0

(10) (11)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

Chern number

n = i 2π

!

F d k

filled states

(1)

Gauss:

!

S

κ dA = 4π(1 − g ) (2)

Thermal Halll

κ

xy

T = π

2

k

B2

6h n (3)

start labels

4s 3p 3s E

gap

− π/a + π/a (4)

end labels

H(k) (5)

and

W (k

) = (6)

H

BdG

=

ε

k

− g

kz

+∆

s,k

+ ∆

t,k

ε

k

0 +∆

s,k

+ ∆

t,k

−ε

k

+ g

kz

0 −ε

k

ε

k

0 ε

k

+ g

kz

−∆

s,k

+ ∆

t,k

0 −ε

k

−∆

s,k

+ ∆

t,k

−ε

k

− g

kz

, (7)

and

λ

L

≫ ξ

0

ξ

0

= ! v

F

/(π∆

0

) (8) (9)

λ

L

> L ≫ ξ

0

(10)

charge current operator j

y

(x) = iek

F

2π ! (

λ ˜

2

+ 1

)

n

+π/2

!

−π/2

ν

sin θ

ν

×

* E

ν

u

ν

v

ν

+

a

heν,ν

+ a

ehν,ν

,

e

−2iqνx

-.

. .

.

E→iωn

, j

l,y

= + e

! t )

ky

sin k

y

c

lkyσ

c

lkyσ

− e

! α )

ky

cos k

y

/

c

lky

c

lky

+ c

lky

c

lky

0

(10) (11)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

and

n = i 2π

! "

F d

2

k (1)

|u( k )⟩ → e

k

|u( k )⟩ (2)

A → A + ∇

k

φ

k

(3)

F = ∇

k

× A (4)

γ

C

=

#

C

A · d k (5)

γ

C

=

"

S

F d

2

k (6)

= ⇒ (7)

Bloch theorem

[T (R), H ] = 0 k |ψ

n

⟩ = e

ikr

|u

n

(k)⟩ (8) (9) H ( k ) = e

−ikr

He

+ikr

(10) (11) H ( k ) |u

n

( k )⟩ = E

n

( k ) |u

n

( k )⟩ (12) we have

H ( k ) k

x

k

y

π/a − π /a k ∈ Brillouin Zone (13) majoranas

γ

1

= ψ + ψ

(14)

γ

2

= −i $

ψ − ψ

%

(15) and

ψ = γ

1

+ iγ

2

(16)

ψ

= γ

1

− iγ

2

(17)

and

γ

i2

= 1 (18)

i

, γ

j

} = 2δ

ij

(19)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

H ( k , k ) k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h

2

ρ xy = n 1 e h

2

n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (1) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (2) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (3) Θ 2 Ξ 2 Π 2 (4) Interaction Hamiltonian

S int = g ph 2 2

!

dx dx ρ(x)D (x − x )ρ(x ) + g sf 2

2

!

dx dx s i (x)D ij (x − x )s j (x ) (5) 1. f -Summenregel

Modifications:

In passing, let us also comment on the dependence of ∆ on the integrated pump pulse intensity A 2 0 τ p , which is shown in Fig. ?? (c) for nine different pulse widths τ p . The asym- ptotic gap value ∆ is linear for A 2 0 τ p → 0 for τ p ≤ 2τ l ; for larger values of the pump pulse, it shows instead an upward bend because of the full effectiveness of the two-photon processes. At higher, but still not so large, integrated intensity, the single-phonon proces- ses dominate and the curves corresponding to pulses shorter than τ l exhibit a downward

topological invariant

Stable gapless edge states:

= number or edge modes

IQHE: chiral Dirac Fermion

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

and

E 0 k y (1)

C = solid angle swept out by ˆ d ( k ) (2)

H (k) = d(k) · σ d ˆ (3)

n = i 2π

! "

F d 2 k (4)

|u(k)⟩ → e

k

|u(k)⟩ (5)

A → A + ∇ k φ k (6)

F = ∇ k × A (7)

γ C =

#

C

A · dk (8)

γ C =

"

S

F d 2 k (9)

= ⇒ (10)

Bloch theorem

[T ( R ), H ] = 0 k |ψ n ⟩ = e i kr |u n ( k )⟩ (11) (12) H ( k ) = e −i kr He +i kr (13) (14) H ( k ) |u n ( k )⟩ = E n ( k ) |u n ( k )⟩ (15) we have

H (k) k x k y π/a − π/a k ∈ Brillouin Zone (16) majoranas

γ 1 = ψ + ψ (17)

γ 2 = −i $

ψ − ψ %

(18) and

ψ = γ 1 + iγ 2 (19)

ψ = γ 1 − iγ 2 (20)

and

γ i 2 = 1 (21)

i , γ j } = 2δ ij (22)

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

and

E 0 k y (1)

C = solid angle swept out by ˆ d ( k ) (2) H ( k ) = d ( k ) · σ d ˆ (3)

n = i 2π

! "

F d 2 k (4)

|u( k )⟩ → e

k

|u( k )⟩ (5)

A → A + ∇ k φ k (6)

F = ∇ k × A (7)

γ C =

#

C

A · d k (8)

γ C =

"

S

F d 2 k (9)

= ⇒ (10)

Bloch theorem

[T ( R ), H ] = 0 k |ψ n ⟩ = e i kr |u n ( k )⟩ (11) (12) H ( k ) = e −i kr He +i kr (13) (14) H ( k ) |u n ( k )⟩ = E n ( k ) |u n ( k )⟩ (15) we have

H ( k ) k x k y π /a − π /a k ∈ Brillouin Zone (16) majoranas

γ 1 = ψ + ψ (17)

γ 2 = −i $

ψ − ψ %

(18) and

ψ = γ 1 + iγ 2 (19)

ψ = γ 1 − iγ 2 (20)

and

γ i 2 = 1 (21)

i , γ j } = 2δ ij (22)

• robust to smooth deformations !

(respect symmetries of the system)!

• ! insensitive to disorder, impossible to localize!

! • cannot exist in a purely 1D system ! (Fermion doubling theorem)

n = | n L n R |

(6)

Topology and Two Bands Model

1 Empty Flat Band 1 Filled Flat Band

k

h(k)

h

2⇡

It is not possible to have a coherent phase convention for all points of the sphere

‣ if does not cover the whole sphere : single phase convention possible. «Standard trivial case»

‣ If spreads over the whole sphere :

we need 2 independent phase conventions

! signals a topological property : the wavefunction phase winds by around the sphere

h(k) h(k)

single phase convention possible

Trivial Band Twisted Band

Chern number ⟺ winding of electronic phase

Topological Property

| u

k

| u ˜

k

e

i (k)

vendredi 13 septembre 13

Topology and Two Bands Model

1 Empty Flat Band

1 Filled Flat Band

k

h(k)

h

2⇡

It is not possible to have a coherent phase convention for all points of the sphere

‣ if does not cover the whole sphere : single phase convention possible. «Standard trivial case»

‣ If spreads over the whole sphere :

we need 2 independent phase conventions

! signals a topological property : the wavefunction phase winds by around the sphere

h(k) h(k)

single phase convention possible

Trivial Band Twisted Band

Chern number ⟺ winding of electronic phase

Topological Property

| u

k

| u ˜

k

e

i (k)

vendredi 13 septembre 13

Chern insulator on square lattice

[D. Haldane PRL ’88]

Tight-binding model:

d x (k) = sin k x d y (k) = sin k y d z (k) = (2 + M cos k x cos k y )

Chern number:

Spectrum flattening:

E ± = ± | d(k) | d(k) = ˆ d(k)

| d(k) |

no edge state trivial phase

d y

d x d z

chiral edge state non-trivial phase

d z

d x d y

quantized Hall effect xy = e 2 h n H CI = d(k) · ~ + ✏ 0 (k) 0

Chern insulator (“integer quantum Hall state on a lattice”)

E

k

4 < M < 0

n Z = ± 1 chiral edge state

n Z = 0

n Z = 1 8⇡

Z

BZ

d 2 k ✏ µ⌫ d ˆ · h

@ k

µ

d ˆ ⇥ @ k

d ˆ i

H

CI

= ⇣

c

s,k

c

p,k

H

CI

✓ c

s,k

c

p,k

Experimental realization: Cr-doped (Bi,Sb)

2

Te

3

[Chang et al. Science ’13]

M > 0

Brillouin zone

Festk¨ orperphysik II, Musterl¨ osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

1 frist chapter

Ξ H BdG ( k ) Ξ −1 = − H BdG ( − k ) "−→ (1)

∆n

Chern number g = 0, g = 1

n = !

bands

i 2π

"

F dk 2 (2)

γ C =

#

C A · d k (3)

First Chern number n = 0 n = !

bands

i 2π

"

dk 2

$% ∂ u

∂ k 1

&

&

&

&

∂ u

∂ k 2

'

% ∂ u

∂ k 2

&

&

&

&

∂ u

∂ k 1

'(

(4) H ( k ) :

H ( k , k )

k F > 1/ξ 0

sgn(∆ + K ) = − sgn(∆ K ) and l k antiparallel to l k e sgn(∆ + k ) = − sgn(∆ k )

σ xy = n e h 2 ρ xy = n 1 e h 2 n ∈

J y = σ xy E x

Symmetry Operations: E gap = ! ω c

Θ H ( k )Θ −1 = + H ( − k ); Θ 2 = ± 1 (5) Ξ H ( k )Ξ −1 = −H ( − k ); Ξ 2 = ± 1 (6) Π H ( k )Π −1 = −H ( k ); Π ∝ ΘΞ (7)

Θ 2 Ξ 2 Π 2 (8)

Mapping d(k) : ˆ d(k) ˆ 2 S 2

Festk¨orperphysik II, Musterl¨osung 11.

Prof. M. Sigrist, WS05/06 ETH Z¨urich

energy spectrum Simple example Polyacethylene:

“⌅ 2 (S 2 ) = ” H (k) = d(k) · =

⌅ 0 h(k) h (k ) 0

(1) and

[C 2 H 2 ] n (2)

F = 1 2

k ˆ

k 2 (3)

C =

S F d⇤d⇧ = (4)

F µ⇥ = ⇥ µ⇥⇤ F (5)

F = ⇤ k ⇥ A (6)

d(k) = k (7)

C =

S F · dk (8)

Berry curvature tensor

F µ⇥ (k) = ⌃

⌃ k µ A (k) ⌃

⌃k A µ (k) (9)

Berry curvature

F k

i

,k

j

= sin ⇤ 2

⌃ (⇤, ⇧)

⌃ (k i , k j ) (10)

k d(k) (11)

F = ⌃ A A = sin ⇤

2 (12)

Berry vector potential

A = i u k ⇤ ⇤ ⌃ ⇤ ⇤ u k

= 0 (13)

A = i u k ⇤ ⇤ ⌃ ⇤ ⇤ u k

= sin 2 (⇤/2) (14)

and

A = (15)

⇤ ⇤ u + k

=

⌅ cos(⇤ /2)e i⌅

sin(⇤ /2)

(16)

⇤ ⇤ u k

=

⌅ sin(⇤ /2)e i⌅

cos(⇤/2)

(17) (18)

E ± = ± | d | (19)

(7)

Chern insulator on square lattice

[D. Haldane PRL ’88]

Tight-binding model:

d x (k) = sin k x d y (k) = sin k y d z (k) = (2 + M cos k x cos k y )

Spectrum flattening:

E ± = ± | d(k) | d(k) = ˆ d(k)

| d(k) |

H CI = d(k) · ~ + ✏ 0 (k) 0

Chern insulator (“integer quantum Hall state on a lattice”)

E

k

chiral edge state

H

CI

= ⇣

c

s,k

c

p,k

H

CI

✓ c

s,k

c

p,k

Experimental realization: Cr-doped (Bi,Sb)

2

Te

3

[Chang et al. Science ’13]

n Z = 0

M > 0 4 < M < 0

n Z = ± 1

trivial phase non-trivial phase

Chern number: n Z = 1 8⇡

Z

BZ

d 2 k ✏ µ⌫ d ˆ · h

@ k

µ

d ˆ ⇥ @ k

d ˆ i

Texture of unit vector d(k) ˆ

(8)

Chern insulator on square lattice

Chern insulator on square lattice:

d x (k) = sin k x d y (k) = sin k y d z (k) = (2 + M cos k x cos k y )

Effective low-energy continuum theory for M=0: (expand around ; term can be neglected) k = 0

E ± = ± = ± p

k 2 + M 2 two eigenfunctions with energies:

u

+k

= 1

p 2 ( M )

✓ k

x

ik

y

M

u k

= 1

p 2 ( + M )

✓ k x + ik y + M

Berry curvature:

zero-energy state ! at boundary

F xy = ⇥ k

x

A k

y

k

y

A k

x

= + M 2 3 gives nonzero Chern number !

(= Hall conductance ) xy n = 1 2

Z

d 2 k F xy = 1

2 sgn(M )

NB: Chern number must be integer for integrals over compact manifolds. ! Proper regularization of Dirac Hamiltonian will lead to

Chiral edge state at boundary between two Chern insulators with different n

n = 0 n = 1

0 = 1

p 2

✓ 1 1

e ik

y

y e R

0x

M (x

0

)dx

0

H CI = k x x + k y y + M z

H CI = d(k) · ~ + ✏ 0 (k) 0

0

n 2 Z

Referenzen

ÄHNLICHE DOKUMENTE

This regime occurs when E F lies in between the bulk valence band maximum (VBM) and the bulk conduction band minimum (CBM), and exactly at the surface or edge Dirac point, which

Institut f¨ur Theoretische Physik, Universit¨at Regensburg, D-93040 Regensburg, Germany (Received 27 September 2011; revised manuscript received 9 March 2012; published 22 March

We show that superlattices based on zero-gap semiconductors such as graphene and mercury telluride exhibit characteristic Bloch–Zener oscillations that emerge from the

In both setups the spin-Majorana exchange interaction allows for a phase gate, acting on either the spin or the Majorana qubit, and for a SWAP or hybrid SWAP gate which is

Like in the semi-classical picture of the quantum Hall effect, particles above the bulk of the material move following closed orbits, and particles close to the edge perform

This regime occurs when E F lies in between the bulk valence band maximum (VBM) and the bulk conduction band minimum (CBM), and exactly at the surface or edge Dirac point, which

The result of this classification scheme is that in each spatial dimension there exist precisely five distinct classes of topological insulators or superconductors, three of which

&gt;&gt; Since his democratic victory in 2010, Ukrainian President Viktor Yanukovych has asserted his control over Ukraine’s political system by arresting leaders of the