• Keine Ergebnisse gefunden

The MuPix Telescope - Working Principle, Performance and MuPix Test Beam Results

N/A
N/A
Protected

Academic year: 2022

Aktie "The MuPix Telescope - Working Principle, Performance and MuPix Test Beam Results"

Copied!
45
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)The MuPix Telescope - Working Principle, Performance and MuPix Test Beam Results. Lennart Huth for the Mu3e collaboration Physikalisches Institut Heidelberg BTTB Workshop Jan 2017.

(2) Motivation.

(3) Motivation. • new physics searches at low momenta require thin and fast pixel sensors e.g. Mu3e: search for µ+ → e + e − e + • Mu3e pushes HV-MAPS development → requires a lot of test beams and integration studies • we need a test setup, that combines multiple aspects of the Mu3e detector. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. signal. background. 1.

(4) The MuPix Telescope.

(5) Concept. Idea: Build a tracking telescope from Mu3e detector components to test read out, synchronization and carry out test beams. Use one pixel layer as device under test (dut). Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 2.

(6) HighVoltage - MonolithicActivePixelSensors (HV-MAPS) (I.Peric, P. Fischer et al., NIM A 582 (2007) 876 ). • digital position and time read out. • σt < 11 ns measured. • 80 x 80 µm pixel size. • efficiency > 99.5 % measured. • 256 x 256 pixel. • 50 µm thin ≈ 0.05% radiation length. 2. • 2 x 2 cm2 total size Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 3.

(7) MuPix 7 • full self-triggered zero-suppressed readout running in on-chip state machine • 1.25 GBit/s serial data output • 125 MHz external reference clock • 32 × 40pixel with size of 103 x 80 µm2 • active area: 3.3 mm × 3.2 mm 120 mV 60 mV 0 mV -60 mV -120 mV 0. 1. 2. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 3. 4 ns. 4.

(8) MuPix7 II. Periphery. sensor. CSA. source follower. State Machine. baseline. other pixels. Pixel. 2nd amplifier. .. .. readout comparator. tune DAC. test-pulse injection. readout state machine. 8b/10b encoder. VCO & PLL. serializer. LVDS. threshold amplification. integrate charge. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. line driver. AC coupling via CR filter per pixel threshold adjustment. digital output. 5.

(9) Readout and Control Scheme. MuPix. 1. 2. 3. PCIe bus. 0. readout computer. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(10) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3 C P U. PCIe bus. GUI. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(11) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3. config. C P U. PCIe bus. control register. GUI. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(12) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3. control register. C P U. PCIe bus. GUI. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(13) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3. control register. C P U. PCIe bus. GUI. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(14) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3 GUI. control register. PCIe bus. time sorting. C P U. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(15) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3 GUI. control register. PCIe bus. time sorting. C P U. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(16) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3 GUI. control register DMA polling. PCIe bus. time sorting. C P U. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(17) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3. DDR3 GUI. control register DMA polling. PCIe bus. time sorting. C P U. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(18) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3. DDR3 GUI. control register DMA polling. PCIe bus. time sorting. C P U data merger. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(19) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3. DDR3 GUI. time sorting. DMA polling. data. PCIe bus. control register. C P U. monitoring & tracking merger. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 6.

(20) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3. DDR3 GUI. time sorting. DMA polling. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. data. PCIe bus. control register. C P U. monitoring & tracking merger. H D D 6.

(21) Readout and Control Scheme. MuPix. 0. 1. 2. readout computer. 3. DDR3 GUI. time sorting. DMA polling. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. data. PCIe bus. control register. C P U. monitoring & tracking merger. GPU. H D D 6.

(22) Readout and Control Scheme. MuPix. readout computer. 0 41 5 2 6 3 7. DDR3 GUI. time sorting. DMA. FPGA 0 Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 1. PCIe bus. data. control register polling. C P U. monitoring & tracking merger. GPU. H D D 6.

(23) Readout and Control Scheme. MuPix. readout computer. 0 41 5 2 6 3 7. DDR3 GUI. time sorting. DMA clock reset. FPGA 0. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 1. PCIe bus. data. control register polling. C P U. 125 MHz oscillator. monitoring & tracking merger. GPU. H D D 6.

(24) Telescope Design Goals. target pixel size [µm] # layers track rate [MHz] material budget per layer radiation length ‰ time resolution σ [ns]. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 80x80 4 20 50 µm sensor 25 µm support 0.6 17. current status 103x80 8 1 50 µm sensor 100 µm support 0.9 1 (tiles) 14 (mupix). 7.

(25) Test Beam Results.

(26)

(27) Alignment & Resolution. Residuals in y for plane 0 Residuals y mean [um]. Residuals in y for plane 1 Residuals in y for plane 2. 8. Residuals in y for plane 3 Residuals in y for plane 4. 6 4 2 0 −2 −4 −6 −8 260. 280. 300. 320. 340. 360. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 380 400 Run number. 9.

(28) Alignment & Resolution. RMS of residuals in y for plane 0. RMS of residuals y mean [um]. RMS of residuals in y for plane 1. 80. RMS of residuals in y for plane 2 RMS of residuals in y for plane 3. 70. RMS of residuals in y for plane 4. 60 50 40 30 20 10 0. 260. 280. 300. 320. 340. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 360. 380 400 Run number. 9.

(29) Alignment & Resolution. Residuals in x for plane 0. Residuals in y for plane 0. Residuals in x for plane 2 Residuals in x for plane 3 Residuals in x for plane 4. 5. 0. Residuals in y for plane 1 Residuals y mean [um]. Residuals x mean [um]. Residuals in x for plane 1 10. Residuals in y for plane 2 8. Residuals in y for plane 3 Residuals in y for plane 4. 6 4 2 0. −5. −2 − 10. −4 −6. − 15. −8 260. 280. 300. 320. 340. 360. 380 400 Run number. 260. 280. 300. 320. 340. 360. RMS of residuals in x for plane 0. RMS of residuals in x for plane 2 RMS of residuals in x for plane 3. 70. RMS of residuals in x for plane 4. 60 50 40. RMS of residuals in y for plane 1. RMS of residuals y mean [um]. RMS of residuals x mean [um]. RMS of residuals in x for plane 1. 80. 80. RMS of residuals in y for plane 3 RMS of residuals in y for plane 4. 60 50 40 30. 20. 20. 0. RMS of residuals in y for plane 2. 70. 30. 10. 380 400 Run number. RMS of residuals in y for plane 0. 10. 260. 280. 300. 320. 340. 360. 380 400 Run number. 0. 260. 280. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 300. 320. 340. 360. 380 400 Run number. 9.

(30) Efficiency Studies using the MuPix Telescope. 0.96. 35. 0.94. 30. 0.92. 25. 0.9. ROI. 20 15. 0.88 0.86. 10 5 0. 0. 5. 10. 15. 20. 25. 30 Column. 0.84 0.82 0.8. define ROI to eliminate sensor edge effects. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 105. 99.5 99. 99 % 104. 98.5 103. 98. 102. 97.5 97. 10. 96.5. Efficiency. 1. 96 95.5. Noiserate per pixel [1/s]. 0.98. Efficiency [%]. Row. Efficiency Map. Efficiency. -85 V, 0 degrees. Noise −1. 0.7. 0.71. 0.72. 0.73. 10 0.74 0.75 Threshold [V]. 10.

(31) Efficiency Studies using the MuPix Telescope II. • dut rotated • thicker effective depletion zone higher signal - more efficient. Efficiency. Search Window 800 µm and time cut 48 ns 1 0.99 0.98 Rotation [deg]. • similar effect with higher substrate resistivity. 0.96. • new prototype!. 0.95. 15 30 45. 0.94. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 0. 0.97. 60. 0.68. 0.7. 0.72. 0.74. 0.76 Threshold [V]. 11.

(32) Entries [1/run]. Time Resolution. 104. σ = 14.3 ns. 103. 102 −600. −500. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. −400. −300 −200 −100 0 Time diff cbetween rn e betweenhit hitand andscintillator scintillator time time [ns] Time difference. 12.

(33) Studies using the Duranta Telescope. 2. efficiency_pixel_uv_folded. 1. Entries Mean x Mean y RMS x RMS y. 0.99. 502338 0.4996 0.4996 0.5768 0.5767. 0.98. 1.5 0.97 1. 0.96. 0.5. 0.95. Mupix7, 735 mV threshold, HV = -85 V column-axis [mm]. pixels in row direction. Mupix7, 720 mV threshold, HV = -85 V 2.5. 1 3. 0.9 0.8. 2.5. 0.7 2. 0.6 0.5. 1.5. 0.4. 0.94. 0. 1. 0.3. 0.93 −0.5 0.92 −1. 0.91. 0.2. 0.5. 0 0. −1.5 −1.5. −1. −0.5. 0. 0.5. 1 1.5 2 2.5 pixels in column direction. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 0.9. 0.5. 1. efficiency_pixeluv Entries 900390 Mean x 1.557 Mean1.5 y 1.803 2 RMS x 0.922 RMS y 0.8324. 0.1 2.5 3 row-axis [mm]. 0. 13.

(34) Conclusion & Outlook Conclusion • MuPix Telescope is a crucial tool for system integration and test beam studies • thin and fast telescope: 0.9 ‰ X/X0 per layer and 1 MHz track rate • intensively used to study MuPix7: 99.5% efficiency 14 ns time resolution • will also be used with next prototype generation Outlook • integrate the MuPix8 • improve user friendliness Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 14.

(35) BACKUP.

(36) Time Resolution with DURANTA. Mupix7, 730 mV threshold, HV = -40 V Sigma: (hit - trigger) timestamp [ns]. Sigma: (hit - trigger) timestamp [ns]. Mupix7, 730 mV threshold, HV = -40 V 23. 22. 21. 20. 19. 21.5 21 20.5 20 19.5 19 18.5 18. 18. 17.5 17 0. 17 20. 40. 60. 80. 100. 120. 140. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 160. 180 200 220 column direction [um]. 0. 20. 40. 60. 80. 100. 120. 140. 160 row direction [um]. 15.

(37) Tracking in MS regime. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 16.

(38) Track Model. Trackmodel: Straight track without scattering ~x (z) = x~0 + ~a · z → X 2 can be analytically minimized 2. X =. n X i=1. 2. 2. (xi − (x0 + ax · zi )) (yi − (y0 + ay · zi )) + 2 σxm σy2m i. assuming σx/ymi = pixel resolution =. !. i. pixel size √ 12. → Fast and robust track model!. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 17.

(39) Mu3e Detector. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 18.

(40) GUI. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 19.

(41) Efficiency/Noise map. 35. 3.5. 30. 3. 25. 2.5 2. 0.8 30. Noise Rate [Hz]. Row. 0.9. 35. Row. Noise_map 1. Efficiency. Efficiency_map. 0.7 25 0.6 20. 0.5. 20. 15. 0.4. 15. 1.5. 10. 1. 0.3 10 0.2 5. 5. 0.5. 0.1 0 0. 5. 10. 15. 20. Lennart Huth - huth@physi.uni-heidelberg.de (PI HD) Jan 2017. 25. 30 Column. 0. 0 0. 5. 10. 15. 20. 25. 30 Column. 0. 20.

(42) Crosstalk. Crosstalk Prob. triple_hit_row. 10−2. row col. 10−3. 10−4. 0. 5. 10. 15. 20. 25. 30. 35 Column/Row Address.

(43) Mass Scale Sensitivity.

(44) µ→eγ.

(45) Muon decays history.

(46)

Referenzen

ÄHNLICHE DOKUMENTE

Therefore, as cited above, overload resolution will now unambiguously choose that more constrained candidate as the “best viable function.” Consequently, (a) there is no longer

Mupix8 matrix A: Time Resolution Results.

MAPS sensors are glued to 2 layer Aluminium-Kapton flex circuits (LTU) and connected using SPTAB bonding.. SP-TAB: kapton is etched away leaving an exposed aluminium trace that

Analog lines between active pixel and digital periphery are crosstalk affected → row dependence. Only track

High rate electron beam tests with MuPix sensors at MAMI..

Idea: Build a tracking telescope from Mu3e detector components to test read out, synchronization and carry out test beams. Use one pixel layer as device under

MAMI is a suitable facility for beam tests with high electron rates and high energy photons. The narrow high quality electron beam can be extracted at 855 MeV Tagged photon beam up

• GPU Online Tracking and direct memory access (T 42.5/6).. Concept, Readout