• Keine Ergebnisse gefunden

µ–recursive Functions

N/A
N/A
Protected

Academic year: 2021

Aktie "µ–recursive Functions"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

µ–recursive Functions

1. nulln(k1, . . . , kn) = 0 2. succ(k) = k + 1

3. projn,i(k1, . . . , kn) = ki

4. g(k1, . . . , kn) = f(f1(k1, . . . , kn), . . . , fm(k1, . . . , kn)) 5. h(k1, . . . , kn, 0) = f(k1, . . . , kn)

h(k1, . . . , kn, k + 1) = g(k1, . . . , kn, k, h(k1, . . . , kn, k)) 6. g(k1, . . . , kn) = k iff f(k1, . . . , kn, k) = 0 and

for all 0 ≤ k < k,

f(k1, . . . , kn, k) is defined and f(k1, . . . , kn, k) > 0

23

(2)

Example plus

f(x, y, z) = succ(proj3,3(x, y, z)) plus(x, 0) = proj1,1(x)

plus(x, y + 1) = f(x, y, plus(x, y))

Example div

div(x, y) = z iff i(x, y, z) = 0 and

for all 0 ≤ z < z, i(x, y, z) is defined and i(x, y, z) > 0

Here, i(x, y, z) = x − y · z, i.e.,

i(x, y, z) = minus(proj3,1(x, y, z), j(x, y, z))

j(x, y, z) = times(proj3,2(x, y, z), proj3,3(x, y, z))

24

Referenzen

ÄHNLICHE DOKUMENTE

[r]

Die Diagonalelemente sind nicht invariant unter einem Phasenfaktor exp ( − iθ) und verursachen daher eine Symmetriebrechung..

Wengenroth Wintersemester 2014/15 07.01.2015. Maß- und Integrationstheorie

Obige Skizze zeigt, daß F nur eine z-Komponente F z

We mention theoretical work on prediction properties of Pad´e approximants and related algorithms like the epsilon algorithm, and the iterated Aitken and Theta algorithms

these models of computation capture the ‘true’ concepts of algorithmic

[r]

The purpose of this section is to extend this theory to the recursive types, by defining a notion of approximation on infinite trees.. 3.1 Subtyping