• Keine Ergebnisse gefunden

D if fe re n t e v o lu ti o n fo r d if fe re n t m a s s e s

N/A
N/A
Protected

Academic year: 2021

Aktie "D if fe re n t e v o lu ti o n fo r d if fe re n t m a s s e s"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

8–1

8 . M a s s iv e s ta rs

8–2 Massivestars1

D if fe re n t e v o lu ti o n fo r d if fe re n t m a s s e s

Evolutionofcentraltemperatureanddensityforstarsofdifferentmasses

8–3 Massivestars2

D if fe re n t e v o lu ti o n fo r d if fe re n t m a s s e s

initialmass

M /M

<

0

.

5verylowmassHeburningnotignited,nosignificant evolutionduringlifetimeofUniverse 0

.

5

.. .

2

.

3lowmassHeburningignitedindegeneratecore (heliumflash),noCburning 2

.

3

.. .

8intermediateHeburningignitedinnon-degenerate core,noCburning

>

8highmassHe,Cburning,ignitedinnon- degeneratecore→supernova 8–4 Massivestars3

E v o lu ti o n o f h ig h m a s s s ta rs ( M > 8 M

)

•lessthen2%ofallstars •Heburningignitesinnon-degeneratecore,likeintermediatemassstars (2.3M<M<8M) •carbonburningignitesinnon-degeneratecore •subsequentnuclearprocess(oxygenburning,siliconburning)inthecore •fusionprocesses(H,He,Cburning)continueinshellsources •finalstage:onionlikeshellstructure

(2)

8–5 Massivestars4

A d v a n c e d n u c le a r p ro c e s s e s

Carbonburning anumberofpossiblechannels: 12

C +

12

C

24

M g + γ +

18

.

93

M eV (

)

23

M g + n

−2

.

61

M eV (

)

23

N a + p +

2

.

24

M eV (I )

20

N e + α +

4

.

61

M eV (I I)

16

O +

2

α

−0

.

11

M eV (

)

lowprobabilityfor

(

)

similarratesfor(I)and(II)(for

T

≈109

K

). Instantaneousreactionsofnewlyproduced

p

,

n

,

α

withotherelements,e.g. 12

C ( p, γ )

13

N ( e

+

ν )

13

C ( α ,n )

16

O

8–6 Massivestars5

A d v a n c e d n u c le a r p ro c e s s e s

Neburningphotodisintegration(T

>

109 K) 20

N e + γ

16

O + α

−4

.

73

M eV

20

N e + α

24

M g + γ +

4

.

58

M eV

Oxygenburning 16

O +

16

O

32

S + γ +

16

.

54

M eV

31

P + p +

7

.

68

M eV

31

S + n +

1

.

45

M eV

28

S i+ α +

9

.

59

M eV

24

M g +

2

α

−0

.

39

M eV

8–7 Massivestars6

A d v a n c e d n u c le a r p ro c e s s e s

Siliconburning(

T >

3·109

K

) •Photodisintegration:Theradiationfieldcontainshighenergyphotonscapable ofdisintegratingSinucleiintolighternuclei,αparticles,protons,neutrons. •

p, n ,α

reactimmediatelywithothernucleiandformheavieratomicelements upto56

F e

. •Networkofnuclearreactionswithinversereactionsoccurringat(almost)the samerates⇒quasithermalequilibrium •⇒Nuclearstatisticalequilibrium 8–8 Massivestars7

A d v a n c e d n u c le a r p ro c e s s e s

Nuclearstatisticalequilibrium(NSE)duringSiburning •sequenceofreactionslike,e.g.: 28

S i+ α

32

S + γ

32

S + α

36

A r + γ

36

A r + α

40

C a + γ

. . .

52

F e + α

56

N i+ γ

•(56 Nidecayslaterto56 Feviatwoβ+ decays) •NSEincomplete:ironnucleistillstable(fornow) •⇒formationofirongroupelements

(3)

8–9 Massivestars8

N u c le a r s ta ti s ti c a l e q u ili b ri u m (N S E )

•Formaltreatmentofphotodisintegrationinequilibriumverysimilartothe treatmentofphotoionisationinequilibrium(Sahaequation) •e.g.“chemical”equilibriumofthereaction: 28

S i+ α

32

S + γ

•equatechemicalpotentials:

µ

28Si

+ µ

α

µ

32S •concentrationsaregivenby: n28Sinα nu32S

=

2πmrkT h2

3 2

ex p

Q kT

Q

isthedifferenceofbindingenergy:

Q = ( m

28Si

+ m

α

m

32S

) c

2

=

6

.

59

M eV m

r

=

28·4 28+4

=

3

.

5isthereducedmassof28

S i+ α

underSiburningconditionsn(28Si) n(32S)≈4 8–10 Massivestars9

N u c le a r s ta ti s ti c a l e q u ili b ri u m (N S E )

• prevailingnucleiinNSEasafunctionoftemperature

8–11 Massivestars10

H ig h m a s s s ta rs

HST/NASA EtaCarinae,oneofthemostmassivestarsknownanditsnebula 8–12 Massivestars11

In te ri o r e v o lu ti o n o f a 1 5 M

s ta r

0–12.15Myr:Mainsequence(Hcoreburning)phase 12.15–13.7Myr:Hecoreburning,Hshellburning thestarbecomesaredsupergiant(RSG) >13.75Myr:Ccoreburning,HandHeshellburning

(4)

8–13 Massivestars12

In te ri o r e v o lu ti o n o f a 1 5 M

s ta r S tr o n g m a s s lo s s d u ri n g R S G p h a s e

8–14 Massivestars13

In te ri o r e v o lu ti o n o f a 6 0 M

s ta r

•Masslossbecomes moreandmoreim- portant(radiative pressure!) •Veryhighmassstars looss20...30%of theirmassduring theirmainsequence phase •Thehighmasslosspreventsveryhighmassstarsfrombecomingredgiants

8–15 Massivestars14

In te ri o r e v o lu ti o n o f a 6 0 M

s ta r

•layersofHandHeburningmaterialareexposed H-burningmaterial:HeandNrich.Wolf-RayetstarstypeWN He-burningmaterial:CandOrich.Wolf-RayetstarstypeWC 8–16 Massivestars15

H ig h m a s s s ta r e v o lu ti o n

Hatchedareasindicatephasesofrelativelyslowevolution(mainsequenceand Hecoreburning,fromMaeder&Meynet,A&A182,243)

(5)

8–17 Massivestars16

A d v a n c e d n u c le a r p ro c e s s e s

Theendgame:irondisintegration(

T >

5·109

K

) Eventually,temperaturesohighthatγphotonsenergeticenoughtobreakup ironexistintheradiationfield. 56

F e + γ

→13

α +

4

n

−100

M eV

•absorbsalargeamountofenergy •triggerscollapseofcore •initiatesthesupernovaexplosion 8–18 Massivestars17

H ig h m a s s s ta r e v o lu ti o n

OnionshellmodelThefinalshell structureofahighmassstarshortly beforecorecollapse •StartingfromtheoutsideH,He,C andO(simplifiedtooneshell)and Siburningshellsareoperating •Fedisintegrationhasstartedinthe core

8–19 Massivestars18

H ig h m a s s s ta r e v o lu ti o n T im e s c a le s o f th e c o re b u rn in g p h a s e s fo r a 2 0 M

s ta r

mainsequence10Mill.years Heburning1Mill.years Cburning300years Oburning2 3years Siburning2days 8–20 Massivestars19

H ig h m a s s s ta r e v o lu ti o n

•NofurthernuclearenergysourcesinthecoreafterSiburning •photodisintegrationofironabsorbsenergy! 56

F e + γ

→13

α +

4

n

•Contractionofthestellarcoreuntil

T

c≈1010

K

,

ρ

c≈1010g cm3 •Electrongasisultra-relativisticdegenerate,

M

c

> M

Chandra •⇒nothingcanstopthecollapseofthecore. Thishappensin(

τ

ff≈40

m s

) •Collapsecanonlybestoppedwhenthestellarmatterreachesthedensityof atomicnuclei

ρ

C≈1014g cm3 •neutronisation •formationofaneutronstar

(6)

8–21 Massivestars20

N e u tr o n is a ti o n

Freeneutronsdecaywithahalf-lifetimeof10.25min:

n

p + e

+ ν

e

+

1

.

3

M eV

⇒Maximumenergyofproducedelectrons:1.3MeV DegenerateelectrongaswithFermimomentum

p

F

= h

3ne 8π1 3 Fermienergy:

ǫ

F

( e ) = m

e

c

2

+ p

2 F

( e )

2

m

e

re sp . ǫ

F

( e ) = p

F

( e ) c

non-relativisticresp.ultra-relativistic NeutronsarestableiftheFermienergyofthedegenerateelectrongasisisin excessof1.3MeV,i.e.allquantummechanicalstatesarefilledupto1.3MeV. IfthegasisdensertheFermienergyishigherandneutronscanbeformedfrom protonsandelectronsviainversebetadecay. 8–22 Massivestars21

N e u tr o n is a ti o n

Underneutronstarconditions:protonsandneutronsatneutronstardensities arenon-relativisticdegenerate.Fermi-energies:

ǫ

F

( n ) = m

n

c

2

+ p

2 F

( n )

2

m

n

p

F

( n ) = h

3

n

n 8

π

1 3

ǫ

F

( p ) = m

p

c

2

+ p

2 F

( p )

2

m

p

p

F

( p ) = h

3

n

p 8

π

1 3 Electronsareultra-relativisticdegenerate(restmasssmallerbyfactor1835!):

ǫ

F

( e ) = p

F

( e ) c p

F

( e ) = h

3

n

e 8

π

1 3 Equilibriumbetweenneutronsandprotons/electronsisreachedwhen

ǫ

F

( n ) = ǫ

F

( p ) + ǫ

F

( e )

8–23 Massivestars22

N e u tr o n is a ti o n

Equilibriumcondition:

ǫ

F

( n ) = ǫ

F

( p ) + ǫ

F

( e ) m

n

c

2

+ p

2 F

( n )

2

m

n

= m

p

c

2

+ p

2 F

( p )

2

m

p

+ p

F

( e ) c

substituting

p

F

( n ,p ,e ) = h

3nn,p,e 8π

1 3

m

n

c

2

+ h

2 2

m

n 3

n

n 8

π

2 3

= m

p

c

2

+ h

2 2

m

p 3

n

p 8

π

2 3

+ h c

3

n

e 8

π

1 3 Theneutronstarmatterisneutral,thus

n

p

= n

e.

h c

3

n

p 8

π

1 3

+ h

2 2

m

p 3

n

p 8

π

2 3

h

2 2

m

n 3

n

n 8

π

2 3

= m

n

c

2

m

p

c

2

=

1

.

3

M eV

8–24 Massivestars23

N e u tr o n is a ti o n h c

3

n

p 8

π

1 3

+ h

2 2

m

p 3

n

p 8

π

2 3

h

2 2

m

n 3

n

n 8

π

2 3

=

1

.

3

M eV

Atypicalneutronstardensityof

ρ =

2·1014g cm3correspondsto

n

n≈1·1038

cm

3 . Theresultingelectron/protondensityis

n

e

= n

p

=

1 200

n

n Neutronsarethedominantconstituentofneutronstarmatterindeed.

(7)

8–25 Core-collapseSupernovae1

C o re -c o lla p s e S u p e rn o v a e

•mattercontinuesto“rain”ontothe proto-neutronstar •reflectionatthesurfaceofthehigh densitycore •⇒formationofanoutwardmoving shockfront •+additionalenergyinputfroma neutrinowind.Meanfreepathof neutrinoswithinmatterofdensity ofatomicnuclei<1km •⇒inversionofthedirectionof movement •⇒supernovaexplosion (corecollapsesupernovae) 8–26 Core-collapseSupernovae2

C o re -c o lla p s e S u p e rn o v a e

Supernova1987aintheLargeMagellanicCloud afterbefore

8–27 Core-collapseSupernovae3

N e u tr o n s ta r

Remnant:neutronstar •degenerateneutrongas •⇒polytropicmodelanaloguesto whitedwarfs •⇒massradiusrelation •limitingmass:

M

Ch

=

M3 1.5 4π

hc Gm4 3 H

3 2

µ

2 e

=

5

.

836

µ

2 n

M

=

5

.

73

M

M3=2.71(Lane-Emdenconstant forpolytropicindexn=3,seechap- ter5)Mass-radiusrelationforwhitedwarfs andneutronstars 8–28 Core-collapseSupernovae4

N e u tr o n s ta r

Correctionstothissimplepicture •Effectsfromgeneralrelativityareimportant •e.g.forthehydrostaticequation:Tolman,Oppenheimer,Volkoff •⇒decreaseslimitingmass •equationofstatefortheinterior:creationofexoticparticles(pions,hyperons, quarkplasma?)–understandingnotverygood •⇒decreaseslimitingmass(analoguestoionisation) •realisticlimitingmass:2...3M

(8)

8–29 Core-collapseSupernovae5

N e u tr o n s ta r

Structureofaneutronstar(hypothetical) 8–30 Core-collapseSupernovae6

T h e c ra b

TheCrabnebula(M1)—theremnantofSN1054 Theneutronstarinthecentreofthe crabnebula ESO/VLT

Referenzen

ÄHNLICHE DOKUMENTE

Sulṭān Aḥmad claimed the sultanate in Tabriz, Amīr ‘Ādil acted as protector to Bāyazīd, who also had a claim to royal authority in Sultaniyya, and Shaykh ‘Alī continued

(chm) Kaufmännischer Verband Aarau–Mittelland Aufbruchstimmung beim KV Herbstanlass in Aarau Der Kaufmännische Verband (KV) Aarau-Mittelland hat am

Früchtee Früchtemischung Wilde Waldbeere Hibiskus, Hagebutten, Apfel, Holunderbeeren, Aroma 4,80 € *. 0958

Wenn wir unsere Sünden bekennen, so ist Gott treu und gerecht, dass er uns die Sünden vergibt und uns reinigt von aller Ungerechtigkeit.. Die Bibel

funktionieren oder eine neue Technologie einen kompletten Wandel nach sich zieht, man aber auf diesem Gebiet sich noch nicht auskennt, dann wird alle Innovationskraft und

Da viele Golfer trotz aller beste- henden Einschränkungen (nur Zweier-Flights, 10-Minuten- Abstand, kein geselliges Beisam- mensein vor und nach dem Golf- spiel, keine

Weniger ist manchmal mehr, um die mysteriöse Person rund um Dregotdreams zu wahren wird er sehr getimed auf Social Media stattfinden dafür um so mehr in der Streaming Welt.

Wir möchten freundlich darauf hinweisen, dass in allen unseren Gerichten Spuren der 14 Hauptallergene enthalten sein können.. Sie finden dort ein vielfältiges Sortiment