• Keine Ergebnisse gefunden

- Dienstags (alle 14 Tage), 9:00 Uhr, Seminarraum Didaktik - Mittwochs 15:30 Uhr, Hörsaal Schutow, Schutower Straße 5

N/A
N/A
Protected

Academic year: 2022

Aktie "- Dienstags (alle 14 Tage), 9:00 Uhr, Seminarraum Didaktik - Mittwochs 15:30 Uhr, Hörsaal Schutow, Schutower Straße 5 "

Copied!
38
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

1

1b Was ist Physik?

(2)

Termine

Vorlesung

- Dienstags (alle 14 Tage), 9:00 Uhr, Seminarraum Didaktik - Mittwochs 15:30 Uhr, Hörsaal Schutow, Schutower Straße 5

Kontakt

PD Dr. Josef Tiggesbäumker Universitätsplatz 3

Zimmer 210

josef.tiggesbaeumker@uni-rostock.de

Übungsgruppen

– Dienstags 9:00 Uhr,

• Übungsgruppe 1, Größer Hörsaal, Universitätsplatz 3

• Übungsgruppe 2, Seminarraum Didaktik

– Abgabe der Lösungen jeweils am Montag vor der Übung,

wo? Universitätsplatz 3, Zimmer 210

Übungsgruppe 2

Dipl. Phys. Sebastian Göde Universitätsplatz 3

Zimmer 210

sebastian.goede@uni-rostock.de Übungsgruppe 1

Dipl. Phys. Johannes Passig Universitätsplatz 3

Zimmer 210

johannes.passig@uni-rostock.de

noch e

ine Te rminä nderu ng

Dienst ags im

mer sc

hon um

9:00 U

Erste Ü bung hr

Mi 21.1

0.2009 , Sem

inarra

um Did aktik

(3)

3

Physikalische Vorhersagen

Klassische Physik (z.B. Mechanik)

geprägt durch strengen

Determinismus

Aus der Kenntnis der Anfangs- und Randbedingungen und einer geeigneten mathematisch formulierten Theorie läßt sich die zukünftige Entwicklung eines

Systems als ein wohldefiniertes Resultat vorherbestimmen.

Rene Descartes (1596-1650)

Issac Newton (1642-1727)

(4)

Physikalische Vorhersagen

Moderne Physik

(Quantenphysik, Chaostheorie, Statistische Physik) ist

nicht deterministisch.

d.h. im allgemeinen sind nur Aussagen möglich, die eine Wahrscheinlichkeit angeben, ob ein bestimmter Zustand eines Systems eingenommen wird.

Beispiele:

Der Zeitpunkt, an dem Lichtemission aus einem angeregten Atom erfolgt kann nicht vorhergesagt werden.

Ratengleichungen für den Ablauf chemischer Reaktionen

schlimmer noch: Der Messprozess hat Auswirkungen auf das Ergebnis einer Messung!

Welche Kräfte in der Natur sind dafür verantwortlich?

(5)

5

(6)

Physik in der Literatur

2. Akt

„Was einmal gedacht wurde, kann nicht mehr zurückgenommen werden

.“

uraufgeführt

1962

(7)

7

Grand Unified Theory?

Einstein: Mein Geheimdienst glaubte, Sie würden die einheitliche Theorie der Elementarteichen...

Möbius: Auch ihren Geheimdienst kann ich beruhigen. Die einheitliche Feldtheorie ist gefunden.

Newton: Die Weltformel.

(Friedrich Dürrenmat, Die Physiker, 1962)

Gravitation Starke Kraft

Elektromagnetismus Schwache Kraft

Massen

Quarks, Protonen, Neutronen elektrische Ladungen

radioaktive Zerfälle

Energieskala

(8)

Grenzen physikalischer Gesetze

Neben dem physikalischen Gesetz ist auch der Geltungsbereich wichtig!

Beispiel:

Newton versus Einstein

Durch die Relativitätstheorie ist die Newtonsche Mechanik nicht falsch Der Geltungsbereich ist allerdings eingeschränkt.

Geschwindigkeit der Objekte muss gering sein gegenüber der Lichtgeschwindigkeit

Abschätzungen sind das A und O in der Physik

(9)

9

Abschätzung 1: Fermi‘s Beobachtung

My observations during the explosion at Trinity on july 16, 1945

On the morning of the 16th of July, I was stationed at the Base Camp at Trinity in a position about ten miles from the site of the explosion. The explosion took place at about 5:30 A.M. I had my face protected by a large board in which a piece of dark welding glass had been inserted. My first impression of the explosion was the very intense flash of light, and a

sensation of heat on the parts of my body that were exposed. Although I did not look directly towards the object, I had the impression that suddenly the countryside became brighter than in full daylight. I subsequently looked in the direction of the explosion through the dark

glass and could see something that looked like a conglomeration of flames that promptly started rising. After a few seconds the rising flames lost their brightness and appeared as a huge pillar of smoke with an expanded head like a gigantic mushroom that rose rapidly beyond the clouds probably to a height of the order of 30,000 feet. After reaching its full height, the smoke stayed stationary for a while before the wind started dispersing it.

About 40 seconds after the explosion the air blast reached me. I tried to estimate its strength by dropping from about six feet small pieces of paper before, during and after the passage of the blast wave. Since at the time, there was no wind I could observe very distinctly and actually measure the displacement of the pieces of paper that were in the process of falling while the blast was passing. The shift was about 2.5 meters, which, at the time, I estimated to correspond to the blast that would be produced by ten thousand tons of TNT.

(10)

Kinderuni am 24.10.2007

OZ 20.10.2007

(11)

11

Abschätzung 2: Die Drake Gleichung

Leben auf der Erde ... und anderswo?

Was ist notwendig?

Distanz zum Galaktischen Zentrum sonnenähnliche Sterne

Gasriesen im Sonnensystem Mond

planetares Magnetfeld

gleichmäßige und stabile Umlaufbahn kurze Rotationsperiode

Rotationsachse nicht zu stark geneigt Atmosphäre

Ozeane und Plattentektonik

Meteoriten

(12)

Abschätzung 2: Die Drake Gleichung

Leben auf der Erde ... und anderswo?

Mittlere Sternentstehungsrate x Anteil sonnenähnlicher Sterne

x Anteil Sterne mit Planetensystemen x Anteil Planeten in der Ökosphäre x Planeten mit Leben

x Planeten mit intelligentem Leben

x Interstellare Kommunikationsfähigkeit x Lebensdauer der technischen Zivilisation

= Anzahl der technisch, intelligenten

Zivilisationen in unserer Galaxie

(13)

13

Abschätzung 2: Die Drake Gleichung

Leben auf der Erde ... und anderswo?

Optimistische Schätzung

Mittlere Sternentstehungsrate pro Jahr (4-19) x Anteil sonnenähnlicher Sterne (0.25)

x Anteil Sterne mit Planetensystemen (0.5) x Anteil Planeten in der Ökosphäre (2) x Planeten mit Leben (1)

x Planeten mit intelligentem Leben (1) x Interstellare Kommunikationsfähigkeit (1)

x Lebensdauer der technischen Zivilisation (400a)

= Anzahl der technisch, intelligenten Zivilisationen nz=400-1900

verteilt auf das Gebiet der Milchstrasse

( 10 LJ Dicke ) 10 der LJ Scheibe 3 10 3.000 LJ LJ ( 2 . 6 10 )

LJ 100.000 Scheibe

der r Durchmesse

se Milchstras der

Größe

61 3

13 2 3

5

⋅ = ⋅ = ⋅

= π V

MW

LJ 00 5 1 1 ~

LJ 000 20

4 ~ 3

3 3

z z

MW

z

n n

r = V

π

m 10 46 . min 9 60 s h 60min tg 24 h tg s 365 0 m 1 3 LJ 1

Meter in Lichtjahre Umrechnung

15

8 =

=

Gesucht: Radius im dem man intelligentes Leben finden könnte

3 3

3 4

z z

MW

r

n

V = π

Aufteilung des Volumens der Milchstrasse in nZgleich große

Kugeln mit Radius rZ Das muss man ausrechnen

(14)

Neue Herausforderungen

Dunkle Materie und Dunkle Energie Entwicklung Neuer Materialien

Biophysik

Verständnis komplexer Systeme

Endwicklung der Quantentechnologie

Vereinheitlichung der fundamentalen Kräfte in der Natur

16.5.2006

Ein Käfig aus 16 Goldatomen

(15)

15

What is Life?

Erwin Schrödinger, 1944

Erwin Schrödinger (1887 - 1961)

Wie verhalten sich einzelne Moleküle fernab vom Gleichgewicht?

Welche Moleküle genau die Basis des Lebens bilden war zu diesem Zeitpunkt unbekannt.

ABER eines war schon klar

Gene sind Moleküle und ein Verständnis des Mechanismus des Lebens basiert auf der Kenntnis der Eigenschaften von Molekülen als molekularen Maschine

(16)

Biophysik und Nanomechanik

F-ATPase produziert ATP

menschlicher Verbrauch 50-1000 kg pro Tag

Fußteil in Membran verankert

Adenosintriphosphat (ATP) universeller Träger chemischer

Energie in Organismen

EnF-ATPase

da starre Verbinding bewegt sich der orange asymmetrische Innenteil

Ladungsunterschied zwischen äußeren und inneren Mitochondrien

setzt wie ein Elektromotor den Rotor

in Bewegung

Kleinster Motor der Welt Durchmesser des Enzyms 25 nm

Herausforderung an Rechenleistung von Supercomputern (20.000 Atome)

2 Jahre Rechenzeit um die

Strukturänderung bei der Drehung und die für die Bildung von ATP

verantwortlichen Synthesezentren im Rechner nachzuvollziehen.

(17)

17

Abstraktion ist notwendig!

um fundamentale Probleme in komplexen Systemen zu erfassen

On Exactitude in Science . . . In that Empire, the Art of Cartography attained such Perfection that the map of a single Province occupied the

entirety of a City, and the map of the Empire, the entirety of a Province. In time, those

Unconscionable Maps no longer satisfied, and the Cartographers Guilds struck a Map of the Empire whose size was that of the Empire, and which coincided point for point with it. The

following Generations, who were not so fond of the Study of Cartography as their Forebears had been, saw that that vast Map was Useless, and not without some Pitilessness was it, that they delivered it up to the Inclemencies of Sun and Winters. In the Deserts of the West, still today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land there is no other Relic of the Disciplines of Geography.

Suarez Miranda,Viajes de varones prudentes, Libro IV,Cap. XLV, Lerida, 1658

George Luis Borges (1899-1986) fiktive Geschichte veröffentlicht März 1946

in los Anales de Buenos Aires, año 1, no. 3

(18)

Die Fragen an die Maus

1. Warum ist der Himmel blau?

2. Alles über Maus und Elefanten 3. Wie entsteht ein Regenbogen?

4. Wie funktioniert ein Fernseher?

5. Wie fliegen Flugzeuge?

6. Warum erscheint Meerwasser blau?

7. Was ist Strom?

8. Wie kommt die Musik auf die CD?

9. Wie funktioniert ein Computer?

10. Warum ist die Banane krumm?

(19)

19

Die Fragen an die Maus

1. Warum ist der Himmel blau?

2. Alles über Maus und Elefanten 3. Wie entsteht ein Regenbogen?

4. Wie funktioniert ein Fernseher?

5. Wie fliegen Flugzeuge?

6. Warum erscheint Meerwasser blau?

7. Was ist Strom?

8. Wie kommt die Musik auf die CD?

9. Wie funktioniert ein Computer?

10. Warum ist die Banane krumm?

Elektrodynamik

???

Optik

Elektrodynamik Strömungsmechanik Optik

Quantenphysik Laserphysik

Nanotechnologie Energie

Wo kann die Physik beitragen?

(20)

Here They Are, Science's 10 Most Beautiful Experiments

By GEORGE JOHNSON

Published: September 24, 2002

Whether they are blasting apart subatomic particles in accelerators, sequencing the genome or analyzing the wobble of a distant star, the experiments that grab the world's attention often cost millions of dollars to execute and produce torrents of data to be processed over months by

supercomputers. Some research groups have grown to the size of small companies.

But ultimately science comes down to the individual mind grappling with something mysterious.

When Robert P. Crease, a member of the philosophy department at the State University of New York at Stony Brook and the historian at Brookhaven National Laboratory, recently asked physicists to nominate the most beautiful experiment of all time, the 10 winners were largely solo

performances, involving at most a few assistants. Most of the experiments -- which are listed in this month's Physics World – took place on tabletops and none required more computational power than that of a slide rule or calculator.

What they have in common is that they epitomize the elusive quality scientists call beauty. This is beauty in the classical sense: the logical simplicity of the apparatus, like the logical simplicity of the analysis, seems as inevitable and pure as the lines of a Greek monument. Confusion and ambiguity are momentarily swept aside, and something new about nature becomes clear.

The list in Physics World was ranked according to popularity, first place going to an experiment that vividly demonstrated the quantum nature of the physical world. But science is a cumulative

enterprise -- that is part of its beauty. Rearranged chronologically and annotated below, the winners provide a bird's-eye view of more than 2,000 years of discovery.

(21)

21

Abgeschlagen

Die Experimente von Archimedes zu Hydrostatik Römer Nachweis der Lichtgeschwindigkeit

Joules Schaufelrad-Experimente zur Thermodynamik Reynolds Strömungsexperimente

Mach und Salchers Untersuchungen zu akustische Schockwellen Michelson-Morley Experiment zur Existenz des Äthers

Röntgens Nachweis des Maxwellschen Verschiebungsstroms Oersteds Entdeckung des Elektromagnetismus

Bragg Röntgenbeugung an Salzkristallen

Eddington Messung der Krümmung von Lichtstrahlen an der Sonne

Stern-Gerlach Experiment zur Richtungsquantisierung des Drehimpulses in Atomen Schrödingers Katze Gedankenexperiment

Trinity Test der nuklearen Kettenreaktion

Wu‘s Messungen zur Paritätsverletzung bei der Schwachen Wechselwirkung Goldhabers Untersuchungen zur Neutrinohelizität

Feynman dippt einen O-ring in Wasser

ersten

Themen des zweiten Semesters dritten

(22)

Das Discovery Disaster

27 April 1981

Richard Feynman 1918-1988

I took this stuff that I got out of your seal and I put it in ice water, and I

discovered that when you put some pressure on it for a while and then undo it, it does not stretch back. It stays the same dimension.

In other words, for a few seconds at least and more seconds than that, there is no resilience in this

particular material when it is at a temperature of 32 degrees.

28 Januar 1986

(23)

23

1 Youngs Doppelschlitz-Experiment als Nachweis der Interferenzeffekts an einzelnen Elektronen (1961)

2 Fallexperimente von Galileo Galilei (um 1600) 3 Das Öltröpfchen Experiment von Millikan (1910s)

4 Newtons Aufspaltung von Sonnenlicht mit Hilfe eines Prismas (1665-1666) 5 Nachweis der Interferenz von Licht durch Young (1801)

6 Cavendishss Torsionsbalkenexperiment zur Wägung der Erde (1798) 7 Eratosthenes Messung des Erdumfangs (300 v. Chr)

8 Galilei Galileos Experiments mit Körpern auf einer schiefen Ebene (1600)

9 Entdeckung des Atomkern durch die Rutherfordschen Streuexperimente (1911)

10 Das Foucaultsche Pendel (1851) ersten

Themen des zweiten Semesters dritten

(24)

1 Nachweis der Interferenzeffekts an einzelnen Elektronen (1961) 2 Fallexperimente von Galileo Galilei (um 1600)

3 Das Öltröpfchen Experiment von Millikan (1910)

4 Newtons Aufspaltung von Sonnenlicht mit Hilfe eines Prismas (1665-1666) 5 Nachweis der Interferenz von Licht durch Young (1801)

6 Cavendishss Torsionsbalkenexperiment zur Wägung der Erde (1798)

7 Eratosthenes Messung des Erdumfangs (300 v. Chr)

8 Galilei Galileos Experiments mit Körpern auf einer schiefen Ebene (1600)

9 Entdeckung des Atomkern durch die Rutherfordschen Streuexperimente (1911) 10 Das Foucaultsche Pendel (1851)

(25)

25

Eratosthenes Messung des Erdumfangs (300 v. Chr)

Experimentelle Beobachtung zur Mittagszeit

Sonne steht senkrecht am Himmel in Syene

Säule in Alexandria wirft Schatten unter einem Winkel von 7.2°

Alexandria

Syene

(26)

Eratosthenes Messung des Erdumfangs (300 v. Chr)

Die Erde ist rund!

Erde ist flach Erde ist rund

Wennγ=α = 7.2°, dann ist β ebenfalls 7.2°

etwa 1/50 eines Vollkreises

Entfernung Alexandria - Syene 5000 Stadien (1 Stadion entsprach 157,5 m) d.h. 787.5 km

Erdumfang = 50x5787.5km = 39375 km Tatsächlicher Wert 40.075 km

Annahme 1 Annahme 2

Sonne ganz nah Sonne ist weit entfernt

(27)

27

1 Nachweis der Interferenzeffekts an einzelnen Elektronen (1961) 2 Fallexperimente von Galileo Galilei (um 1600)

3 Das Öltröpfchen Experiment von Millikan (1910s)

4 Newtons Aufspaltung von Sonnenlicht mit Hilfe eines Prismas (1665-1666) 5 Nachweis der Interferenz von Licht durch Young (1801)

6 Cavendishss Torsionsbalkenexperiment zur Wägung der Erde (1798) 7 Eratosthenes Messung des Erdumfangs (300 v. Chr)

8 Galilei Galileos Experiments mit Körpern auf einer schiefen Ebene (1600)

9 Entdeckung des Atomkern durch die Rutherfordschen Streuexperimente (1911) 10 Das Foucaultsche Pendel (1851)

(28)

Newtons Aufspaltung von Sonnenlicht mit Hilfe eines Prismas (1665-1666)

Isaac Newton 1643-1723

(29)

29

Lichtaufspaltung in der Atmosphäre

Der 22° Halo

Typische Form von Eiskristallen

Der Wert für diesen minimalen Ablenkwinkel von 22° hängt

vom Brechungsindex ab (Materialkonstante)

J.H. Elbfas - Vädersolstavlan 1636

(30)

Lichtaufspaltung in der Atmosphäre

Der 22° Halo

Da der Kristall sich natürlich dreht sieht man viele unterschiedliche Ablenkwinkel.

Der Winkel von 22° ist der minimale Ablenkwinkel Kleinere Winkel kommen nicht vor !

Die Kristalle liegen weder auf einem bestimmten Kreis, noch auch nicht in der eingezeichneten Richtung. Der Beobachter sieht aber im wesentlichen

genau diese Kristalle. Davon gibt es immer genug.

Eine besondere Ausrichtung der Kristalle ist nicht

(31)

31

1 Nachweis der Interferenzeffekts an einzelnen Elektronen (1961)

2 Fallexperimente von Galileo Galilei (um 1600) 3 Das Öltröpfchen Experiment von Millikan (1910s)

4 Newtons Aufspaltung von Sonnenlicht mit Hilfe eines Prismas (1665-1666) 5 Nachweis der Interferenz von Licht durch Young (1801)

6 Cavendishss Torsionsbalkenexperiment zur Wägung der Erde (1798) 7 Eratosthenes Messung des Erdumfangs (300 v. Chr)

8 Galilei Galileos Experiments mit Körpern auf einer schiefen Ebene (1600)

9 Entdeckung des Atomkern durch die Rutherfordschen Streuexperimente (1911) 10 Das Foucaultsche Pendel (1851)

(32)

Absurd!! Der Poisson-Fleck

Beugung von Licht an einer Scheibe

Vorhersage von Poisson (Verfechter der Lichtpartikeltheorie) Wenn die Wellentheorie stimmt, erscheint hinter einer

lichtundurchlässigen Scheibe in der Mitte ein heller Fleck.

Das kann nicht sein. Die Wellentheorie Ist falsch!

Siméon Denis Poisson, (1781–1840)

Experimenteller Nachweis der Wellennatur von Licht

da!

(33)

33

Doppelspaltexperiment

Ist Licht Teilchen oder Welle?

Erwartung, wenn Licht Teilchencharakter hätte

Tatsächlich beobachtet man Welleneigenschaften

(34)

Wellenbeugung am Doppelspalt

(35)

35

Elektronenbeugung am Doppelspalt

Welle oder Teilchen?

Ganz klar:

Das Elektron ist ein Teilchen!

Das Elektron ist eine Welle!

(36)

Doppelspaltexperimente mit großen Molekülen

Physics World, 2 Mai 2005

Molecules with over 100 atoms can be made to interfere, according to recent experiments that study the transition from the quantum to the classical world

(a)Fulleren (Buckyball) C70;

(b)Biomolekül Tetraphenylporphyrin (TPP) C44H30N4 (c)Fluorinated fullerene C60F48

(1632 amu, World Record)

(37)

37

Photoeffekt

Heinrich Hertz 1887

( 250 50 W m ) 3 . 2 10 W

Fläche Leistung

Lampe ler

Lichtstrah

10

2

= ⋅

=

= π μ

I

L

( ) 10 W

m² 10 W 3.2 m 10

² = π

10 2

10

=

9

π r I

L

ro Atom Leistung p

Die Abschätzung zeigt:

Hätte das Licht nur Wellencharakter, würde sich unter solchen Bedingungen kein Elektron freisetzen lassen Abschätzung

wieviel kommt davon bei einem Atom an

Intensität

Elektronen

Das Problem

(38)

Photoeffekt

Einstein 1905

Durch Lichtpakete (Photonen) werden von der Oberfläche der Metallscheibe Ladungen (Photoelektronen) freigesetzt. Dadurch lädt sich die Scheibe positiv auf. Die Erzeugung der Photoelektronen hängt von der Farbe des verwendeten Lichts ab. Nur ultraviolettes Licht, d.h. kurzwellige, energiereiche Photonen, rufen

diesen Effekt hervor. Hat das Photon nicht genügend Energie, wird kein Elektron abgelöst. Die Intensität der Strahlung spielt nur eine untergeordnet Rolle

windigkeit Lichtgesch

:

Konstante Plancksche

:

Lichts des

e Wellenläng :

Lichts des

Frequenz :

s Lichtpaket eines

Energie

c h

h c h

E

ph

λ

ν = ν = λ

Festkörper dem

aus beit Austrittar

Elektrons n

emittierte des

Energie kinetische

=

ph

kin

E

E

Referenzen

ÄHNLICHE DOKUMENTE

Wird schonend bei niedriger Temperatur über Stunden medium gegart und kurz vor dem Anrichten extrem

Bahn 0 Sonntag, Leona 2012 Wasserfreunde Wuppertal e.V.. Verein Meldezeit. Bahn 0 Kalheber, Maximilian 2012 Wasserfreunde Wuppertal e.V..

(5) Das Studierendenparlament kann Mitgliedern der Studierendenschaft für die Erledigung einzelner Projekte oder sons- tiger Tätigkeiten im Rahmen ihrer satzungsmäßigen Aufgaben

(b) Schreiben Sie eine Funktion shape , die das geheime Wort word und einen String der bisher erratenen Zeichen guesses als Argumente nimmt, alle Zeichen in word durch '_' ersetzt,

Geräte, die von einer USV (unterbrechungsfreie Stromversorgung) versorgt werden, sind von der Abschaltung nicht betroffen... Bitte achten Sie selbst darauf, dass nach

Olivia Hofmann Abschluss des Masterstudiums mit dem Schwerpunkt Technology, Operations and Processes an der Uni Bayreuth in 10/182018 // zuvor bei einem Start-up-Inkubator in

Ben‘s Original Reis oder

Nach § 17b der Verordnung der Landesregierung über infektionsschützende Maß- nahmen gegen die Ausbreitung des Virus SARS-CoV-2 (Corona-Verordnung - Co- ronaVO) vom 15.09.2021 in der