• Keine Ergebnisse gefunden

Dominant  processes  for  microstructure  evolu2on  in  polar  ice

N/A
N/A
Protected

Academic year: 2022

Aktie "Dominant  processes  for  microstructure  evolu2on  in  polar  ice"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Dominant  processes  for  microstructure  evolu2on  in  polar  ice

 

Daniela  Jansen 1 ,  Sergio  H.  Faria 2,3 ,  Ilka  Weikusat

 

1 ,  and  Nobuhiko  Azuma 4  

1  Alfred-­‐Wegener-­‐Ins2tut  Helmholtz-­‐Zentrum  für  Polar-­‐  und  Meeresforschung,  Bremerhaven,  Germany  (daniela.jansen@awi.de)     2  Basque  Centre  for  Climate  Change  (BC3),  Bilbao,  Spain  (sergio.faria@bc3research.org)    

3  Ikerbasque,  the  Basque  Founda2on  for  Science,  Bilbao,  Spain    

4  Dept.  of  Mechanical  Engineering,  Nagaoka  University  of  Technology,  Nagaoka,  Japan  (azuma@mech.nagaokaut.ac.jp)  

 

Helmholtz  Young   Inves2gator  Group  

   

Deforma2on  mechanisms   for  ice  sheet  dynamics  

(1)Normal   Grain   Growth   (NGG):   steady   increase   of   the   average   grain   size   with   age/

depth,  foam-­‐like  structure.  

 

( 2 ) N G G   i s   b a l a n c e d   b y   r o t a 2 o n   recrystalliza2on   or   “polygonisa2on”   (RRX),   spli^ng  of  grains  along  sub-­‐grain  boundaries,   leading  to  a  sta2onary  average  grain  size.    

 

(3)Strain-­‐induced  boundary  migra2on  (SIBM)   including   nuclea2on   of   new   grains,   resul2ng   in   larger   average   grain   sizes   and   a   bulk   anisotropy   o_en   characterized   by   mul2ple   maxima  in  the  c-­‐axis  orienta2on  distribu2on.  

 

Historical  background      

   

 

             

The  analysis  of  microstructural  data  of  deep  ice  cores  within  the  last   decades   contributed   significantly   to   the   understanding   of   recrystalliza2on   processes.   The   review   paper   by   Faria   et   al.   (in   prepara2on)  revisits  some  historic  results.  

Below:   2me   line   of   ice   core   drilling   ac2vi2es   shown   in   map.   Green   bars   indicate   Antarc2c   campaigns,   blue   bars     indicate   Greenland   campaigns.  

   

Introduc2on  

 

The   microstructure   of   polycrystalline   polar   ice   is   affected   by   many   recrystalliza2on  processes,  which  can  occur  simultaneously  as  well  as   in  succession.  The  size  and  shape  of  individual  grains,  the  orienta2on   of   c-­‐axes   and   the   occurrence   of   sub-­‐grain   boundaries   are   all   influenced   by   a   number   of   agents,   including   stress,   strain,   impurity   content,   and   temperature   within   the   ice.   To   interpret   the   structures   found   in   ice   core   data   with   respect   to   the   genera2ng   deforma2on   mechanisms,   it   is   necessary   to   beder   understand   the   feedback   between  microstructure  and  rheology  of  the  ice.  A  beder  knowledge   of   ice   rheology   is   also   required   for   improving   macroscopic   ice   flow   models  and  producing  realis2c  projec2ons  of  the  mass  balance  of  ice   sheets.  

 

New  Recrystalliza2on  diagram  

How   best   visualize   the   different   recrystalliza2on   regimes   and   the   weighted  influence  of  the  individual  processes?  Here  we  show  the  first   dra_  of  a  new  recrystalliza2on  diagram.  Dis2nct  recrystalliza2on  regimes   can  be  achieved  by  different  combina2ons  of  grain  boundary  forma2on   and  annihila2on  rates.  In  par2cular,  SIBM  without  nuclea2on  (SIBM-­‐O)  is   dominant   at   the   le_   of   the   diagram,   with   a   low   grain   boundary   forma2on  rate,  while  RRX  is  stronger  at  the  bodom  right.    

New  data  -­‐  new  ideas  

References  

Faria,  S.H.,  l.  Weikusat,  N.  Azuma:  The  microstructure  of  polar  ice.  J.  Struct.  Geol.,  MicroDICE  Special  Issue,  in  prepara2on.  Kipfstuhl,  S.,  Faria,  S.  H.,  Azuma,  N.,  Freitag,  J.,  Hamann,  I.,  Kaufmann,  P.,   Miller,  H.,  Weiler,  K.,  Wilhelms,  F.,  2009.  Evidence  of  dynamic  recrystalliza2on  in  polar  firn.  J.  Geophys.  Res.  114,  B05204.  Weikusat,  I.,  Kipfstuhl,  S.,  Faria,  S.  H.,  Azuma,  N.,  Miyamoto,  A.,  2009.  

Subgrain  boundaries  and  related  microstructural  features  in  EDML(Antarc2ca)  deep  ice  core.  J.  Glaciol.  55  (191),  461–472.  Herron,  S.  L.,  Langway,  C.  C.,  1982a.  A  comparison  of  ice  fabrics  and   textures  at  Camp  Century,  Greenland  and  Byrd  Sta2on,  Antarc2ca.  Ann.  Glaciol.  3,  118–124.  

Recrystalliza2on  regimes  

The  analysis  of  grain  sizes  and  c-­‐axis  orienta2on  distribu2ons  with  depth   of   the   Byrd   deep   ice   core,   Antarc2ca,   suggested   that   microstructural   evolu2on  could  be  characterized  by  three  main  depth  ranges  of  the  ice   core,   defined   by   their   predominant   recrystalliza2on   regimes.   A   generaliza2on   of   these   results   gave   rise   to   the   tripar2te   paradigm   of   polar  ice  microstructure  (“three-­‐stage  model”):  

 

NGG  coincides  with  the  ver2cal  axis   (viz.   vanishing   grain   boundary   f o r m a 2 o n   r a t e )   w h e n   t h e   condi2ons   for   the   lader   are   achieved   (viz.   vanished   stored   strain   energy   and   a   steady   state  

“foam-­‐like”   microstructure).  

Nuclea2on   (seen   as   a   combina2on   of   microscopic   subgrain   forma2on   by  grain-­‐boundary  bulging  and  RRX)   occurs   mostly   right   of   the   white   dashed  line.  

Evidence  for  dynamic   recrystalliza2on

 

Herron  &  Langway  1982  

Some   informa2on   from   ice   cores   reported   in   the   literature   and   recent   studies   show   that   this   three-­‐stage   model   is   not   always   valid   (see   review   Faria  et  al.  in  prepara2on).  Data  from   the   EDML   ice   core   indicate   that   here   dynamic   recrystalliza2on   is   equally   present  at  all  depths  star2ng  from  firn   depth   on.   This   has   been   observed   in   studies   on   subgrain   boundary   occurrence  and  grain  shape  analysis  as   well   as   classical   grain   size   curves   (Kipfstuhl  et  al.  2009;  Weikusat  et  al.,   2009).   The   images   to   the   right   show   the   microstructure   of   polar   firn   from   the  EDML  ice  core  in  60  m  (a)  and  80   m   (b)   depth.   The   upper   shows   the   expected   NGG   fabric,   whereas   the   lower  shows  bulging  grain  boundaries   and  subgrain  boundaries.  

F u r t h e r   e v i d e n c e   f o r   d y n a m i c   recrystalliza2on  in  upper  part  of  the  ice   core  of  Dome  Fuji.    

The   image   from   175   m   depth   shows   a   bulging   grain   boundary,   sugges2ng   strain   induce   boundary   migra2o   being   ac2ve  here.  

Another  example  from  EDML,  in   304  m  depth:  Again  the  bulging   of   grain   boundaries   as   well   as     subgrain   boundaries   in   the   middle   of   a   large   grain   can   be   detected,  indica2ng  RRX  as  well   as  SIMB.  

Kipfstuhl  et  al.,  2009  

1  mm  

1  mm  

sGB  

Ice  divide   Flank   Dome  

2164  m   2774  m   3035  m   3769  m  3270  m  

<100  m   1375  m   3090  m  

3057  m   3029  m  

2037  m  

125  m   150  m  

Referenzen

ÄHNLICHE DOKUMENTE

The number of polygonisation and grain dissection events (Figure 6) for each of the eight initial grain-sizes and two strain rates was averaged over the two stages observed in

2.3 Fit of the free parameters to ATLAS reaction rates The fitting procedure for the original model version was based on fitting the time series of species mixing ratios of a

Parameterizations of the momentum transfer coefficients reproduce the observed nonlinearity when a concept is used that distinguishes between skin drag over level ice and

It is found that relative changes in the archived dust load can be reproduced, while the simultaneous attainment of absolute concentrations or changes in the grain size frequency

  Competition of the recrystallization processes results in a steady-state grain size as surface in the state space.   Clues to

● Quasi-continous microstructure analysis along deep ice core has become possible using sublimation groove images. ● Automatic extraction of the grain

• Assess the changes that occur in the Southern Ocean, identify the processes that link physics, chemistry and biology, and determine the feedback mechanisms to the global

Ø  Current total loss of Greenland‘s ice sheets of 240 Gt/yr Ø  Increased basal melting would lead to an additional sea. level rise of